Next: Destructive list operations, Previous: Lists as sets, Up: Common List Functions [Contents][Index]
position
returns the 0-based position of obj in lst,
or #f
if obj does not occur in lst.
Example:
(position 'foo '(foo bar baz bang)) ⇒ 0 (position 'baz '(foo bar baz bang)) ⇒ 2 (position 'oops '(foo bar baz bang)) ⇒ #f
reduce
combines all the elements of a sequence using a binary
operation (the combination is left-associative). For example, using
+
, one can add up all the elements. reduce
allows you to
apply a function which accepts only two arguments to more than 2
objects. Functional programmers usually refer to this as foldl.
collect:reduce
(see Collections) provides a version of
collect
generalized to collections.
Example:
(reduce + '(1 2 3 4)) ⇒ 10 (define (bad-sum . l) (reduce + l)) (bad-sum 1 2 3 4) ≡ (reduce + (1 2 3 4)) ≡ (+ (+ (+ 1 2) 3) 4) ⇒ 10 (bad-sum) ≡ (reduce + ()) ⇒ () (reduce string-append '("hello" "cruel" "world")) ≡ (string-append (string-append "hello" "cruel") "world") ⇒ "hellocruelworld" (reduce anything '()) ⇒ () (reduce anything '(x)) ⇒ x
What follows is a rather non-standard implementation of reverse
in terms of reduce
and a combinator elsewhere called
C.
;;; Contributed by Jussi Piitulainen (jpiitula @ ling.helsinki.fi) (define commute (lambda (f) (lambda (x y) (f y x)))) (define reverse (lambda (args) (reduce-init (commute cons) '() args)))
reduce-init
is the same as reduce, except that it implicitly
inserts init at the start of the list. reduce-init
is
preferred if you want to handle the null list, the one-element, and
lists with two or more elements consistently. It is common to use the
operator’s idempotent as the initializer. Functional programmers
usually call this foldl.
Example:
(define (sum . l) (reduce-init + 0 l)) (sum 1 2 3 4) ≡ (reduce-init + 0 (1 2 3 4)) ≡ (+ (+ (+ (+ 0 1) 2) 3) 4) ⇒ 10 (sum) ≡ (reduce-init + 0 '()) ⇒ 0 (reduce-init string-append "@" '("hello" "cruel" "world")) ≡ (string-append (string-append (string-append "@" "hello") "cruel") "world") ⇒ "@hellocruelworld"
Given a differentiation of 2 arguments, diff
, the following will
differentiate by any number of variables.
(define (diff* exp . vars) (reduce-init diff exp vars))
Example:
;;; Real-world example: Insertion sort using reduce-init. (define (insert l item) (if (null? l) (list item) (if (< (car l) item) (cons (car l) (insert (cdr l) item)) (cons item l)))) (define (insertion-sort l) (reduce-init insert '() l)) (insertion-sort '(3 1 4 1 5) ≡ (reduce-init insert () (3 1 4 1 5)) ≡ (insert (insert (insert (insert (insert () 3) 1) 4) 1) 5) ≡ (insert (insert (insert (insert (3)) 1) 4) 1) 5) ≡ (insert (insert (insert (1 3) 4) 1) 5) ≡ (insert (insert (1 3 4) 1) 5) ≡ (insert (1 1 3 4) 5) ⇒ (1 1 3 4 5)
last
returns the last n elements of lst. n
must be a non-negative integer.
Example:
(last '(foo bar baz bang) 2) ⇒ (baz bang) (last '(1 2 3) 0) ⇒ ()
butlast
returns all but the last n elements of
lst.
Example:
(butlast '(a b c d) 3) ⇒ (a) (butlast '(a b c d) 4) ⇒ ()
last
and butlast
split a list into two parts when given
identical arguments.
(last '(a b c d e) 2) ⇒ (d e) (butlast '(a b c d e) 2) ⇒ (a b c)
nthcdr
takes n cdr
s of lst and returns the
result. Thus (nthcdr 3 lst)
≡ (cdddr
lst)
Example:
(nthcdr 2 '(a b c d)) ⇒ (c d) (nthcdr 0 '(a b c d)) ⇒ (a b c d)
butnthcdr
returns all but the nthcdr n elements of
lst.
Example:
(butnthcdr 3 '(a b c d)) ⇒ (a b c) (butnthcdr 4 '(a b c d)) ⇒ (a b c d)
nthcdr
and butnthcdr
split a list into two parts when
given identical arguments.
(nthcdr 2 '(a b c d e)) ⇒ (c d e) (butnthcdr 2 '(a b c d e)) ⇒ (a b)
butnth
returns a list of all but the nth element of lst.
Example:
(butnth 2 '(a b c d)) ⇒ (a b d) (butnth 4 '(a b c d)) ⇒ (a b c d)
Next: Destructive list operations, Previous: Lists as sets, Up: Common List Functions [Contents][Index]