
6.841 Advanced Complexity Theory Apr 29, 2009

Lecture 22
Lecturer: Madhu Sudan Scribe: Jessica Yuan

1 Last Time

Last time, we talked about what a propositional proof system is. It’s a way of proving that a formula is
a tautology (i.e., it’s always true). Very quickly, we switched from proving formulas that are always true
to formulas that are always false. Without loss of generality, we focused on CNF formulas, since we can
transform formulas into CNF form with only a linear blow-up.

A proof system is something that can determine whether a CNF formula F is either

• unsatisfiable: there exists some proof π that is efficiently (poly-time) verifiable deterministically

• satisfiable: there should be no fake proof that can fool us

Why do we care about propositional proof systems?

1) P vs. NP. If there is no proof system that can always provide proofs of polynomial size, this implies P 6=
NP.

2) Understand limits of math reasoning

3) SAT-solving. In industrial applications, there are really good algorithms for SAT-solving in linear time,
and the best ones are based on a proof system called resolution.

We then looked at some examples of proof systems and decided to focus on resolution. This is the proof
system where given clauses C ∨ x and D ∨ x̄, we can obtain the clause C ∨ D. Additionally, we can use
a weakening mechanism, where given clause C, we can obtain the weaker clause C ∨ D. This weakening
mechanism is not necessary for proving unsatisfiability, but it is often useful.

We looked at some examples of formula families, such as Graph Tautology, and decided to focus on Pigeonhole
Principle. Pigeonhole Principle (PHPm

n) lets us show that if there are m pigeons and n holes, where m > n,
there must be two pigeons that share a hole. The unsatisfiable formula consists of two parts:

• Each pigeon must be in a hole:
∧

i∈[m]

∨
j∈[n] xij

• No two pigeons share a hole:
∧

i1 6=i2∈[m],j∈[n](xi1j ∨ xi2j)

Combined, this gives us the formula:

∧
i∈[m]

∨
j∈[n]

xij ∧
∧

i1 6=i2∈[m],j∈[n]

(xi1j ∨ xi2j)

Today, we’ll focus on how hard it is to prove that this formula is unsatisfiable.

22-1

2 Resolution Proof Size

We’re interested in the size of resolution proofs, i.e. the total number of symbols. We can also count the
number of clauses in the proof (i.e. the length of the derivation of the contradiction). This tends to be easier
to deal with than size, and because length is linearly related to size, we can get a good idea of the size of a
proof given its length. The width of the clauses is also a good tool for studying the length of proofs.

The length of a refutation proof π is denoted as L(π). The length of the proof showing that a formula F is
unsatisfiable is the length of the shortest proof that proves that F is unsatisfiable:

L(F ` 0) = min
π:F`0

{L(π)}

Note that if n is the number of variables in F , L(F ` 0) . 2n.

The width of the proof is similarly denoted as W (F ` 0) = minπ:F`0{W (π)}. Note that W (F ` 0) ≤ n.

Any resolution proof can be represented by a directed acyclic graph by drawing edges to clauses from the
clauses used to derive them. If this graph is a tree, we call it a tree-like refutation, and the length of the
shortest tree-like refutation is LT (F ` 0). Generally, there is a big difference between tree-like proof lengths
and general proof lengths. We can also hit the formula with an arbitrary restriction (e.g. x = 1), and we
get the refutation of the restricted formula.

We would like to show that W (F ` 0) is large → L(F ` 0) is large. Then, we will use this fact to prove that

L(PHPn+1
n ` 0) = exp(Ω(n))

Resolution proofs are extremely well-studied. Resolution is one of the easiest non-trivial proof systems to
deal with. Also, the best SAT-solvers tend to be built on resolution.

We want to prove lower bounds on length, but we’ll first focus on width. Let’s look at a connection between
width and length:

If a refutation is narrow (width ≤ W), then it must also be short. Length ≤ (2|Variables in F |)W

More interestingly, Ben-Sasson and Wigderson in 1999 in their paper “Short Proofs Are Narrow,” they
presented the idea that if there is a short proof, there must also exist a reasonably narrow proof. (Sidenote:
the terms proof and refutation will be used interchangeably.)

We can quantify this for tree-like refutations:

Theorem 1 (BW ’99) Define W (F) to be the width of the largest clause in formula F . Then,

W (F ` 0) ≤ W (F) + log2LT (F ` 0)

Corollary 2 LT (F ` 0) ≥ 2W (F`0)−W (F)

But tree-like resolutions are significantly weaker than general resolutions, so we’ll want the general case:

Theorem 3 (BW ’99) Let n be the number of variables in formula F . Then,

W (F ` 0) ≤ W (F) +
√

8n ∗ ln(L(F ` 0))

Corollary 4

LT (F ` 0) = exp
(

(W (F ` 0)−W (F))2

8n

)

22-2

We’ll use the general theorem, but we’ll only be proving the weaker tree-like theorem. The idea behind the
proof for the general theorem is the same as for the weaker one, but the calculations are messier.

One way of thinking about this is that the width is upper-bounded by the logarithm of the length in Theorem
1. n is about the logarithm of the worst-case proof. You can think of it as

width .
√

ln(worst-case) ∗ ln(actual-case)

You might be thinking, maybe we can do better. Unfortunately, this bound is essentially tight, as proven
by Bonet and Galesi in 1999.

To get anything interesting, we need a few things:

• We need W (F) to be small.

• We need W (F ` 0) = ω(
√

n ∗ ln(n)).

Now, we’ll prove Theorem 1 and show how to use the general theorem to get the lower bound for the
refutation of Pigeonhole Principle. We’ll need two lemmas.

Lemma 5 If W (F�x ` D) = w, then W (F ` D ∨ x̄) = max(W (F), w + 1).

Note that F�x is the formula F with the variable x set to true.

Proof Let F = C1 ∧ C2 ∧ ..., Cm.

Suppose the refutation for F�x ` D looks like π = D1, D2, ..., DC .

The refutation for F ` D ∨ x̄ would involve listing all the clauses in F , then list all the D clauses with x̄
appended to them: π′ = C1, C2, ..., Cm, D1 ∨ x̄,D2 ∨ x̄, ..., DC ∨ x̄.

This is always allowed by the rules of resolution, and we can prove this by cases:

• Case 1: Di ∨ x̄ ∈ F . In this case, Di ∨ x̄ is trivially allowed because it was already in F .

• Case 2: Di ∈ F . In this case, Di ∨ x̄ is allowed because we’re only weakening the clause Di.

• Case 3: Otherwise, it must be the case that there exist two clauses Dj and Dk such that Dj and Dk

resolve to Di, or else there is no way for Di to be in the refutation for F�x ` D. By induction, we know
that Dj ∨ x̄ and Dk ∨ x̄ are in the refutation for F ` D ∨ x̄. We can thus use the resolution rule to get
Di ∨ x̄.

Lemma 6 If W (F�x ` 0) ≤ w − 1 and W (F�x̄ ` 0) ≤ w, then W (F ` 0) ≤ max(w,W (F)).

Proof Let’s apply Lemma 1 to F�x.

• 1. From F , derive x̄ in width ≤ max(W (F), w).

• 2. Resolve every C ∈ F containing x with x̄. This gives us F�x̄.

• 3. Conclude that W (F�x̄ ` 0) ≤ w.

22-3

Now we want to go back and prove Theorem 1 (Ben-Sasson and Wigderson).

Proof We’ll prove by induction over b and the number of variables n that if LT (F ` 0) ≤ 2b, then
W (F ` 0) ≤ W (F) + b.

Base cases

• n ≤ W (F). This case is trivial, because the width can never be larger than the number of variables.

• b = 0. The length of refutation is 1, so the refutation must be just 0, which is possible if F contained
the 0 clause.

Inductive step

Consider the tree-like resolution LT (F ` 0). By induction, LT (F ` 0) ≤ 2b.

The last step of this refutation π must be the derivation of some variable x and another derivation of x̄.
Let’s call these derivations πx and πx̄.

L(π) = L(πx) + L(πx̄) + 1. So at least one of these subderivations has length ≤ 2b−1. Without loss of
generality, let’s suppose it is πx. L(πx) ≤ 2b−1. This means that L(F�x) ≤ 2b−1 as well.

Apply the inductive hypothesis. We get

W (F�x ` 0) ≤ W (F�x) + b− 1 ≤ W (F) + b− 1

We also know that L(πx̄ ≤ 2b and L(F�x̄) ≤ 2b. Applying the inductive hypothesis there, we get

W (F�x̄ ` 0) ≤ W (F�x̄) + b ≤ W (F) + b

By Lemma 6, we conclude that W (F ` 0) ≤ W (F) + b.

Note that in each step in our induction, the length sort of doubles, so at the end, we have a really narrow
proof, but it might be of exponential length. In fact, for tree-like resolution, we know that this length
blow-up is necessary. It’s an open question as to whether this is necessary for general resolution.

Why doesn’t this work in the general case? It fails at L(π) = L(πx) + L(πx̄) + 1, because generally, the two
derivations πx and πx̄ will share some steps and clauses. But the general idea of hitting the formula with
x = 0 and x = 1 is still the same. However, it’s trickier to find a good x, the calculations are messier, and
the bounds are not as good.

Now we can finally prove the lower bound for PHP resolution.

As a reminder, PHPm
n consists of clauses

• P i =
∨

j∈[n] xij “pigeon i must be in some hole”

• Hi1,i2
j = xi1,j ∨ xi2,j “hole j does not hold both pigeons i1 and i2”

When m > n, PHP is unsatisfiable. We’ll focus on the hardest case to prove, which is when m = n + 1.

Theorem 7 (Haken ’85) L(PHPn+1
n ` 0) = exp(Ω(n))

22-4

We want to use the Ben-Sasson and Wigderson machinery described in Theorem 3, but PHP currently does
not satisfy the requirements that W (PHP) is small and that W (PHP ` 0) = ω(

√
n ∗ ln(n)). To get around

this, we want to make the formula “sparser.”

We can do this by thinking about PHP as a bipartite graph G = (U ∨ V,E), where U is the set of the m
vertices on the left corresponding to the m pigeons, V is the set of the n vertices on the right corresponding
to the n holes, and E is the set of edges connecting a left vertex (pigeon) to a right vertex (hole). Plus, we
define N(u) to be the set of neighbors a pigeon vertex u ∈ U has. Likewise, for a set of pigeon vertices U ,
N(U) is the set of all vertices that are a neighbor to at least one vertex in U . Note that all vertices in N(u)
or N(U) are hole vertices.

Each edge xu,v in the graph connects a pigeon vertex u with a hole vertex v. xu,v is set to true if pigeon u
goes into hole v. Then, we can say that the graph is satisfiable if there is an assignment of edges such that
PHP (G) is satisfied:

PHP (G) =
∧

u∈U

∨
v∈N(u)

xu,v ∧
∧

v∈V

∧
u 6=u′∈N(v)

xu,v ∨ xu′,v

The simplest way of thinking about PHP is to consider G as a complete bipartite graph. However, to prove
a lower bound on the proof complexity of PHP, it is not necessary to use a complete bipartite graph. In fact,
if G′ = (U ∨ V,E′) has E′ ⊆ E, then L(PHP (G′) ` 0) ≤ L(PHP (G) ` 0). In other words, if we can find a
lower bound for a sparser version of G, the lower bound also applies to G itself.

Suppose G has constant left degree d ≥ 2. Then PHP (G) is a d-CNF formula with d ∗m variables, meaning
it has a small width and small number of variables. This would satisfy the requirements for using the
Ben-Sasson and Wigderson machinery.

The problem is, we want to make the graph sparser, but maintain the difficulty of the Pigeonhole Problem
in order to obtain a high lower bound. The reason why the Pigeonhole Problem is so difficult is that it’s a
global problem. All the pigeon variables have to be observed. If there are n pigeons and n holes, the problem
is satisfiable, but once there are n + 1 pigeons, it is not.

So what we want is a sparse graph with good connectivity, which hopefully makes the graph harder to satisfy
and gives us a better lower bound. This type of graph is called an expander.

G = (U ∨ V,E) is a (d, s, e)-expander if

• the left degree of the graph ≤ d (d is the outdegree bound of the pigeon vertices)

• ∀U ′ ⊆ U |U ′| ≤ s → |N(U ′)| ≥ e|U ′|

Basically, what this definition says is that for all subsets U ′ of U , the set of pigeon vertices, up to a limiting
size s ≥ |U ′|, the number of hole vertex neighbors that this subset U ′ has is greater than some multiplicative
expansion factor e of the size of the subset |U ′|. In other words, if you look at a small number of pigeons,
there’s e times that number of holes that they can go into.

Actually, we’ll need something stronger called a unique neighbor expander.

G is a (d, s, e)-unique neighbor expander if

• the left degree of the graph ≤ d

• ∀U ′ ⊆ U |U ′| ≤ s → |δ(U ′)| ≥ e|U ′| where v ∈ δ(U ′) if |N(v) ∩ U ′| = 1.

This definition is slightly different from the definition for the general expander. e is no longer the expansion
factor of the neighbor vertices, but rather the boundary vertices. These are the vertices in N(U ′) that only
have one neighbor in U ′, hence the name “unique neighbor.” In other words, these are the holes that only
allow one certain pigeon from U ′, i.e. no two pigeons are fighting over any hole in this set of boundary
vertices.

22-5

Proposition: Any (d, s, k)-expander is a (d, s, 2k − d)-unique neighbor expander.

Now, we’ll introduce and prove the following two lemmas and then use them in conjuction with Ben-Sasson
and Wigderson to prove a lower bound for PHP.

Lemma 8 (A) For a (d, s, e)-unique neighbor expander where e ≥ 1, W (PHP (G) ` 0) ≥ (s ∗ e)/2.

Lemma 9 (B) There is a c > 1 such that ∀ sufficiently large n, there are (5, n
c , 1)-unique neighbor expanders.

Lemma B can be proven probabilistically. Just take five neighbors of each node on the left, and with high
probability, you’ll end up with a unique neighbor expander.

To prove Lemma A, we start by defining a “progress measure” µ: {clauses} → N with the following properties.

• µ(axioms) ≤ 1

• µ(final empty clause 0) ≥ large

• µ only increases gradually.

• For a medium progress clause Di, its width W (Di) ≥ large

As before, let H denote all the “hole” axioms and P denote all the “pigeon” axioms. Pu refers to the clause
that describes which holes pigeon u can go into (e.g. P 4 : x4,1 ∨ x4,3 if there are only edges to holes 1 and
3). Then we can define such a progress measure µ:

µ(D) = min{|U ′| :
∧

u∈U ′

Pu ∧H � D}

To confirm that this measure satisfies the properties:

• µ(axioms) ≤ 1. This is satisfied because for any hole axiom Hv, µ(Hv) = 0. For any pigeon axiom
Pu, µ(Pu) = 1.

• µ(final empty clause 0) ≥ large. It turns out that µ(0) > s, and the s we’ll be using is the s in the (5,
n
c , 1)-unique neighbor expander guaranteed to us by Lemma B. By the definition of unique neighbor
expanders, if we have s or fewer pigeons, we are guaranteed to have at least that many unique neighbors.
So, we must be considering more than s pigeons if we want to achieve a proof of unsatisfiability.

• µ only increases gradually. Quantitatively, if Dj and Dj resolve to Di, then µ(Di) ≤ µ(Dj) + µ(Dk).
This ensures that there is some Di with a medium-sized µ(Di)

• For a medium progress clause Di, its width W (Di) ≥ large. By the previous requirement, we know
that there must be a medium progress clause D such that s

2 ≤ µ(Di) ≤ s, since each derivation cannot
increase the progress measure by more than doubling. We then consider the width of this clause D.

For this D, fix U ′ of size µ(D) such that
∧

u∈U ′ Pu ∧H � D.

We then make the claim that ∀v ∈ δ(U ′) ∃ variable xu,v in D. We can prove this by contradiction.

Proof Suppose ∃v∗ ∈ δ(U ′) such that there is no variable of the form xu,v∗ in D. Because v∗ ∈ δ(U ′),
we know it has a unique neighbor u∗ ∈ U ′. We also know that by the definition of the progress measure µ,
if we remove u∗ from U ′, we should no longer be able to derive D; otherwise, U ′ would not be the minimal
subset.

Thus, it must be the case that there is some truth-value assignment α such that

• α(
∧

i∈U ′\{u∗} P i) = 1

22-6

• α(H) = 1

• α(D) = 0

In other words, there should be some truth-value instance where the axioms (minus u∗’s pigeon axiom) are
satisfied but the derived clause D is not. Now, we can manipulate the values xu,v a little. (Recall that xu,v

is true iff pigeon u goes into hole v.)

First, we can set xu,v∗ to false, for all u. This won’t affect α(D), because by our assumption, there is no
variable of the form xu,v∗ in D. This won’t affect the pigeon axioms, since v∗ only has one neighbor u∗,
who is not included in the axioms. And this can only serve to strengthen the hole axioms, since they are
negations.

Then, we can set xu∗,v∗ to true. Again, this won’t affect α(D) or the pigeon axioms. This also isn’t affecting
any of the hole axioms, because we set all other xu,v∗ to false, so any hole axiom involving v∗ is true,
regardless of the value of xu∗,v∗. (Recall that each hole axiom is of the form xi1j ∨ xi2j .)

Now we have α(Pu∗) = 1, because pigeon u∗ was able to find a hole. We can combine that with α(
∧

i∈U ′\{u∗} P i) =
1 to get α(

∧
i∈U ′ P i) = 1. However, now we have

• α(
∧

i∈U ′ P i) = 1

• α(H) = 1

• α(D) = 0

This is a contradiction, since we should be able to derive D from the pigeon and hole axioms.

Now we know that the width of D is at least as great as |δ(U ′)|. But |δ(U ′)| ≥ e|U ′| ≥ (s ∗ e)/2. Hence,
W (D) ≥ (s ∗ e)/2 and Lemma A follows.

To finish up the proof for the lower bound of PHP, we plug this information into the Ben-Sasson and
Wigderson equation. Recall:

LT (F ` 0) = exp
(

(W (F ` 0)−W (F))2

8x

)
Note that in this formula, x is the number of variables. If n is the number of holes and n + 1 is the number
of pigeons, then the number of variables is on the order of 5n, given that we are using the (5, n

c , 1)-unique
neighbor expander. W (F) is O(1), because each hole axiom has width 2 and each pigeon axiom has width
5. W (F ` 0) is at least (s ∗ e)/2, or Ω(n). Plug it all in, and we get

LT (F ` 0) = exp
(

(Ω(n))2

n

)
= exp(Ω(n))

22-7

