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Abstract

The Fourier transform of a periodic function has only a countable number of non-zero coefficients. Thus,
casting a system of differential equations in a periodic space radically reduces the number of possible
solution functions. While Fourier series solve linear differential equations with constant coefficients, a
method hinted by the Harmonic Balance analysis of nonlinear electrical circuits extends the solution
space to periodic square-integrable functions.

This framework employs a succinct representation for approximating square-integrable periodic
functions. These function objects can be scaled, added, differentiated, and integrated in time linear in
the number of their stored coefficients; multiplication of two function objects can be accomplished in
sub-quadratic time using matrix multiplication techniques.

Development

Linear electrical networks are analyzed by applying the Laplace transform to the node and mesh equa-
tions; algebraically or iteratively solving the resulting system of equations; then applying the inverse
Laplace transform to that solution. In the iterative case, only one frequency is analyzed at a time; each
node and branch has a complex voltage or current for that frequency.

In harmonic balance analysis, associated with each node are one or more pairs of frequency and
voltage. For each frequency, linear components process voltages as before; assuming a voltage of 0
for frequencies not present in a node’s list. The basic non-linear operator is multiplication (mixing),
which produces coefficients for sum and difference frequencies according to sum-of-angles trigonometric
identities.

Multiple products can produce positive integer powers. An arbitrary differentiable function can be
synthesized as a Taylor or power series.

For Hamiltonian systems, the energy lost replacing small coefficients with zero can be distributed
among the nonzero coefficients (to preserve the energy invariance).

The sum of squared-magnitude differences between corresponding elements of two iterations of a
Fourier coefficient list is a reasonable metric for gaging convergence.

Representation

A function f(~x) is represented by its nonzero Fourier series coefficients stored as a list of pairs, each
linking an exact vector frequency, ~w = [w1, w2, . . . , wn], with an inexact complex coefficient, F [~w].

Calculated coefficients having magnitudes less than some threshold (which may change during
the computation) are treated as zeros and not stored. Because the Fourier transform is an orthogonal
transform, the error introduced by zeroing a coefficient is proportional to its magnitude squared. Zeroing
based on the magnitude of a coefficient introduces less error per stored coefficient than series truncation
at some predetermined point.

This representation is not dependent on a grid. A function object denotes that function over its
whole (modular) range.
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Operations
The software procedures to scale, add, differentiate, integrate, and multiply take coefficient lists as
arguments and return a coefficient list.

Because the Fourier Transform is linear,

s(~x) = αf(~x) + βg(~x) ⇐⇒ S(~w) = αF [~w] + βG[~w]
and

r(~x) =
∂kf(~x)
∂xj

k
⇐⇒ R(~w) = (2πiwj)

k
F [~w]

and

q(~x) =
∫ k

f(~x)dxj
k ⇐⇒ Q(~w) =

F [~w]

(2πiwj)
k

where wj is the jth component of ~w. In integration, vector frequencies with components wj = 0 must
receive different treatment.

A function is a linear combination of sine waves; so products of functions behave thus:

p(~x) = f(~x)g(~x) ⇐⇒ P (~w) =
1
2

~w∑
~v=~0

F [~v]G[~w − ~v] + F [~v]G[~w + ~v]

where ~v ranges over vectors with components 0 ≤ ~vj ≤ ~wj . G[u0, u1, . . . un], where some of the uj are
negative, is −1mG[|u0|, |u1|, . . . |un|], where m is the number of negative uj .

We now have all the operations needed to solve or simulate differential equations entirely in the
Fourier dual-space. Non-polynomial functions can be approximated using Taylor or power series.

Solving
The proposed framework should be well suited to field calculations for crystalline materials with rect-
angular lattices. Other crystal lattices can be used with larger spatial periods; better would be to
redevelop the framework, removing the assumption that axes are perpendicular.

For non-crystalline materials, the object to be solved can be spaced from copies of itself throughout
virtual space. The empty space costs extra non-zero coefficients, which gets expensive as the dimension
of the space increases.

Calculations using the proposed notation for functions will run quickly if the coefficients are sparse,
giving them an advantage over calculations on a grid. Analogously to grid methods, the first iterations
should be run with a high zeroing threshold. The threshold can then be lowered until the desired
accuracy is achieved.

A potential sticking point is modeling functions whose Taylor’s series converge slowly, requiring
many function-function multiplications.

Conclusion
Constructing field distributions on a Cartesian grid necessarily involves a large number of nonzero node
values being calculated. Using a basis where the solutions require only a few nonzero coefficients leads
to better numerical conditioning and faster computation.

Fourier series admit a succinct representation for approximating square-integrable periodic func-
tions. These function objects can be scaled, added, differentiated, and integrated in time linear in
the number of their stored coefficients; multiplication of two function objects can be accomplished in
sub-quadratic time using matrix multiplication techniques.

There are other orthogonal transforms and eigenfunction bases which could be adapted to this
framework. The essential requirements are that the solution functions be represented compactly, and
that the ring and differential operations be easily computed on the function representations.
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