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Abstract. A well-known theorem by Tarsi states that a minimally un-
satisfiable CNF formula with m clauses can have at most m−1 variables,
and this bound is exact. In the context of proving lower bounds on proof
space in k-DNF resolution, [Ben-Sasson and Nordström 2009] extended
the concept of minimal unsatisfiability to sets of k-DNF formulas and
proved that a minimally unsatisfiable k-DNF set with m formulas can
have at most (mk)k+1 variables. This result is far from tight, however,
since they could only present explicit constructions of minimally unsat-
isfiable sets with Ω(mk2) variables.
In the current paper, we revisit this combinatorial problem and signifi-
cantly improve the lower bound to (Ω(m))k, which almost matches the
upper bound above. Furthermore, using similar ideas we show that the
analysis of the technique in [Ben-Sasson and Nordström 2009] for prov-
ing time-space separations and trade-offs for k-DNF resolution is almost
tight. This means that although it is possible, or even plausible, that
stronger results than in [Ben-Sasson and Nordström 2009] should hold, a
fundamentally different approach would be needed to obtain such results.

1 Introduction

A formula in conjunctive normal form, or CNF formula, is said to be minimally
unsatisfiable if it is unsatisfiable but deleting any clause makes it satisfiable. A
well-known result by Tarsi [1], reproven several times by various authors (see,
for instance, [6, 12, 15]), says that the number of variables in any such CNF
formula is always at most m− 1, where m is the number of clauses.

Motivated by problems in proof complexity related to the space measure in
the k-DNF resolution proof systems introduced by Kraj́ıček [14], Ben-Sasson and
Nordström generalized this concept in [9]. In that paper, later published as part
of [10], they studied the minimal unsatisfiability of conjunctions of formulas in
disjunctive normal form where all terms in the disjunctions have size at most k,
henceforth k-DNF formulas. We begin by reviewing their definition.

Assume that D = {D1, . . . , Dm} is the set of k-DNF formulas appearing in
our conjunction, and that D itself is unsatisfiable. What should it mean that D
is minimally unsatisfiable?

The first, naive, attempt at a definition would be to require, by analogy
with the k = 1 case, that D becomes satisfiable after removing any Di from it.



However, the following simple example of two 2-DNF formulas

{(x ∧ y1) ∨ . . . ∨ (x ∧ yn), (x̄ ∧ y1) ∨ . . . ∨ (x̄ ∧ yn)} (1)

that is minimally unsatisfiable in this sense shows that we can not hope to get
any meaningful analogue of Tarsi’s lemma under this assumption only.

The reason for this is that the 2-DNF set (1) is not minimally unsatisfiable
in the following sense: even if we “weaken” a formula in the set (i.e., make it
easier to satisfy) by removing any, or even all, y-variables, what remains is still
an unsatisfiable set. This leads us to the stronger (and arguably more natural)
notion that the formula set should be minimally unsatisfiable not only with
respect to removing DNF formulas but also with respect to shrinking terms
(i.e., conjunctions) in these formulas. Fortunately, this also turns out to be just
the right notion for the proof complexity applications given in [10]. Therefore,
following [10], we say that a set D of k-DNF formulas is minimally unsatisfiable
if weakening any single term (i.e., removing from it any literal) appearing in a
k-DNF formula from D will make the “weaker” set of formulas satisfiable. This
raises the following combinatorial question:

How many variables (as a function of k and m) can appear in a mini-
mally unsatisfiable set {D1, . . . , Dm} of k-DNF formulas?

Tarsi’s lemma states that for k = 1 the answer is m−1. This result has a rel-
atively elementary proof based on Hall’s marriage theorem, but its importance
to obtaining lower bounds on resolution length and space is hard to overem-
phasize. For instance, the seminal lower bound on refutation length of random
CNF formulas in [12] makes crucial use of it, as does the proof of the “size-width
trade-off” in [11]. Examples of applications of this theorem in resolution space
lower bounds include [3, 7, 8, 10, 16, 18].

To the best of our knowledge, the case k ≥ 2 had not been studied prior
to [10]. That paper established an (mk)k+1 upper bound and an Ω

(
mk2

)
lower

bound on the number of variables. The gap is large, and, as one of their open
questions, the authors asked to narrow it.

In this paper, we almost completely resolve this problem by proving an
(Ω(m))k lower bound on the number of variables. Our construction is given
in Section 3, following some preliminaries in Section 2. In Section 4, we show
how a similar construction proves that in order to improve on the space com-
plexity bounds from [10] a different approach would be needed. The paper is
concluded with a few remarks and open problems in Section 5.

2 Preliminaries

Recall that a DNF formula is a disjunction of terms, or conjunctions, of literals,
i.e., unnegated or negated variables. If all terms have size at most k, then the
formula is referred to as a k-DNF formula (where k should be thought of as some
arbitrary but fixed constant).



Definition 1 ([10]). A set of DNF formulas D is minimally unsatisfiable if it
is unsatisfiable but replacing any single term T appearing in any DNF formula
D ∈ D with any proper subterm of T makes the resulting set satisfiable.

Note that this indeed generalizes the well-known notion of minimally unsat-
isfiable CNF formulas, where a “proper subterm” of a literal is the empty term 1
that is always true and “weakening” a clause hence corresponds to removing it
from the formula.

We are interested in bounding the number of variables of a minimally unsat-
isfiable k-DNF set in terms of the number of formulas in the set. For 1-DNF sets
(i.e., CNF formulas), Tarsi’s lemma says that the number of variables must be at
most the number of formulas (i.e., clauses) minus one for minimal unsatisfiability
to hold. This is easily seen to be tight by considering the example

{x1, x2, . . . , xn, x̄1 ∨ x̄2 ∨ . . . ∨ x̄n} . (2)

No such bound holds for general k, however, since there is an easy construc-
tion shaving off a factor k2. Namely, denoting by Vars(D) the set of variables
appearing somewhere in D, we have the following lemma.

Lemma 2 ([10]). There are arbitrarily large minimally unsatisfiable sets D of
k-DNF formulas with |Vars(D)| ≥ k2(|D| − 1).

Proof sketch. Consider any minimally unsatisfiable CNF formula consisting of
n + 1 clauses over n variables (for example, the one given in (2)). Substitute
every variable xi with(

x1
i ∧ · · · ∧ xk

i

)
∨

(
xk+1

i ∧ · · · ∧ x2k
i

)
∨ · · · ∨

(
xk2−k+1

i ∧ · · · ∧ xk2

i

)
(3)

and expand every clause to a k-DNF formula. (Note that for this to work, we
also need the easily verifiable fact that the negation of (3) can be expressed as
a k-DNF formula.) It is straightforward to verify that the result is a minimally
unsatisfiable k-DNF set, and this set has n + 1 formulas over k2n variables.

There is a big gap between this lower bound on the number of variables (in
terms of the number of formulas) and the upper bound obtained in [10], stated
next.

Theorem 3 ([10]). Suppose that D is a minimally unsatisfiable k-DNF set con-
taining m formulas. Then |Vars(D)| ≤ (km)k+1.

A natural problem is to close, or at least narrow, this gap. In this work, we
do so by substantially improving the bound in Lemma 2.

3 An Improved Lower Bound for Minimal Unsatisfiability

In this section, we present our construction establishing that the number of
variables in a minimally unsatisfiable k-DNF set can be roughly at least the
number of formulas raised to the kth power.



Theorem 4. There exist arbitrarily large minimally unsatisfiable k-DNF sets D
with m formulas over more than

(
m
4

(
1− 1

k

))k variables.

In particular, for any k ≥ 2 there are minimally unsatisfiable k-DNF sets
with m formulas over (more than) (m/8)k = (Ω(m))k variables.

Very informally, we will use the power afforded by the k-terms to construct a
k-DNF set D consisting of roughly m formulas that encode roughly mk−1 “par-
allel” instances of the minimally unsatisfiable CNF formula in (2). These parallel
instances will be indexed by coordinate vectors

(
x1

i1
, x2

i2
, . . . , xk−1

ik−1

)
. We will add

auxiliary formulas enforcing that only one coordinate vector
(
x1

i1
, x2

i2
, . . . , xk−1

ik−1

)
can have all coordinates true. This vector identifies which instance of the for-
mula (2) we are focusing on, and all other parallel instances are falsified by their
coordinate vectors not having all coordinates true.

Let us now formalize this intuition. We first present the auxiliary formulas
constraining our coordinate vectors, which are the key to the whole construction.

3.1 A Weight Constraint k-DNF Formula Set

Let us write x =
(
x1, . . . , xm(k−1)

)
to denote a vector of variables of dimension

m(k−1). Let |x| =
∑m(k−1)

i=1 xi denote the Hamming weight of x, i.e., the number
of ones in the vector. We want to construct a k-DNF set Wm(x) with O(m)
formulas over x1, . . . , xm(k−1) and some auxiliary variables minimally expressing
that |x| ≤ 1. That is, a vector x can be extended to a satisfying assignment
for Wm(x) if and only if |x| ≤ 1 but if we weaken any formula in the set, then
there are satisfying assignments with |x| ≥ 2.

We define Wm(x) to be the set of k-DNF formulas listed in Figure 1. The
intuition for the auxiliary variables is that zj can be set to true only if the
first j(k − 1) variables x1, . . . , xj(k−1) are all false, and wj can be set to true
only if at most one of the first j(k − 1) variables x1, . . . , xj(k−1) is true. The set
Wm contains 2m − 1 formulas. Let us see that Wm minimally expresses that x
has weight at most 1. For ease of notation, we will call the group of variables
{x(j−1)(k−1)+1, . . . , xj(k−1)} the jth block and denote it by Xj .

Every x with |x| ≤ 1 can be extended to a satisfying assignment for
Wm(x). Since all x-variables appear only negatively, we can assume without loss
of generality that |x| = 1, so that all xi are false except for a single variable in,
say, the j0th block Xj0 . We simply set zj to true for j < j0 and false for j ≥ j0,
and we set all wj to true.

Every satisfying assignment for Wm(x) satisfies |x| ≤ 1. Assume on
the contrary that xi1 = xi2 = 1; i1 ∈ Xj1 , i2 ∈ Xj2 ; j1 ≤ j2. We have that the
truth of xi1 forces zj to false for all j ≥ j1, and then xi2 = 1 forces wj to false for
all j ≥ j2. But this means that there is no way to satisfy the final formula (4g).
So for all satisfying assignments it must hold that |x| ≤ 1.

After weakening any term in Wm(x), the resulting set can be sat-
isfied by an assignment giving weight at least 2 to x. First, notice that
weakening any of the unit terms (i.e., terms of size one) results in removing the



z1 ∨
`
x1 ∧ · · · ∧ xk−1

´
(4a)

z2 ∨
`
z1 ∧ xk ∧ · · · ∧ x2(k−1)

´
(4b)

...

zm−1 ∨
`
zm−2 ∧ x(m−2)(k−1)+1 ∧ · · · ∧ x(m−1)(k−1)

´
(4c)

w1 ∨ z1 ∨
k−1_
i=1

k−1̂

i′=1
i′ 6=i

xi′ (4d)

w2 ∨ z2 ∨
`
w1 ∧ xk ∧ · · ·x2(k−1)

´
∨

2(k−1)_
i=k

„
z1 ∧

2(k−1)^
i′=k
i′ 6=i

xi′

«
(4e)

...

wm−1 ∨ zm−1 ∨
`
wm−2 ∧ x(m−2)(k−1)+1 ∧ · · · ∧ x(m−1)(k−1)

´
∨

(m−1)(k−1)_
i=(m−2)(k−1)+1

„
zm−2 ∧

(m−1)(k−1)^
i′=(m−2)(k−1)+1

i′ 6=i

xi′

«
(4f)

`
wm−1 ∧ x(m−1)(k−1)+1 ∧ · · · ∧ xm(k−1)

´
∨

m(k−1)_
i=(m−1)(k−1)+1

„
zm−1 ∧

m(k−1)^
i′=(m−1)(k−1)+1

i′ 6=i

xi′

«
. (4g)

Fig. 1. Weight constraint k-DNF formulas Wm(x).

formula in question altogether. This can only make it easier to satisfy the whole
set than if we just shrink a k-term. Hence, without loss of generality we can
focus on shrinking k-terms. Let us consider the formulas in Wm(x) one by one.

If we remove some literal xi in (4a)–(4c), then we can set xi = 1 but still
have z1 = · · · = zm−1 = 1. This will allows us to set also xm(k−1) = 1 in (4g)
and still satisfy the whole set of formulas although |x| ≥ 2.

If we instead remove some zj (j ≤ m − 2) in these formulas, then we can
set all xi = 1 for xi ∈ X1 ∪ . . . ∪ Xj (that already gives us weight ≥ 2) and
z1 = . . . = zj = 0, and then we set zj+1 = . . . = zm−1 = 1 and xi = 0 for
xi ∈ Xj+1 . . . ∪ . . . Xm. Note that j ≤ m− 2 implies that zm−1 = 1 which takes
care of (4g), and then (4d)–(4f) are satisfied simply be setting all wj to 0. This
completes the analysis of the formulas (4a)–(4c).

In formula (4d), if we remove some xi′ , then we can set xi = xi′ = w1 = 1
and extend this to a satisfying assignment for the rest of the formulas.

For the corresponding terms zj−1 ∧
∧j(k−1)

i′=(j−1)(k−1)+1, i′ 6=i xj in (4e)–(4g), if
we remove some xi′ , we can again set xi = xi′ = 1 and z1 = . . . = zj−1 = 1



W j
m(xj) 1 ≤ j < k (5a)_

(i1,...,ik−1)

∈[m(k−1)]k−1

„
x1

i1 ∧ · · · ∧ xk−1
ik−1

∧ yν
i1,...,ik−1

«
1 ≤ ν ≤ m(k − 1) (5b)

ūν ∨
_

(i1,...,ik−1)

∈[m(k−1)]k−1

„
x1

i1 ∧ · · · ∧ xk−1
ik−1

∧ yν
i1,...,ik−1

«
1 ≤ ν ≤ m(k − 1) (5c)

u1 ∨ · · · ∨ um(k−1) (5d)

Fig. 2. Minimally unsatisfiable set of k-DNF formulas Dk
m.

and then wj = . . . = wm−1 = 1 to satisfy the rest of the set, whereas removing
zj−1 would allow us to assign to 1 all xi ∈ X1 ∪ . . . ∪Xj−1 and then still assign
wj = . . . = wm−1 = 1.

For the other kind of terms wj−1 ∧ x(j−1)(k−1)+1 ∧ · · · ∧ xj(k−1) in (4e)–(4g),
if some xi with xi ∈ Xj is removed, we can set this xi to true as well as an
arbitrary xi′ ∈ X1 ∪ . . .∪Xj−1, whereas removing wj−1 would allow as again to
set to 1 all variables in X1 ∪ . . . Xj−1. This proves the minimality of Wm(x).

3.2 The Minimally Unsatisfiable k-DNF Set

Let us write xj =
(
xj

1, x
j
2, . . . , x

j
m(k−1)

)
, and let W j

m(xj) be the k-DNF set with
O(m) formulas constructed above (over disjoint sets of variables for distinct j)
minimally expressing that |xj | ≤ 1. With this notation, let Dk

m be the k-DNF
set consisting of the formulas in Figure 2. It is worth noting that the range
of the index ν does not have any impact on the following proof of minimal
unsatisfiability, and it was set to m(k−1) only to get the best numerical results.

It is easy to verify that Dk
m consists of less than 4mk k-DNF formulas over

more than (m(k − 1))k =
(

1
4 (4mk)

(
1 − 1

k

))k variables. We claim that Dk
m is

minimally unsatisfiable, from which Theorem 4 follows.
To prove the claim, let us first verify unsatisfiability. If the k-DNF formulas

W j
m(x) in (5a) are to be satisfied for all j < k, then there exists at most one

(k−1)-tuple (i∗1, i
∗
2, . . . , i

∗
k−1) ∈ [m(k − 1)]k−1 such that x1

i∗1
, x2

i∗2
, . . . , xk−1

i∗k−1
are all

true. This forces yν
(i∗1 ,i∗2 ,...,i∗k−1)

to true for all ν to satisfy the formulas in (5b), and

then (5c) forces all uν to 0, so that (5d) is falsified. Hence, Dk
m is unsatisfiable.

Let us now argue that Dk
m is not only unsatisfiable, but minimally unsatisfi-

able in the sense of Definition 1. The proof is by case analysis over the different
types of formulas in Dk

m.

1. If we shrink any term in (5a)—say, in W 1
m(x1)—then by the minimality

property in Section 3.1 we can set some x1
i′1

= x1
i′′1

= 1 for i′1 6= i′′1 and

fix some x2
i∗2

= . . . = xk−1
i∗k−1

= 1 without violating the remaining clauses in



W 1
m(x1), . . . ,W k−1

m (xk−1). This allows us to satisfy the formulas in (5b) and
(5c) by setting yν

(i′1,i∗2 ...,i∗k−1)
= 1 and yν

(i′′1 ,i∗2 ...,i∗k−1)
= 0 for all ν. Finally, set

any uν to true to satisfy (5d). This satisfies the whole k-DNF set.
2. Next, suppose that we shrink some term x1

i∗1
∧ x2

i∗2
∧ · · · ∧ xk−1

i∗k−1
∧ yν

(i∗1 ,...,i∗k−1)

in the νth k-DNF formula in (5b). There are two subcases:
(a) Some x-variable is removed, say, the variable x1

i∗1
. Set x1

i∗1
= 0 and x2

i∗2
=

. . . = xk−1
i∗k−1

= yν
(i∗1 ,i∗2 ,...,i∗k−1)

= 1. This satisfies the νth formula in (5b).

Then pick some i′1 6= i∗1 and set x1
i′1

= 1. All this can be done in a way that
satisfies all clauses in (5a) since the weight of every xj is one. Set uν = 1
and uν′ = 0 for all ν′ 6= ν to satisfy (5d) and then yν

(i′1,i∗2 ,...,i∗k−1)
= 0

to satisfy the νth formula in (5c) (all others are satisfied by literals ūν′ ,
ν′ 6= ν). The νth formula in (5b) was satisfied above, and for all other
ν′ 6= ν we set yν′

(i′1,i∗2 ,...,i∗k−1)
= 1 to satisfy the rest of the formulas in (5b).

This satisfies the whole k-DNF set.
(b) The variable yν

(i∗1 ,...,i∗k−1)
is eliminated. If so, set x1

i∗1
= . . . = xk−1

i∗k−1
= 1

to satisfy the νth formula in (5b), uν = 1 and yν
(i∗1 ,...,i∗k−1)

= 0 to satisfy

(5d) and the νth formula in (5c), and uν′ = 0 and yν′

(i∗1 ,...,i∗k−1)
= 1 for all

ν′ 6= ν to satisfy the rest of the formulas in (5b) and (5c). This is easily
extended to an assignment satisfying (5a) as well.

3. For the νth formula in (5c), we may assume, for the same reasons as in
Section 3.1, that we shrink a non-trivial k-term. Then we again have two
subcases, treated similarly.
(a) Some x-variable is removed, say x1

i∗1
. Set uν = 1, x1

i∗1
= 0, x2

i∗2
= . . . =

xk−1
i∗k−1

= 1, and yν
(i∗1 ,i∗2 ,...,i∗k−1)

= 0. This satisfies (5d) and the νth formula
in (5c). Setting uν′ = 0 for ν′ 6= ν takes care of the rest of (5c). To
satisfy (5b), pick some i′1 6= i∗1 and set x1

i′1
= 1, and yν′

(i′1,i∗2 ,...,i∗k−1)
= 1 for

all ν′. These assignments are all consistent with the weight constraints
in (5a).

(b) The literal yν
(i∗1 ,...,i∗k−1)

is eliminated. If so, set x1
i∗1

= . . . = xk−1
i∗k−1

= 1 to
satisfy the νth formula in (5c) and uν = 1 to satisfy (5d). Setting uν′ = 0
for ν′ 6= ν takes care of the rest of (5c). Now we can satisfy all of (5b)
by setting yν′

(i∗1 ,...,i∗k−1)
= 1 for all ν′, and it is once again easy to see that

the weight constraints in (5a) are also satisfied.
4. The disjunctive clause (5d) is removed. Set all uν to 0, and then set all

yν
i1,...,ik

to 1, then (5a)–(5b) become easy to satisfy.

This completes the proof that Dk
m is minimally unsatisfiable as claimed, and

Theorem 4 hence follows.

4 Implications for k-DNF Resolution Trade-offs

Let us start this section by a quick review of the relevant proof complexity
context. The k-DNF resolution proof systems were introduced by Kraj́ıček [14]



as an intermediate step between resolution and depth-2 Frege. Roughly speaking,
the kth member of this family, denoted henceforth by R(k), is a system for
reasoning in terms of k-DNF formulas. For k = 1, the lines in the proof are
hence disjunctions of literals, and the system R(1) is standard resolution. At the
other extreme, R(∞) is equivalent to depth-2 Frege.

Informally, we can think of an R(k)-proof as being presented on a black-
board. The allowed derivation steps are to write on the board a clause of the
CNF formula being refuted, to deduce a new k-DNF formula from the formulas
currently on the board, or to erase formulas from the board. The length of an
R(k)-proof is the total number of formulas appearing on the board (counted
with repetitions) and the (formula) space is the maximal number of formulas
simultaneously on the board at any time during the proof.

A number of works, for example, [2, 4, 5, 19, 20, 21], have proven super-
polynomial lower bounds on the length of k-DNF refutations. It was also shown
in [20, 21] that the R(k)-family forms a strict hierarchy with respect to proof
length. Just as in the case for standard resolution, however, our understanding
of space complexity in k-DNF resolution has remained more limited. Esteban
et al. [13] established essentially optimal space lower bounds for R(k) and also
proved that the family of tree-like R(k) systems form a strict hierarchy with
respect to space. They showed that there are formulas Fn of size n that can be
refuted in tree-like (k + 1)-DNF resolution in constant space but require space
Ω(n/ log2 n) in tree-like k-DNF resolution. It should be pointed out, however,
that tree-like R(k) for any k ≥ 1 is strictly weaker than standard resolution,
so the results in [13] left open the question of whether there is a strict space
hierarchy for (non-tree-like) k-DNF resolution or not.

Recently, the first author in joint work with Ben-Sasson [10] proved that
Kraj́ıček’s family of R(k) systems do indeed form a strict hierarchy with respect
to space. However, the parameters of the separation were much worse than for
the tree-like systems in [13]; namely, the R(k + 1)-proofs have constant space
but any R(k)-proof requires space Ω

(
k+1

√
n/ log n

)
. It is not clear that there has

to be a (k +1)st root in this bound. No matching upper bounds are known, and
indeed for the special case of R(2) versus R(1) the lower bound proven in [10]
is Ω

(
n/ log n

)
, i.e., without a square root. Also, [10] established strong length-

space trade-offs for k-DNF resolution, but again a (k + 1)st root is lost in the
analysis compared to the corresponding results for standard resolution R(1).

Returning now to the minimally unsatisfiable k-DNF sets, the reason [10]
studied this concept was that it appeared related to a problem arising in their
proof analysis, and they hoped that better upper bounds for minimal unsatisfi-
ability would translate into improvements in the analysis. Instead, using ideas
from the improved lower bound construction for minimal unsatisfiability in the
previous section, we can show that the analysis of the particular proof technique
employed in [10] is almost tight. Thus, any further substantial improvements of
the bounds in that paper would have to be obtained by other methods.

We do not go into details of the proof construction in [10] here, since it is
rather elaborate. Suffice it to say that the final step of the proof boils down to



studying k-DNF sets that imply Boolean functions with a particular structure,
and proving lower bounds on the size of such DNF sets in terms of the number
of variables in these Boolean functions. (Recall that a set F implies a function F ,
denoted F � F , if any satisfying truth value assignment to all of F must also
satisfy F .) Having come that far in the construction, all that remains is a purely
combinatorial problem, and no reference to space proof complexity or k-DNF
resolution is needed.

For concreteness, below we restrict our attention to the case where the
Boolean functions are exclusive or. More general functions can be considered,
and have been studied in [10], and everything that will be said below applies
to such Boolean functions with appropriate (and simple) modifications. Hence,
from now on let us focus on DNF sets that “minimally imply” (in a sense made
formal below) a particular kind of formulas that we will refer to as

(
∧∨⊕k

)
-block

formulas. A
(
∧∨⊕k

)
-block formula is a CNF formula in which every variable x

is replaced by
⊕k

i=1 xi, where x1, . . . , xk are new variables. Thus, literals turn
into unnegated or negated XORs, every XOR applies to exactly one “block” of
k variables, and no XOR mixes variables from different blocks. Let us write this
down as a formal definition.

Definition 5. A
(
∧∨⊕k

)
-block formula G is a conjunction of disjunctions of

negated or unnegated exclusive ors. The variables of G are divided into disjoint
blocks x1, . . . , xk, y1, . . . , yk, z1, . . . , zk et cetera, of k variables each, and every
XOR or negated XOR is over one full block of variables.

The key behind the lower bounds on space in [10] is the result that if a k-DNF
set D implies a

(
∧∨⊕k+1

)
-block formula G with many variables, then D must

also be large.

Theorem 6 ([10]). Let k be some fixed but arbitrary positive integer. Suppose
D is a k-DNF set and G is a

(
∧∨⊕k+1

)
-block formula such that D implies G

“precisely,” in the sense that if we remove a single XOR or negated XOR from
G (thus making the formula stronger, i.e., harder to satisfy), it no longer holds
that D implies G. Then |Vars(G)| = O

(
|D|k+1

)
.

Using this theorem, one can get the k+1
√

n/ log n space separation mentioned
above between R(k) and R(k + 1). Any improvement in the exponent in the
bound in Theorem 6 would immediately translate into an improved space sepa-
ration, and would also improve the k-DNF resolution trade-offs in [10].

Prior to the current paper, the best lower bound giving limits on what one
could hope to achieve in Theorem 6 was linear, i.e., |Vars(G)| = Ω(|D|). Namely,
let G be a conjunction of XORs (

⊕k+1
i=1 xi) ∧ (

⊕k+1
i=1 yi) ∧ (

⊕k+1
i=1 zi) ∧ · · · and

D be the union of the expansions of every
⊕k+1

i=1 xi as a CNF formula. For this
particular structure of G it is also easy to prove that |Vars(G)| = O(|D|) for any
choice of D, but it was open what happens when we consider general formulas G.

For k = 1, [10] proved that a linear bound O(|D|) in fact holds for any set
of clauses D and any

(
∧∨⊕2

)
-block formula G, but all attempts to extend the



techniques used there to the case k > 1 have failed. And indeed, they have failed
for a good reason, since building on the construction in Section 3 we can show
that the best one can hope for in Theorem 6 is |Vars(G)| = O

(
|D|k

)
.

Theorem 7. For any k > 1 there are arbirarily large k-DNF sets D of size m
and

(
∧∨⊕k+1

)
-block formulas G such that D “precisely” implies G in the sense

of Theorem 6 and |Vars(G)| ≥ (k + 1)
[

m
k+2

(
1− 1

k

)]k ≥ k
(

m
4k

)k.

Proof. We utilize all the previous notation and start with the CNF formula∧
ν∈[m(k−1)]

∨
(i1,...,ik−1)∈[m(k−1)]k−1

yν
i1,...,ik−1

(6)

and substitute an exclusive or over variables yν,r
i1,...,ik−1

, r = 1, . . . , k+1, for every
variable yν

i1,...,ik−1
. This results in the formula

G =
∧

ν∈[m(k−1)]

∨
(i1,...,ik−1)∈[m(k−1)]k−1

k+1⊕
r=1

yν,r
i1,...,ik−1

(7)

which will be our
(
∧∨⊕k+1

)
-block formula. Clearly, G contains (k+1)·(m(k−1))k

variables. We claim that the following easy modification of the k-DNF set from
Figure 2 “precisely” implies G in the sense of Theorem 6:

W j
m(xj) 1 ≤ j < k (8a)∨

(i1,...,ik−1)∈[m(k−1)]k−1

(
x1

i1 ∧ · · · ∧ xk−1
ik−1

∧ yν,1
i1,...,ik−1

)
1 ≤ ν ≤ m(k − 1) (8b)

∨
(i1,...,ik−1)∈[m(k−1)]k−1

(
x1

i1 ∧ · · · ∧ xk−1
ik−1

∧ yν,r
i1,...,ik−1

)
1 ≤ ν ≤ m(k − 1),

2 ≤ r ≤ k + 1

(8c)

It is straightforward to verify that D consists of less than m(k − 1)(k + 1) +
2mk ≤ mk(k + 2) k-DNF formulas. D implies G since once we have picked
which variables x1

i∗1
, x2

i∗2
, . . . , xk−1

i∗k−1
should be satisfied, D will force all XOR blocks⊕k+1

r=1 yν,r
i∗1 ,...,i∗k−1

, j ∈ [m(k − 1)] to true by requiring the variable yν,1
i∗1 ,...,i∗k−1

to be
true and all other variables yν,r

i∗1 ,...,i∗k−1
, r ≥ 2, to be false. Finally, it is also easy

to verify that if a single XOR block
⊕k+1

r=1 yν,r
i∗1 ,...,i∗k−1

is removed from G, then we
can satisfy D but falsify the rest of the formula G (the proof is very similar to
the one given in Section 3.2). Theorem 7 follows.

5 Concluding Remarks and Open Problems

We conclude this paper by discussing two remaining open problems. First, the
most obvious problem still open is to close the gap between the lower bound



(Ω(m))k and upper bound (mk)k+1 on the number of variables that can appear
in a minimally unsatisfiable k-DNF set with m formulas. A strong intuition
expressed by [10] is that it should be possible to bring down the exponent from
k + 1 to k. Hence, we have the following conjecture, where for simplicity we fix
k to remove it from the asymptotic notation.

Conjecture 8. Suppose that D is a minimally unsatisfiable k-DNF set for some
arbitrary but fixed k > 1. Then the number of variables in D is at most O(|D|)k.

Proving this conjecture would establish asymptotically tight bounds for min-
imally unsatisfiable k-DNF sets (ignoring factors involving the constant k).

Second, we again stress that the result in Theorem 7 does not per se imply
any restrictions (that we are aware of) on what space separations or time-space
trade-offs are possible for k-DNF resolution. The reason for this is that our
improved lower bound only rules out a particular approach for proving better
separations and trade-offs, but it does not say anything to the effect that the
k-DNF resolution proof systems are strong enough to match this lower bound. It
would be very interesting to understand better the strength of k-DNF resolution
in this respect. Hence we have the following open problem (where due to space
constraints we have to refer to [10] or [17] for the relevant formal definitions).

Problem 9. Let Pebk+1
G [⊕] be the XOR-pebbling contradiction over some di-

rected acyclic graph G. Is it possible that R(k) can refute Pebk+1
G [⊕] in space

asymptotically better than the black-white pebbling price BW-Peb(G) of G?

We remark that for standard resolution, i.e., 1-DNF resolution, the answer
to this question is that XOR-pebbling contradictions over two or more variables
cannot be refuted in space less than the black-white pebbling price, as proven
in [10]. For k-DNF resolution with k > 1, however, the best known lower bound
is Ω

(
k+1

√
BW-Peb(G)

)
, as also shown in [10]. There is a wide gap here between

the upper and lower bounds since, as far as we are aware, there are no known
k-DNF resolution proofs that can do better than space linear in the pebbling
price (which is achievable by standard resolution).
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