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Abstract - To achieve high performance, the next generation of 
high-level programming languages should incorporate databases 
as core technology.  Presented here are the design considerations 
for the Water language leading to the use of a (B-tree) Indexed 
Sequential Access Method database at its core. 
 

INTRODUCTION 
 

 As increasing CPU speed outpaces growth in memory 
bandwidth, programming languages must deal with 
aggregations of data in order to keep pace both with execution 
speed and programmer time.  To scale with CPU speed, lower 
level language constructs require more and more 
sophistication from the (high-level) compiler.  Higher level 
language constructs need only be optimized by the 
implementation language - provided they are the right 
constructs. 
 An example of this is the for_each construct of the Water 
language.  This language’s sole iteration construct maps over 
elements of vectors, maps over database keys and values, or 
maps over integers, and can collect results in a vector, in a 
database, or reduce them with a given function.  The input 
keys can be arbitrarily filtered. 
 This is an example using for_each to iterate over a vector 
containing two strings. 
 
 <vector "zero" "one"/>.<for_each combiner=join> 
   <join key "=" value "; "/> 
 </> 

 Returns: “0=zero; 1=one; ” 
 
 The implementation of for_each has code optimized for the 
possible combinations of input type, map function, and filter.  
It also has code optimizing the common cases where primitive 
methods are given for filter, map, or reduce.  Because 
for_each usually iterates multiple times per invocation, the 
time to dispatch to the correct code is negligible when 
amortized over the iterations. 
 The Water language had it origins in 1998 when 
Christopher Fry and Mike Plusch, the founders of Clear 
Methods, recognized both the potential and the limitations of 
XML and Web services.  Water has since become a platform 
enabling businesses to make use of Web services and XML 
without the inherent limitations and complexity of traditional 
Web services development. 
 The first version of Water was released in 2001 to run on 
Java virtual machines.  This first implementation suffers from 
slow operation and long startup times.  In late 2006, a new 

higher-performance implementation was needed in order to 
achieve the performance level appropriate for a lightweight 
browser plug-in. In addition to achieving high performance, it 
was critical that the language be compatible with multiple 
operating systems and platforms.  
 The Water language is object-oriented.  Object-key pairs are 
associated with methods and other values.  Water has 
lexically-scoped environments; environment-variable pairs are 
associated with values. Water is reflexive; in the Java 
implementation, code is stored as objects.  The top-level 
environment and root of the class hierarchy can grow to have a 
large number of associations. 
 The Java implementation of Water spends considerable time 
loading library code into the runtime image.  Startup would be 
much faster if binary code objects could be saved and restored 
from a file. 
 Embedded platforms do not all support virtual memory.  
And many platforms (embedded or not) perform poorly as 
memory use by applications or plugins grows.  To improve 
performance it is important to control RAM use by 
applications and plugins.  
 So we are looking for a core technology that:  

• stores associations (in databases) 
• has fast access times for both large and small 

databases 
• can be saved to and restored from binary files 
• has a bounded RAM footprint 

 
 B-trees [1] [2] [3] [4] have all of these properties.  Such use 
of B-trees is not without precedent; created in 1966, the 
MUMPS (Massachusetts General Hospital Utility Multi-
Programming System) and its derivatives are based on an 
Indexed Sequential Access Method (ISAM) database, most 
often B-trees. 
 We have adapted the WB B-tree library [5] for Water's use.  
It has the additional benefit of being thread-safe; critical 
update operations are protected by distributed locks; inter-
thread communication is supported through mutual-exclusion 
operations provided in the application programmer interface. 
Thus WB can be used to support multiple sessions in a server 
or in a browser's multiple frames. 

 
MULTILINGUAL PROGRAMMING 

 
 WB is written in a subset of the Algorithmic Language 
Scheme which can be translated to C by the Schlep compiler 



[6] which is included in the WB distribution.  At Clear 
Methods, Aubrey Jaffer and Ravi kiran Gorrepati adapted 
Schelp to create scm2java and scm2cs, producing completely 
compatible implementations of WB in Java-1.5 and C#.  This 
same translation technology is used for translating the Scheme 
sources for the Water compiler and runtime engine into C, 
Java, and C#. 
 The use of these translators means that compiler and engine 
development (and releases) can proceed in parallel with Water 
code development using any of Water's compatible platforms.  
The Scheme implementation (SCM [7]) used for development 
does comprehensive bounds and type checking, eliminating 
the need for writing many program-logic checks into the 
source code of the Water compiler and engine. 
 Another mechanical translation is done by a simple bespoke 
Scheme program processing the data-representation design 
document, extracting the version, byte opcode, and 
(numerical) type assignments and producing source files 
which are included or otherwise used in the builds and 
runtime. 
 Java and C# provide garbage-collection.  In C, the new 
Water implementation uses the Boehm conservative garbage 
collector [8] for temporary allocations. 
 

PRIMITIVE TYPES 
 
 The keys and their associated values in WB are from 0 to 
255 bytes in length.  The 250 bytes are more than enough to 
host all the codepoints, identifiers, and numbers including 
bignums that users (other than number-theorists) need.  
Integers are from 1 byte to 249 bytes in length and are stored 
big-endian with a length prefix so they sort correctly as keys 
in B-trees.  Water also encodes strings and binary objects 
smaller than 253 bytes as immediate objects. 
 Although there are techniques for extending B-tree keys and 
values in length, at some point it becomes burdensome for the 
runtime infrastructure to allocate and store large primitive 
types in the runtime image; doing so also can exceed the 
bounded RAM footprint.  So the new Water implementation 
picks as its boundary 253 bytes.  A string or binary object 
larger than this is given a unique identifier and its data is 
stored under numerical keys appended to its identifier.  
Whether a string or binary object is represented as a single 
immediate or as associations in a B-tree is not discernable to 
the user. 
 The index used for each string chunk is the UTF-8 
codepoint offset of the end of the chunk from the beginning of 
the first chunk.  Strings thus have O(log N) access time even 
though their UTF-8 representation has variable numbers of 
bytes per codepoint. 
 

OBJECT ENCODING 
 
 The straightforward embedding of Water object structures 
into B-trees is that every record instance (classes are also 
record instances) has a unique identifier; and every slot 
corresponds to an association of the slot-value with that 

identifier combined with the slot-name.  A slot-name is a non-
negative integer or immediate string.  A slot-value is either an 
immediate datum or an identifier for a (long string or) record. 
 A straightforward embedding of Water program expressions 
into B-trees builds on the object representation.  Each 
expression is represented as a record.  The _subject field (the 
object that gets the method call), if present, contains the literal 
datum or the identifier of the subject expression.  The 
_method field contains the method-name string or the 
identifier of the method expression. Named arguments 
associate their keys (appended to the expression identifier) 
with their values or value expressions.  Unnamed arguments 
associate their numerical order (0 ...) with their literal values 
or value expressions. 
 Variables and certain other strings used as keys or symbols 
are assigned unique identifiers; the forward and backward 
identification with strings being stored in B-trees.  These 
identifiers are one to five bytes in length. 
 Although independent from other representation decisions, 
lexical bindings are also convenient to store in B-trees.  Each 
environment has an identifier; and each variable (combined 
with the environment-identifier) is associated with its value.  
An environment's associations are deleted just before the 
environment is reused. 
 To support good error reporting, it is desirable to link every 
program expression to its location in a source file.  This can be 
done simply in a B-tree while presenting no bloat or overhead 
to the code itself.  A dedicated B-tree associates the identifier 
of each expression with its filename and offsets. 
 In WB, a B-tree handle caches the last block visited, 
bypassing would-be full traversals from the B-tree's root for 
nearby references. To take advantage of this, the Water 
implementation uses six WB handles: string-to-variable, 
variable-to-string, bindings, records, program, and program-
annotations. 
 

SECURITY 
 
 The six WB handles, along with directories to which a 
session has access, are the set of capabilities passed to routines 
in the Water compiler and runtime engine.  They cannot be 
accessed or modified from a Water program.  They are not 
stored in B-trees.  Pointed to only from the call stack, they 
provide a measure of protection and isolation from other 
threads, which have separate call stacks. 
 

EXECUTION 
 
 Modern CPUs execute dozens of instructions in the time it 
takes to fetch one cache-line from main memory.  Few 
applications today tend to be CPU-bound; most are memory- 
or cache-bound. (CPU-bound programs tend to be 
overrepresented in benchmark suites.)  For all their benefits, 
access to small datums through B-trees does incur significant 
overhead.  But for a runtime interpreter, multiple fetches from 
the straightforward embedding of program expressions 
precede each data access.  Thus, the most productive area to 



optimize for overall performance is to reduce the bandwidth of 
program B-tree fetches. 
 Toward this end, we would like to aggregate a program 
expression into single B-tree value.  But WB values are 
limited in length.  So the aggregate expression format should 
also be space efficient.  And the format should provide for 
overflow by being able to indicate that an expression is 
continued in the next B-tree association's value (WB supports 
ISAM). 
 The aggregate expression format is a byte encoding with 
several types of codes.  All the primitive methods are assigned 
single byte codes, as are prefix-markers.  Identifiers, of which 
there are eight types (including symbol, long-string, method, 
and expression), have byte codes, the bottom two bits of 
which indicate the number of bytes following: 1, 2, 3, or 4.  
(Those identifiers are then between two and five bytes in size.) 
 For expressions there are markers delimiting the boundary 
between keyed and unkeyed arguments and the end of 
arguments.  For the method definition, there are 24 codes 
indicating whether the following parameter is keyed or 
unkeyed, evaluated or unevaluated, required or optional, 
whether a default expression follows, and whether a type 
specifier follows. 
 

SYSTEM STATE 
 
 As described here, all the state of a Water session except for 
the call stack is contained in its B-trees.  WB being disk-
backed, those B-trees are stored in a file on disk or other mass 
storage device. The time to run the 230kB Water executable, 
resume a 285kB saved session, compile and execute a trivial 
program, and exit takes about 6ms (3ms user + 3ms system) 
on a 3.0GHz Pentium-4 running Fedora-7 Linux.  This time 
doesn't increase no matter how large the saved session is 
because WB reads only the blocks it needs from disk. 
 The ability to save program and data together into a format 
that runs on all platforms opens intriguing possibilities.  
Database files can contain their report generators, accessible 
with one click.  Documents can adjust their formatting to suit 
the platform they are opened on. 
 

ABOUT THE WATER LANGUAGE 
 
 Water is a secure, dynamic object-oriented language and 
database.  It is an all-purpose language (and meta-language) 
that runs Web applications off-line in the browser or server-
side [9].  The language is compatible with .NET, Java, and C 
on Windows, Linux and Mac OS X systems.  Water handles 
all aspects of software including UI, logic, and database. 
 Water programs can store persistent data locally with 
Water's embedded object/XML database.  The small footprint 
(<500kB) and instant-startup are well suited for running 
programs in the browser.  HTML, CSS and JavaScript are 
naturally part of Water programs.  The same Water program 
can be flexibly deployed to run either locally in the browser or 
on the server.  Programs install automatically with one click. 
 

 The simplest Hello World program in Water is: 
 
       "Hello Water!" 
 
It displays the text Hello Water! in a browser window. 
  The following Water program uses a model-view-controller 
(MVC) design pattern.  
(http://waterlanguage.org/examples/model_view_controller.h2o) 
 
<class model_view_controller 
       model_data=<v "sample string"/> /> 
 
<method model_view_controller.htm> 
   <form action=<w .<controller_method/> /> 
    .model_data.<for_each combiner=insert> 
      <div value/> 
    </> 
    <input name="an_input" 
           value=.model_data.<last/> /> 
    <input type="submit" value="Submit"/> 
   /> 
</> 
 
<method model_view_controller.controller_method 
        an_input=req> 
   .model_data.<insert an_input/> 
   _subject 
</> 
 
model_view_controller 
 
 Opening the URL runs the Water program in a browser and 
displays the screen shown in Fig 1.  
 
 

 

Fig. 1 Screen shot 1 

 
 This display of the application was created from a view 
implemented with the htm method. The model data is 
displayed in div tags using: 
 
.model_data.<for_each combiner=insert> 
              <div value/> 
            </> 
 
 The input box displaying the last value in model data is 
created by: 
 
<input name="an_input" value=.model_data.<last/> /> 
 
 The submit button is created by: 
 
<input type="submit" value="Submit"/> 
 
 If the user replaces sample string with Water in the input 
field, the program displays the screen shown in Fig 2. 
 



 

Fig. 2 Screen shot 2 

 
 Clicking Submit will call the controller_method and pass in 
the argument an_input with value Water. 
 
model_view_controller.<controller_method                      
                        an_input="Water"/> 
 
 When the controller method is called, it inserts an_input 
argument into the model data: 
 
<method model_view_controller.controller_method 
        an_input=req> 
   .model_data.<insert an_input/> 
   _subject 
</> 
 
 This causes the application's presentation to refresh 
showing the value added to model data as in Fig. 3.  
 
 
 
 

 
Fig. 3 Screen shot 3 
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