
Narrow Proofs May Be Spacious:
Separating Space and Width in Resolution

[Extended Abstract]
∗

Jakob Nordström
Royal Institute of Technology (KTH)

SE-100 44 Stockholm, Sweden
jakobn@kth.se

ABSTRACT
The width of a resolution proof is the maximal number of
literals in any clause of the proof. The space of a proof is
the maximal number of clauses kept in memory simultane-
ously if the proof is only allowed to infer new clauses from
clauses currently in memory. Both of these measures have
previously been studied and related to the resolution refuta-
tion size of unsatisfiable CNF formulas. Also, the refutation
space of a formula has been proven to be at least as large
as the refutation width, but it has been open whether space
can be separated from width or the two measures coincide
asymptotically. We prove that there is a family of k-CNF
formulas for which the refutation width in resolution is con-
stant but the refutation space is non-constant, thus solving
a problem mentioned in several previous papers.

Categories and Subject Descriptors: F.4.1[Mathemati-
cal Logic and Formal Languages]: Mathematical Logic—
proof theory; F.1.3[Computation by Abstract Devices]: Com-
plexity Measures and Classes—Relations among complexity
measures;

General Terms: Theory

Keywords: Proof complexity, resolution, width, space, sep-
aration, lower bound, pebble game, pebbling contradiction

1. INTRODUCTION
A proof system for a language L is an algorithm P (x, π)

which runs in time polynomial in |x| and |π| such that for
all x ∈ L there is a string π (a proof) for which P (x, π) = 1.
For x 6∈ L, it should hold for all strings π that P (x, π) = 0.
The complexity of a proof system P is the smallest bounding
function g : N 7→ N such that x ∈ L if and only if there is
a proof π of size |π| ≤ g

`
|x|

´
for which P

`
x, π

´
= 1. If a

proof system is of polynomial complexity, it is said to be

∗A full version of this paper is available as ECCC Technical
Report TR05-066 at www.eccc.uni-trier.de/eccc/.

c©ACM, 2006. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings 38th ACM Symposium on
Theory of Computing (STOC’06), May 2006, Seattle, Washington, USA
http://doi.acm.org/10.1145/1132516.1132590

polynomially bounded. A propositional proof system is a
proof system for tautologies in propositional logic.

Studying the complexity of proving tautologies in proposi-
tional logic is an important problem both from a theoretical
and a practical point of view. On the one hand, proposi-
tional proof complexity is closely related to central questions
in computational complexity, in view of the result of Cook
and Reckhow [15] that separating NP and co-NP (which
would imply P 6= NP) is equivalent to obtaining superpolyno-
mial lower bounds for arbitrary propositional proof systems.
On the other hand, designing efficient algorithms for proving
tautologies, or equivalently refuting unsatisfiable formulas,
is a very important problem in applied research and in in-
dustry, for instance in the context of formal methods.

Perhaps the most studied propositional proof system is
resolution, which appeared in [10] and began to be investi-
gated in connection with automated theorem proving in the
1960s [16, 17, 32]. Because of its simplicity—there is only
one derivation rule—and because all lines in a proof are
clauses, this proof system is well adapted to proof search al-
gorithms. Many real-world automated theorem provers are
based on resolution.

Being so simple and fundamental, resolution was also a
natural target to attack when developing methods for prov-
ing lower bounds in proof complexity. In this context, it
is most straightforward to prove bounds on the length of
proofs, i.e., the number of clauses, which is easily seen to be
polynomially related to the proof size. In 1968, Tseitin [35]
presented a superpolynomial lower bound on proof length for
a restricted form of resolution, called regular resolution, but
it was not until almost 20 years later that Haken [23] proved
the first superpolynomial lower bound for general resolution.
This exponential lower bound of Haken was later followed
by many similar results, for instance in [5, 14, 31, 36].

A second complexity measure for resolution, first made
explicit by Galil [21], is the width, measured as the maximal
size of a clause in the proof. Ben-Sasson and Wigderson [9]
showed a strong upper bound on width in terms of length,
and used this to rederive and simplify many lower bounds
on length by proving lower bounds on width.

The results on width lead to the question of whether other
complexity measures could yield interesting insights as well.
In [19, 33], Esteban and Torán introduced the concept of
proof space, transforming a previous definition from [25].
Intuitively, the space of a resolution proof is the maximal
number of clauses one needs to keep in memory while ver-
ifying the proof. A number of upper and lower bounds for

proof space in resolution and other proof systems were sub-
sequently presented in for instance [1, 7, 18, 20]. In several
of these papers, it was noted that the lower bounds on proof
space in resolution for different formula families matched
known lower bounds on proof width. Atserias and Dal-
mau [3] showed that this was not a coincidence, but that
the minimal proof space of a k-CNF formula is always at
least as large as the minimal proof width minus a constant.

An immediate follow-up question to this is whether proof
space and proof width always coincide or there is a formula
family that separates the two measures asymptotically.

Another natural question is how space and length are re-
lated. Is there a Ben-Sasson-Wigderson-style upper bound
on space in terms of length, or can short resolution proofs
be arbitrarily complex with respect to space?

A third, intimately connected question is to determine
the proof space of pebbling contradictions defined in terms
of pebble games on directed acyclic graphs. Non-constant
lower bounds on the space of refuting pebbling contradic-
tions would separate space and width, and possibly also clar-
ify the relation between space and length if the bounds were
good enough. On the other hand, a constant upper bound
would improve the trade-off results for different measures in
resolution in [6].

The above three questions have been mentioned as inter-
esting open problems in [6, 18, 20, 34].

In this paper, we answer the first question by separating
space and width. This is done by proving an asymptoti-
cally tight bound on space for pebbling contradictions over
binary trees, thus at least partially solving the open prob-
lem about the space complexity of pebbling contradictions
as well. More precisely, our results are as follows (formal
definitions are given in Sections 2 and 4).

Theorem 1. Let Th denote the complete binary tree of
height h and Pebd

Th
the pebbling contradiction of degree d ≥ 2

defined over Th. Then the space of refuting Pebd
Th

in reso-

lution is Sp
`
Pebd

Th
` 0

´
= Θ(h).

Corollary 2. For all k ≥ 4, there exists a family of
k-CNF formulas

˘
Fn

¯∞
n=1

of size O(n) with refutation width
W(Fn ` 0) = O(1) and refutation space Sp(Fn ` 0) =
Θ(log n).

The organization of this paper is as follows. We start by
presenting the resolution proof system in Section 2. Sec-
tion 3 gives a short introduction to pebble games, and in
Section 4 we review some previous results connecting reso-
lution and pebbling. The bound on refutation space which
separates space and width is then proven in three steps.

• First, we define a modified pebble game and establish
a lower bound for this game in terms of the standard
black-white pebble game (Section 5).

• Next, we show that a resolution refutation of a peb-
bling contradiction induces a pebbling of the underly-
ing graph in our modified pebble game (Section 6).

• Finally, we prove that if a set of clauses induces many
pebbles, the set must contain at least as many clauses
(Section 7).

Since a resolution proof induces a pebbling, and such a peb-
bling must contain many pebbles at some point, we deduce

that the space of any resolution proof must be large. We
conclude in Section 8 by giving suggestions for further re-
search.

All proofs omitted below can be found in the full-length
version of this paper [29].

2. THE RESOLUTION PROOF SYSTEM
Any propositional logic formula can be converted to a for-

mula in conjunctive normal form (CNF) that is only linearly
larger and is unsatisfiable if and only if the original formula
is a tautology. Therefore, any sound and complete system
which produces refutations of unsatisfiable CNF formulas
can be considered as a general propositional proof system.
One such proof system is resolution.

A literal is either a propositional logic variable x or its
negation x. We define x = x. A clause C = a1 ∨ . . . ∨ ak

is a set of literals. We say that C is a subclause of D if
C ⊆ D. A clause containing at most k literals is called a
k-clause. A CNF formula F = C1 ∧ . . . ∧ Cm is a set of
clauses. A k-CNF formula is a CNF formula consisting of
k-clauses. We let Vars(C) denote the set of variables and
Lit(C) the set of literals in a clause C. This notation is
extended to sets of clauses by taking unions.

When reasoning about the space of resolution derivations,
it is convenient to use the definition of resolution introduced
by [1]. We employ the standard notation [n] = {1, 2, . . . , n}.

Definition 3 (Resolution). A clause configuration C
is a set of clauses. A sequence of clause configurations
{C0, . . . , Cτ} is a resolution derivation from a CNF formula
F if C0 = ∅ and for all t ∈ [τ], Ct is obtained from Ct−1 by
one of the following rules:

Axiom Download Ct = Ct−1 ∪{C} for a clause C ∈ F
(an axiom).

Erasure Ct = Ct−1 \ {C} for some clause C ∈ Ct−1.

Inference Ct = Ct−1 ∪{C ∨D} for a clause C ∨D in-
ferred by the resolution rule from C ∨ x, D ∨ x ∈ Ct−1.

A resolution derivation π : F ` A of a clause A from F is
a derivation {C0, . . . , Cτ} such that Cτ = {A}. A resolu-
tion refutation of F is a derivation π : F ` 0 of the empty
clause 0 (the clause with no literals) from F .

For a formula F and a set of formulas G = {G1, . . . , Gn},
we say that G implies F , denoted G � F , if every truth value
assignment satisfying all formulas Gi ∈ G satisfies F as well.
Resolution is sound and implicationally complete. That is,
if there is a resolution derivation π : F ` A then F � A, and
if F � A then there is a resolution derivation π : F ` A′ for
some A′ ⊆ A. In particular, F is unsatisfiable if and only if
there is a resolution refutation of F .

The length L(F) of a CNF formula F is |F |, and the length
L(π) of a derivation π is the number of distinct clauses
in π. The length of deriving A from F is L(F ` A) =
minπ:F`A L̆(π)̄ , where the minimum is taken over all deriva-
tions of A. The width W(C) of a clause C is |C|. The width
of a set of clauses C is W(C) = maxC∈C

˘
W(C)

¯
, the width

of a derivation π is W(π) = maxCt∈π

˘
W(Ct)

¯
, and the

width of deriving A from F is W(F `A)=minπ:F`A

˘
W(π)

¯
.

The width of refuting a CNF formula F over n variables
in resolution was proven in [9] to be bounded from above

by W(F ` 0) ≤ W(F) + O
`p

n log L(F ` 0)
´
. In [12], it

was shown that this bound on width in terms of length is
essentially optimal.

The space [1, 6] of a resolution derivation π={C0, . . . , Cτ}
is the maximal number of clauses in any clause configura-
tion in π, or formally Sp

`
π

´
= maxt∈[τ]

˘
|Ct|

¯
. The mini-

mal space of deriving a clause A from a CNF formula F is
Sp(F ` A) = minπ:F`A

˘
Sp(π)

¯
.

Any unsatisfiable CNF formula can be refuted in space
linear in the formula size, or more precisely in space at most
min

˘
L(F) + 1, |Vars(F)|+ 2

¯
(see [19]). Thus the interest-

ing question is which formulas demand this much space, and
which formulas can be refuted in for instance logarithmic or
even constant space. It was shown in [1, 33] that there are
polynomial-size formulas that meet the upper bounds on
space in terms of the number of clauses and variables up to
a multiplicative constant.

Lower bounds on space have been presented for a number
of different CNF formula families [1, 7, 33]. In these papers,
it was observed that the lower bounds on refutation space
coincided with previously proven lower bounds on refutation
width, which lead to the conjecture that width is a lower
bound for space. This conjecture was confirmed in [3], where
it was proven that Sp(F ` 0)− 3 ≥ W(F ` 0)−W

`
F

´
.1 In

other words, the extra clause space exceeding the minimum 3
needed for any resolution derivation is bounded from below
by the extra width exceeding the formula width.

As was mentioned in the introduction, a very natural ques-
tion, which has remained open, is what holds in the other
direction. Do the space and width measures coincide asymp-
totically, or is there a formula family separating space from
width? We remark that in order for this question to be inter-
esting, we should restrict our attention to families of k-CNF
formulas. Any resolution refutation of an unsatisfiable CNF
formula F with minimum clause width k can be shown to
require clause space at least k + 2 (see [19]), so it is easy
to find CNF formulas {Fn}∞n=1 of growing width such that
W(Fn ` 0)−W(Fn) = O(1) but Sp(Fn ` 0) = Ω(n).

In this paper, we settle the open question of the rela-
tionship between space and width by exhibiting for any
fixed k ≥ 4 a k-CNF formula family {Fn}∞n=1 such that
W(Fn ` 0) = O(1) but Sp(Fn ` 0) = Θ(log L(Fn)) = ω(1).

3. PEBBLE GAMES
Pebble games were devised for studying programming lan-

guages and compiler construction, but have found a variety
of applications in computational complexity theory. In con-
nection with resolution, pebble games have been employed
both to analyze resolution derivations with respect to how
much memory they consume (using the original definition of
space in [19]) and to construct CNF formulas which are hard
for different variants of resolution in various respects (see for
example [2, 8, 11, 13]). An excellent survey of pebbling up
to 1980 is [30].

The black pebbling price of a directed acyclic graph G
captures the memory space, i.e., the number of registers, re-
quired to perform the deterministic computation described
by G. The space of a non-deterministic computation is mea-
sured by the black-white pebbling price of G. In the fol-

1The theorem in [3] is Sp(F ` 0) ≥ W(F ` 0) − W(F),
but this can be sharpened by a constant if one does the
calculations in the proofs carefully.

lowing, we let V(G) denote the vertices of G, and say that
vertices with indegree 0 are sources and vertices with out-
degree 0 targets.

Definition 4 (Pebble game). Suppose that G is a di-
rected acyclic graph (DAG) with sources S and unique tar-
get z. A pebble configuration on G is a pair of subsets
P = (B, W) of V(G), comprising the black-pebbled vertices
B and white-pebbled vertices W . A legal black-white peb-
bling reaching (B, W) in G is a sequence of configurations
P =

˘
P0, . . . , Pτ

¯
such that P0 = (∅, ∅), Pτ = (B, W), and

for all t ∈ [τ], Pt follows from Pt−1 by one of the following
rules:

1. If all immediate predecessors of an empty vertex v have
pebbles on them, a black pebble may be placed on v. (In
particular, a black pebble can always be placed on any
vertex in S.)

2. A black pebble may be removed from any vertex at any
time.

3. A white pebble may be placed on any empty vertex at
any time.

4. If all immediate predecessors of a white-pebbled ver-
tex v have pebbles on them, the white pebble on v may
be removed.

The cost of a pebble configuration P = (B, W) is cost(P) =
|B ∪W | and the cost of a legal pebbling P =

˘
P0, . . . , Pτ

¯
is maxt∈[τ]

˘
cost

`
Pt

´¯
. The black-white pebbling price of a

pebble configuration (B, W), denoted BW-Peb(B, W), is the
minimal cost of any legal pebbling reaching (B, W), and the
black-white pebbling price of the DAG G is BW-Peb(G) =
BW-Peb({z}, ∅).

A legal black pebbling of G is a pebbling reaching ({z}, ∅)
using black pebbles only, i.e., Wt = ∅ for all t, and the
(black) pebbling price of G, denoted Peb(G), is the mini-
mal cost of any legal black pebbling of G.

We let T (Th) denote a complete binary tree (of height h)
considered as a DAG with edges directed towards the root.
The black pebbling price of Th is Peb(Th) = h + 2, which
can be established by an easy induction over the tree height.
In [28], general bounds for the black-white pebbling price of
trees of any arity were proven, which can be simplified to
the tight result BW-Peb(Th) =

¨
h
2

˝
+ 3 for complete binary

trees (see Section 4 of [29] for a proof).

4. PEBBLING CONTRADICTIONS
A pebbling contradiction defined on a DAG G encodes the

pebble game on G by defining the sources to be true and the
target false, and specifying that truth propagates through
the graph according to the pebbling rules.

Definition 5 (Pebbling contradiction [9]). Let G
be a DAG with sources S and a unique target z and with
all vertices having indegree 0 or 2, and let d ∈ N+. Asso-
ciate d distinct variables x(v)1, . . . , x(v)d with every vertex
v ∈ V(G). The dth degree pebbling contradiction over G,
denoted Pebd

G, is the conjunction of the following clauses:

•
Wd

i=1 x(s)i for all s ∈ S (source axioms),

• x(z)i for all i ∈ [d] (target axioms),

z

u v

r s t

(x(r)1 ∨ x(r)2) ∧ (x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)1 ∨ x(s)2) ∧ (x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

∧ (x(t)1 ∨ x(t)2) ∧ (x(u)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ (x(u)1 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2) ∧ (x(u)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)2 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ (x(u)2 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)2 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2) ∧ x(z)1

∧ (x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2) ∧ x(z)2

∧ (x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

Figure 1: The pebbling contradiction Peb2
Π2 for the pyramid graph Π2 of height 2.

• x(u)i ∨ x(v)j ∨
Wd

l=1 x(w)l for all i, j ∈ [d] and all

w ∈ V(G) \ S, where u, v are the two predecessors of w
(pebbling axioms).

The pebbling contradiction Pebd
G is a (2+d)-CNF formu-

la with O
`
d2 · |V(G)|

´
clauses over d · |V(G)| variables. See

Figure 1 for an example pebbling contradiction.
As shown in [8], Pebd

G can be refuted in resolution by

deriving
Wd

i=1 x(v)i for all v ∈ V(G) inductively in topolog-

ical order and then resolving with the target axioms x(z)i,
i ∈ [d]. Writing down this resolution proof, it is easy to ver-
ify that L(F ` 0) = O

`
d2 · |V(G)|

´
and W(F ` 0) ≤ O(d).

As to refutation space, it is not too difficult to see that
Sp

`
Pebd

G ` 0
´
≤ Peb(G) + O(1) using an optimal black peb-

bling of G together with the resolution refutation from [8]
sketched above. For binary trees, [20] improved this bound
to Sp

`
Peb2

Th
` 0

´
≤

˚
2h+1

3

ˇ
+ 3 = 2

3
Peb(Th) + O(1). No

lower bounds on Sp
`
Pebd

G ` 0
´

have been shown, how-
ever, and for one variable per vertex, we know from [6]
that Sp

`
Peb1

G ` 0
´

= O(1). At the same time, the reso-
lution refutation in [20] is structurally quite similar to the
optimal black-white pebbling of Th presented in [28], and
it seems hard to come up with a way how any resolution
refutation could do better for d ≥ 2 variables per vertex.
This raises the suspicion that the black-white pebbling price
BW-Peb(Th) = h/2 + O(1) might be a lower bound for
Sp

`
Pebd

Th
` 0

´
, and in general that it might hold that

Sp
`
Pebd

G ` 0
´
≥ BW-Peb(G) for any DAG G and d ≥ 2.

To prove such a bound, we would like to establish a con-
nection between resolution refutations of Pebd

G and peb-
blings of the underlying graph G. Let us say that a ver-
tex v is “true” if

Wd
i=1 x(v)i has been derived and “false” if

x(v)i has been derived for all i ∈ [d]. Any resolution proof
refutes a pebbling contradiction by deriving that some ver-
tex v is both true and false, and then resolves to get 0. If
we let w be any vertex with predecessors u, v, we see that
if we have derived that u and v are true, by downloading
x(u)i ∨ x(v)j ∨

Wd
l=1 x(w)l for all i, j ∈ [d] we can deriveWd

l=1 x(w)l. This appears analogous to the rule that if u
and v are black-pebbled we can place a black pebble on w.
In the opposite direction, if we know x(w)l for all l ∈ [d],

using the axioms x(u)i ∨ x(v)j ∨
Wd

l=1 x(w)l we can derive
that either u or v is false. This looks similar to eliminating
a white pebble on w by placing white pebbles on the pre-

decessors u, v and then removing the pebble from w. Gen-
eralizing this loose, intuitive reasoning, we argue that a set
of black-pebbled vertices V should correspond to the de-
rived conjunction of truth of all v ∈ V , and that a set of
white-pebbled vertices W should correspond to the derived
disjunction of falsity of one of the w ∈ W .

Suppose that we could show that as the resolution deriva-
tion proceeds, the black and white pebbles corresponding to
different clause configurations as outlined above move about
on the vertices of G in accordance with the rules of the peb-
ble game. If so, we would get that there is some clause con-
figuration C corresponding to a lot of pebbles. This could
in turn hopefully yield a non-constant lower bound for the
refutation space. For if C induces N black pebbles, i.e., im-
plies N disjoint clauses, it seems likely that |C| should be
linear in N . And if C induces N white pebbles, |C| should
grow with N if d ≥ 2, since C has to force d literals false si-
multaneously for one out of N vertices.2 This is the guiding
intuition behind the result proven in this paper.

5. A MODIFIED PEBBLE GAME
To prove a lower bound on the refutation space of pebbling

contradictions, we want to interpret resolution derivations in
terms of pebble placements on the corresponding graph. The
problem is that it turns out to be hard to make the pebble
configurations induced by a resolution derivation obey the
rules of the black-white pebble game. Instead, we alter the
pebbling rules.

In this section, we present the modified pebble game used
for analyzing resolution derivations. We then argue that for
binary trees, we get essentially the same bound on pebbling
price in this new pebble game as in the black-white pebble
game of Definition 4.

Our first modification of the pebble game is to change the
rule for white pebble removal so that a white pebble can
be removed from a vertex when a black pebble is placed on
that same vertex. This does not really change anything.

Our second, and far more substantial, modification of
the pebble game is motivated by the fact that a resolution
derivation might choose to erase “the wrong clause” from

2Note, though, that for d = 1 a single clause x(v1)1∨x(v2)1∨
. . . ∨ x(vN)1 can imply the falsity of one of an arbitrary
number of vertices v1, v2, . . . , vN , which, incidentally, is one
way of explaining why Sp

`
Peb1

G ` 0
´

= O(1).

P v
∗

v

T v
∗

T \
(
T v ∪ P v

)

Figure 2: Referencing sets of vertices of a tree T
relative to a vertex v ∈ V(T).

the point of view of our induced pebble configurations. This
can lead to pebble configurations reverting to weaker con-
figurations, or to large chunks of black and white pebbles
just disappearing. In order to prove lower bounds for a peb-
ble game allowing for such moves, we have to keep track of
exactly which white pebbles have been used to get a black
pebble on a vertex. Loosely put, removing a white pebble
from a vertex v without placing a black pebble on the same
vertex should be in order, provided that all black pebbles
placed on vertices above v with the help of this white peb-
ble are removed as well.

To define this modified pebble game formally, we need
some notation and terminology. We use z to denote the
unique target vertex of a complete binary tree T , i.e., the
root, p, q, r, u, v, w to denote arbitrary vertices, and U, V, W
to denote arbitrary subsets of vertices. We let succ(v) denote
the immediate successor of v and pred(v) the immediate
predecessors. For a leaf v we have pred(v) = ∅, and for the
root z we have succ(z) = ∅. We let T v denote the vertices
in the complete binary subtree of T rooted at v and P v

the vertices in the path from v to the root z of T . We set
T v
∗ = T v \ {v} and P v

∗ = P v \ {v} (see Figure 2). The set
W is below the vertex u if W ⊆ T u

∗ . If P w
∗ ∩W = ∅ for all

w ∈ W , we say that the vertex set W is simple.
We now define the concept used to “label” each black peb-

ble with the set of white pebbles (if any) this black pebble
is dependent on. The intuition behind the next definition is
that v〈W 〉 should denote a black pebble on v together with
the white pebbles W below v with the help of which we have
been able to place the black pebble on v.

Definition 6 (Pebble subconfiguration). For v a
vertex and W ⊆ T v

∗ a simple set below v, we say that v〈W 〉 is
a pebble subconfiguration with a black pebble on v supported
by white pebbles on w ∈ W . The black pebble on v in v〈W 〉
is said to be dependent on the white pebbles in W . We refer
to v〈∅〉 as an independent black pebble.

We write v〈V 〉 � u〈U〉 if T v \
S

w∈V T w ⊆ T u \
S

w∈U T w.
If v〈V 〉 � u〈U〉 and v〈V 〉 6= u〈U〉, we write v〈V 〉 ≺ u〈U〉.

We use L to denote a set of pebble subconfigurations and
refer to such a set as a labelled pebble configuration or an
L-configuration.

Definition 6 is illustrated in Figure 3. Note that � is an
order relation and that the minimal elements with respect
to � are pebble subconfigurations v〈pred(v)〉.

Our modified pebble game is defined in terms of moves not
of individual pebbles, but of entire pebble subconfigurations.

Definition 7 (Labelled pebble game). For T a bi-
nary tree with root z, a labelled black-white pebbling, or

z

r w

u

v

p q

Figure 3: The pebble subconfigurations z〈u, v〉, r〈p, q〉
and w〈∅〉. Note that w〈∅〉 ≺ z〈u, v〉.

L-pebbling, of T is a sequence of labelled pebble configura-
tions L =

˘
L0, . . . , Lτ

¯
such that L0 = ∅ and Lt is obtained

from Lt−1 by one of the following rules:

Introduction Lt =Lt−1∪ v̆〈pred(v)〉̄ for v〈pred(v)〉 6∈Lt−1.

Merger Lt = Lt−1 ∪
˘
v〈(V ∪W) \ {w}〉

¯
for v〈V 〉, w〈W 〉 ∈

Lt−1 with w ∈ V . We write u〈U〉=merge(v〈V 〉, w〈W 〉)
for u〈U〉 = v〈(V ∪W) \ {w}〉 and refer to this as a
merger on w.

Reversal Lt = Lt−1 ∪
˘
v〈V 〉

¯
if v〈V 〉 ≺ u〈U〉 for some

u〈U〉 ∈ Lt−1.

Erasure Lt = Lt−1 \
˘
v〈V 〉

¯
for v〈V 〉 ∈ Lt−1.

A legal L-pebbling of a binary tree T is an L-pebbling L
ending in Lτ =

˘
z〈∅〉

¯
.

Let Bl
`
Lt

´
=

˘
v | ∃ v〈W 〉∈Lt

¯
denote the black pebbles

and Wh
`
Lt

´
=

˘
w | ∃v〈W 〉 ∈ Lt s.t. w ∈ W

¯
the white peb-

bles in Lt. Then the cost of an L-configuration L is cost(L) =˛̨
Bl

`
L

´
∪Wh

`
L

´˛̨
and the cost of an L-pebbling L is cost(L) =

maxt∈[τ]

˘
cost(Lt)

¯
. The L-pebbling price of a subconfigu-

ration v〈W 〉, denoted L-Peb(v〈W 〉), is the minimum cost of
any L-pebbling such that Lτ = {v〈W 〉}, and the L-pebbling
price of T is L-Peb(T) = L-Peb(z〈∅〉).

In the L-pebble game, one can remove a white pebble
without placing a black pebble on the same vertex, but if
so the rule for erasure makes sure that any black pebble de-
pendent on the removed white pebble is removed as well. A
“traditional” removal of a white pebble from w corresponds
to merging v〈V 〉 and w〈W 〉 into v〈(V ∪W) \ {w}〉 and then
erasing v〈V 〉 and w〈W 〉. The “backward” pebbling moves
to weaker pebble configurations mentioned in the beginning
of this section are moves according to the reversal rule.

The L-pebble game without reversal moves is essentially
just a disguised version of the ordinary black-white peb-
ble game. Arguing very informally, it seems plausible that
making reversals in an L-pebbling should only “weaken” the
pebble configurations (for example, reversing from z〈u, v〉 to
w〈∅〉 in Figure 3), and that it should therefore be possible to
eliminate all reversal moves from a pebbling without affect-
ing the pebbling cost. Unfortunately, this intuition does not
hold in general. If the L-pebble game is extended from trees
to arbitrary DAGs in the natural way, the above statement
is false. For instance, it fails for the pyramids Πh of Figure 1.
Klawe [24] proved that BW-Peb(Πh) = h/2 + O(1), but it
can be shown that Πh can be L-pebbled with O(1) pebbles if
we allow reversal moves of black pebbles downwards. For bi-
nary trees, however, we can prove that the L-pebbling price
and the black-white pebbling price coincide asymptotically.

Theorem 8. For Th a complete binary tree of height h,
L-Peb(Th) = Θ

`
BW-Peb(Th)

´
= Θ

`
h

´
.

The technically quite complicated proof of this fact, which
is a cornerstone of our result, can be found in Sections 6
and 7 of [29].

6. RESOLUTION DERIVATIONS INDUCE
LABELLED PEBBLINGS

The next step in our proof is to show that sets of clauses
can be interpreted in terms of pebble configurations in such
a way that resolution derivations induce legal L-pebblings.

For simplicity, from now on we write v1, . . . , vd instead of
x(v)1, . . . , x(v)d for the d variables associated with v in a dth
degree pebbling contradiction. We write *Pebd

G = Pebd
G \˘

z1, . . . , zd

¯
to denote the pebbling contradiction over G

with target axioms removed. If pred(r) =
˘
p, q

¯
, the axioms

for r is the set Axd(r) =
˘
pi ∨ qj ∨

Wd
l=1 rl | i, j ∈ [d]

¯
, and

for r a source we let Axd(r) =
˘Wd

i=1 ri

¯
. For V a set of

vertices, we define Axd(V) =
˘
Axd(v) | v ∈ V

¯
.

Our first observation is that instead of refutations of Pebd
G

we may study derivations of
Wd

i=1 zi from *Pebd
G.

Lemma 9. Sp
`
Pebd

G ` 0
´

= Sp
`
*Pebd

G `
Wd

i=1 zi

´
.

Proof. For any derivation π∗ : *Pebd
G `

Wd
l=1 zl, we can

get a refutation of Pebd
G from π∗ in the same space by re-

solving
Wd

l=1 zl with all zl, l ∈ [d], in space 3. In the other

direction, for π : Pebd
G ` 0 we can extract a derivation ofWd

l=1 zl in at most the same space by simply omitting all
downloads of and resolution steps on zl in π, leaving the lit-
erals zl in the clauses. Instead of the final empty clause 0 we
get some clause D ⊆

Wd
l=1 zl, and since *Pebd

T 2 D $
Wd

l=1 zl

and resolution is sound, we have D =
Wd

l=1 zl.

We now try to provide some intuition for how clause con-
figurations are translated into pebble configurations. In the
black-white pebble game, if at some time t there is an in-
dependent black pebble on v, an optimal pebbling will not
place any pebbles on T v after time t. As an analogy, if
Ct �

Wd
i=1 vi it is easy to see that no axioms from Axd(T v)

need be used after time t to derive
Wd

i=1 zi, so we let Ct in-
duce a subconfiguration v〈∅〉 in this case. One way of look-
ing at a dependent black pebble on v supported by white
pebbles on W , i.e., a subconfiguration v〈W 〉, is that given
independent black pebbles on all w ∈ W , the white pebbles
could be eliminated to yield v〈∅〉. By analogy, Ct should

induce v〈W 〉 if Ct ∪
˘Wd

i=1 wi | w ∈ W
¯
�

Wd
i=1 vi. As an

example, we would like the clause configuration˘
ui ∨ vj ∨

Wd
l=1 zl, pi ∨ qj ∨

Wd
l=1 rl,

Wd
l=1 wl | i, j ∈ [d]

¯
to induce the pebble subconfigurations z〈u, v〉, r〈p, q〉 and
w〈∅〉 of Figure 3.

Since our resolution derivations have no reason to be this
well-behaved, we need to add a number of technical details
in the formal definitions. In the following, B

`
V

´
can be

thought of as “truth of all vertices in V ” and AV as “truth
of some vertex in V ”.

Definition 10. Let B
`
V

´
=

˘Wd
i=1 vi | v ∈ V

¯
and AV =W

v∈V

Wd
i=1 vi. Given a set of clauses C and a vertex v, if

V ⊆ T \P v is such that C∪B
`
V

´
� AP v we say that V is a

support for v with respect to C. If there is no V ′ $ V such
that C∪B

`
V ′´ � AP v the support is minimal. For V a sup-

port for v with respect to C such that C∪B
`
V

´
2 AP v

∗ , we

say that v is maximal with respect to C and V . We define
the supporting white pebbles in the set V of the vertex v to
be swp(v, V) =

˘
w ∈ V ∩T v

∗ | P w
∗ ∩V = ∅

¯
.

Definition 11 (Induced L-configuration). The in-
duced L-configuration L(C) of a set of clauses C consists of
all subconfigurations v〈V 〉 such that

1. there is a minimal support V ′ ⊆ T \ P v for v with
respect to C,

2. v is maximal with respect to C and V ′,

3. V = swp(v, V ′).

Suppose that π =
˘
C0, . . . , Cτ

¯
is a resolution derivation

of
Wd

i=1 zi from *Pebd
T . For C0 = ∅ we have L(C0) = ∅, and

Cτ =
˘Wd

i=1 zi

¯
induces a single independent black pebble

L(Cτ) =
˘
z〈∅〉

¯
on the root of T . Hence, we are done if

we can show that
˘
L(C0), . . . L(Cτ)

¯
is (essentially) a legal

L-pebbling.
The rest of this section is devoted to proving this. We

start by stating three technical lemmas. The first lemma
relates subset containment of supporting sets and the order
relation between corresponding subconfigurations.

Lemma 12. For a vertex v ∈ V(T), if u ∈ P v is a vertex
and U ′, V ′ ⊆ T \ P v are vertex sets such that U ′ ∩T v

∗ ⊆
V ′ ∩T v

∗ , then u〈swp(u, U ′)〉 � v〈swp(v, V ′)〉.
Proof. This follows from Definitions 6 and 10 by noting

that T v \
S

w∈V ′ T w ⊆ T u \
S

w∈U′ T w.

A second handy lemma is that if V ′ is not minimal or v
maximal with respect to C, this just means that C induces
something stronger than v〈swp(v, V ′)〉.

Lemma 13. If C∪B
`
V ′´ � AP v for V ′ ⊆ T \ P v, then

there is an induced subconfiguration u〈U〉 ∈ L(C) such that
v〈swp(v, V ′)〉 � u〈U〉.

Proof. Minimize U ′ ⊆ V ′ and then pick u ∈ P v of max-
imal height so that C∪B

`
U ′´ � AP u . Set U = swp(u, U ′)

and use Lemma 12.

The following easy lemma will be used repeatedly. We
omit the proof.

Lemma 14. Suppose that C, D are clauses and C is a set
of clauses. Then C∪

˘
C

¯
� D if and only if C � a ∨D for

all a ∈ Lit(C).

Using these lemmas, we can prove that resolution deriva-
tions induce labelled pebblings. By the L-pebbling rules
in Definition 7, any subconfiguration v〈V 〉 may be erased
freely at any time. Consequently, we need not worry about
subconfigurations disappearing during the transition from
Ct to Ct+1. What we do need to check, though, is that no
v〈V 〉 appears inexplicably in L(Ct+1) as a result of a deriva-
tion step Ct Ct+1, but that we can always derive any
v〈V 〉 ∈ L(Ct+1) \L(Ct) from L(Ct) by the L-pebbling rules.

Theorem 15. Let π =
˘
C0, . . . , Cτ

¯
be any resolution

derivation of
Wd

i=1 zi from *Pebd
T . Then the induced L-con-

figurations
˘
L(C0), . . . , L(Cτ)

¯
form the “backbone” of a le-

gal L-pebbling L of T in the following sense: all transitions
L(Ct) L(Ct+1) can be accomplished in accordance with the
L-pebbling rules in such a way that the cost of L is bounded
by cost(L) = O

`
maxt∈[τ]

˘
cost(L(Ct))

¯´
.

Proof. Induction over the derivation by case analysis of
the derivation step Ct Ct+1.

If Ct+1 is derived from Ct by inference, as our defini-
tion of induced pebbles is semantical it is immediate that
L(Ct+1) = L(Ct) and there is nothing to prove.

By Lemma 13, all new induced subconfigurations resulting
from an erasure Ct+1 = Ct\{C} can be obtained from L(Ct)
by reversal moves.

The case of axiom download Ct+1 = Ct ∪{C} is more
complicated. Let us fix a vertex v ∈ V(T) and an axiom
C ∈ Axd(r). If v〈V 〉 is a pebble subconfiguration induced
at time t + 1, by assumption there is a minimal V ′ ⊆ T \P v

with V = swp(v, V ′) such that Ct ∪{C}∪B
`
V ′´ � AP v .

Our intuition is that C should not yield any interesting
new subconfigurations v〈V 〉 if r ∈ T \ T v, and for r ∈ T v

we should be able to explain new subconfigurations with the
help of an introduction of r〈pred(r)〉 in our L-pebbling. We
prove this by a case analysis over r.

r ∈ T \
`
T v ∪P v

´
: Observing that B

`
r
´
� C (this will be

used repeatedly), we get that Ct ∪B
`
V ′ ∪{r}

´
� AP v

for V ′ ∪{r} ⊆ T \ P v. Lemma 13 tells us that there
is a u〈U〉 ∈ L(Ct) such that v〈V 〉 = v〈swp(v, V ′)〉 =
v〈swp(v, V ′ ∪{r})〉 � u〈U〉, so we can get v〈V 〉 from
L(Ct) by a reversal move.

r ∈ P v
∗ : Write C = pi ∨ qj ∨

Wd
l=1 rl for {p, q} = pred(r) 6= ∅

and assume without loss of generality that p is the
vertex in P v ∩ pred(r). Using Lemma 14 to move pi

to the right of the implication sign yields Ct ∪B
`
V ′´ �

AP v ∨ pi = AP v , and since V ′ is minimal it follows
that v〈V 〉 ∈ L(Ct).

r = v: Note first that we are prepared to accept the intro-
duction of r〈pred(r)〉 as a legal pebbling move, so if
Ct ∪{C}∪B

`
V ′´ � AP r for pred(r) ⊆ V ′ no further

analysis is needed for r〈swp(r, V ′)〉 = r〈pred(r)〉. In
particular, this is always the case if pred(r) = ∅, i.e.,
if r is a source.

Suppose that v〈V 〉 = r〈swp(r, V ′)〉 ∈ L(Ct+1) for V 6=
pred(r) = {p, q}, and write C = pi ∨ qj ∨

Wd
l=1 rl.

We want to derive r〈V 〉 by the pebbling rules from
L(Ct)∪

˘
r〈pred(r)〉

¯
. By symmetry, we get two sub-

cases.

1. p ∈ V, q 6∈ V : By Definition 10, we have p ∈
V ′ and q 6∈ V ′. Observe that this implies that
V ′ ⊆ T \ P q. Also, we can use Lemma 14 to
move qj to the right-hand side of the implication
sign and get Ct ∪B

`
V ′´ � AP r ∨ qj ⊆ AP r ∨Wd

j=1 qj = AP q . Plugging this into Lemma 13

shows that there is a w〈W 〉 ∈ L(Ct) such that
q
˙
V \ {p}

¸
= q

˙
swp(q, V ′)

¸
� w〈W 〉. Thus we

can derive q
˙
V \ {p}

¸
from L(Ct) by reversal and

then merge r〈pred(r)〉 = r〈p, q〉 with q
˙
V \ {p}

¸
to obtain r

˙`
{p, q}∪ (V \ {p})

´
\ {q}

¸
= r〈V 〉.

2. p, q 6∈ V : Again, by Definition 10 we have p, q 6∈
V ′. If we use Lemma 14 twice we get Ct ∪B

`
V ′´ �

AP p ∧ AP q , and noting that V ′ ⊆ T \
`
P p ∪P q

´
we can apply Lemma 13 to derive p

˙
V ∩T p

∗
¸

and

q
˙
V ∩T q

∗
¸

from L(Ct) by reversals. Merging these
subconfigurations with r〈p, q〉, we get the desired
subconfiguration r

˙`
V ∩T p

∗
´
∪

`
V ∩T q

∗
´¸

= r〈V 〉.

r ∈ T v
∗ : By assumption, Ct ∪{C}∪B

`
V ′´ � AP v , and since

r ∈ T v
∗ and B

`
r
´
�C we have Ct ∪B

`
V ′ ∪{r}

´
� AP v

for V ′ ∪{r} ⊆ T \ P v. If P r ∩V ′ 6= ∅, it holds that
swp(v, V ′ ∪{r}) = swp(v, V ′) and we can obtain v〈V 〉
from L(Ct) by reversal according to Lemma 13, so sup-
pose P r ∩V ′ = ∅.
Pick U ′ ⊆ V ′ ∪{r} minimal and then u ∈ P v maximal
with respect to U ′ such that Ct ∪B

`
U ′´ � AP u . By the

minimality of V ′ we have r ∈ U ′, and since P r
∗ ∩U ′ ⊆

P r
∗ ∩V ′ = ∅ it holds that r ∈ swp(u, U ′). Conse-

quently, we cannot use u〈U〉 = u
˙
swp(u, U ′)

¸
∈ L(Ct)

to derive v〈V 〉 6� u〈U〉 by reversal. However, since
U ′ ⊆ V ′ ∪{r}, Lemma 12 says that v

˙
(V ∪{r})\T r

∗
¸

=

v
˙
swp(v, V ′ ∪{r})

¸
� u〈U〉 can be derived by rever-

sal from L(Ct). If we could also derive r
˙
V ∩T r

∗
¸

from L(Ct)∪
˘
r〈pred(r)〉

¯
, we could do a merger to

get v
˙``

(V ∪{r}) \ T r
∗

´
∪

`
V ∩T r

∗
´´
\ {r}

¸
= v〈V 〉.

Hence, we are done if we can derive the subconfigu-
ration r

˙
V ∩T r

∗
¸
= r

˙
swp(v, V ′)∩T r

∗
¸
= r

˙
swp(r, V ′)

¸
from L(Ct)∪

˘
r〈pred(r)〉

¯
. But AP r ⊇ AP v , so by as-

sumption we have Ct ∪{C}∪B
`
V ′´ � AP r for V ′ ⊆

T \ P r. This is almost exactly the case r = v above,
where we proved that r

˙
swp(r, V ′)

¸
is derivable from

L(Ct)∪
˘
r〈pred(r)〉

¯
. The only difference is that now

it is not necessarily true that V ′ is a minimal sup-
port and that r is maximal with respect to V ′. But
these assumptions were not used in the derivation of
r
˙
swp(r, V ′)

¸
from L(Ct)∪

˘
r〈pred(r)〉

¯
anyway, so we

can reuse exactly the same proof to get r
˙
swp(r, V ′)

¸
.

This concludes the analysis for r ∈ T v
∗ .

Studying the pebbling moves in the case analysis above,
we see that all subconfigurations v〈V 〉 ∈ L(Ct+1) \ L(Ct)
resulting from an axiom download can be obtained from
L(Ct)∪ r〈pred(r)〉 by a (possibly empty) sequence of rever-
sals from L(Ct), followed by a (possibly empty) sequence of
mergers on {r}∪ pred(r).

Finally, since a single resolution derivation step Ct Ct+1

can induce several consecutive L-pebbling moves to get from
L(Ct) to L(Ct+1), we have to take care of the possibil-
ity that the maximal pebbling cost in L might be reached
in some intermediate L-configuration L′ in between L(Ct)
and L(Ct+1). This is why we get only an asymptotic bound
cost(L) = O

`
maxt∈[τ]

˘
cost(L(Ct))

¯´
. We refer to Section 8

of [29] for the omitted technical details.

7. A SEPARATION OF SPACE AND WIDTH
The final component needed to piece together the proof of

our lower bound on the refutation space of pebbling contra-
dictions is that the number of pebbles in an induced L-con-
figuration L(C) and the number of of clauses in C are some-
how connected. Note that we have to assume d ≥ 2 here,
since Sp

`
*Peb1

G ` z1

´
= Sp

`
Peb1

G ` 0
´

= O(1).
We say that a set of clauses C implies a clause D minimally

if C � D but for all C′ $ C it holds that C′ 2 D. We have
the following two easy lemmas (the proofs of which can be
found in Section 3 of [29]).

Lemma 16. Let C be a set of clauses and D a clause such
that C � D minimally. Suppose that it holds that a ∈ Lit(C)
but a 6∈ Lit(C). Then we must have a ∈ Lit(D).

Lemma 17. Suppose for a set of clauses C and clauses D1

and D2 with Vars(D1) ∩Vars(D2) = ∅ that C � D1 ∨ D2

but C 2 D2. Then there is a literal a ∈ Lit(C) ∩Lit(D1).

With every resolution derivation π : F ` D, we can asso-
ciate a DAG Gπ with the clauses in π labelling the vertices
and with edges from the assumption clauses to the resol-
vent for each inference. There might be several different
occurrences of a clause C in π, but if so we can label each
occurrence of C with a timestamp when it was derived or
downloaded and keep track of which copy of C is used where.

For a derivation π =
˘
C0, . . . , Cτ

¯
of D from F , we say

that the clause C ∈ Ct is superfluous if there is no path in
Gπ from the vertex for C ∈ Ct to the vertex for D. A deriva-
tion is non-superfluous if it contains no superfluous clauses.
For every derivation π : F ` D, we can get a corresponding
non-superfluous derivation π′ : F ` D in at most the same
length, width and space by only considering the vertices in
Gπ from which D is reachable.

The clause C ∈ F is used in a resolution derivation π if C
occurs in π. The derivation π : F ` D uses exactly F ′ ⊆ F
if π uses all clauses C′ ∈ F ′ but no clauses C ∈ F \ F ′. We
say that a CNF formula F syntactically precisely yields the
clause D if there is a non-superfluous resolution derivation
π : F ` D that uses exactly F , and denote this by F ∀̀ D.

To obtain the bound on clause set size in terms of the
number of induced pebbles, we first generalize a result in [4]
(again we refer to Section 3 of [29] for a proof).

Theorem 18. Suppose that F is a CNF formula and D
a clause such that F ∀̀ D, and for V ⊆ Vars(F) let FV =
{C∈F | Vars(C) ∩V 6= ∅}. Then if V ⊆Vars(F)\Vars(D),
it holds that |FV | > |V |. In particular, if F � D minimally
then |FV | > |V | for all V ⊆ Vars(F) \Vars(D).

Let us define Varsd(u) = {u1, . . . , ud}. We say that a
vertex u is represented in a clause C derived from *Pebd

T , or

that C mentions u, if Varsd(u)∩Vars(C) 6= ∅. We write

V(C) =
˘
u ∈ V(T) | Varsd(u)∩Vars(C) 6= ∅

¯
to denote all vertices represented in C and

C[U] =
˘
C ∈ C | V(C)∩U 6= ∅

¯
to denote the subset of all clauses in C mentioning ver-
tices in U . Using Theorem 18 and induction over subsets
of induced pebbles U ⊆ Bl

`
L(C)

´
∪Wh

`
L(C)

´
, we get that

|C[U]| ≥ |U | which yields the desired bound.

Theorem 19. Suppose that C is a set of clauses derived
from *Pebd

T for d ≥ 2 and that V ⊆ V(T) is a set of vertices
such that C induces a black or white pebble on each v ∈ V .
Then |C| ≥ |V |.

Proof. Suppose that C induces a subconfiguration v〈W 〉.
By Definition 11, there is a minimal support Vv ⊆ T \ P v

with W = swp(v, Vv) ⊆ Vv such that C∪B(Vv) � AP v but
C∪B(Vv) 2 AP v

∗ and C∪B(V ′
v) 2 AP v for all V ′

v $ Vv. Fix
for each v〈W 〉 a subset Cv ⊆ C such that Cv ∪B(Vv) � AP v

minimally. Since by definition Vars(B(Vv))∩Vars(AP v)=∅,
using Lemma 17 with D1 =

Wd
i=1 vi and D2 = AP v

∗ we see
that the vertex v must be represented in Cv by some positive
literal vi. For the white pebbles in W ⊆ Vv, it follows for
the same reason from Lemma 16 that all literals wj , j ∈ [d]
must be present in Cv.

We prove by induction over U ⊆ V that |C[U]| ≥ |U |, from
which the theorem clearly follows. The base case |U | = 1
is immediate, since we just proved that all pebbled vertices
v ∈ V are represented in C.

For the induction step, suppose that
˛̨
C

ˆ
U ′˜˛̨

≥
˛̨
U ′ ˛̨ for

all U ′ $ U . Pick a “topmost” vertex u ∈ U , i.e., such that
P u
∗ ∩U = ∅, and look at the subconfiguration v〈W 〉 contain-

ing u (with v = u if u is black) and the associated subset
Cv ⊆ C. Note that Varsd(U) ∩Vars(AP v) ⊆ {u}. Let
S = U ∩V(Cv) be the set of all vertices in U mentioned
by Cv. We claim that |Cv[S]| ≥ |S|.

To show this, note first that it was proven above that
u ∈ S, and if S = {u} we trivially have |Cv[S]| ≥ 1 =
|S|. Suppose therefore that S % {u}. We want to apply
Theorem 18 on the formula F = Cv ∪B(Vv). Let S′ =

S \{u}, write S′ = S1

.
∪S2 for S1 = S′ ∩Vv and S2 = S′\S1,

and consider

FS′ =
˘
C ∈

`
Cv ∪B(Vv)

´
| V(C)∩S′ 6= ∅

¯
= Cv

ˆ
S′

˜
∪B(S1).

For each w ∈ S1, the clauses in B(S1) contain d literals
w1, . . . , wd, and these literals must all occur negated in Cv

by Lemma 16. For each w ∈ S2, the clauses in Cv

ˆ
S′

˜
contain at least one variable wi. Appealing to Theorem 18
with the subset of variables Varsd(S′) ∩Vars(Cv), we get˛̨

FS′
˛̨
=

˛̨
Cv

ˆ
S′

˜
∪B(S1)

˛̨
>

˛̨
Varsd`

S′
´
∩Vars(Cv)

˛̨
≥ d

˛̨
S1

˛̨
+

˛̨
S2

˛̨
,

and rewriting this as˛̨
Cv[S]

˛̨
≥

˛̨
Cv

ˆ
S′

˜˛̨
=

˛̨
FS′

˛̨
−

˛̨
B(S1)

˛̨
≥ (d− 1)

˛̨
S1

˛̨
+

˛̨
S2

˛̨
+ 1

≥
˛̨
S

˛̨
proves the claim (this is where we need d ≥ 2).

Note that Cv[S] ⊆ C[U], since Cv ⊆ C and S ⊆ U . Also,
by construction Cv[S] does not mention any vertices in U \S
since S = U ∩V(Cv). Thus, C[U \ S] ⊆ C[U] \ Cv[S], and
using the induction hypothesis for U \ S $ U we get˛̨

C[U]
˛̨
≥

˛̨
Cv[S]

˛̨
+

˛̨
C[U \ S]

˛̨
≥ |S|+ |U \ S| = |U |.

The theorem follows by induction.

We can now prove a tight bound for the refutation space
of pebbling contradictions over binary trees.

(Restated) Theorem 1. Let Th denote the complete bi-
nary tree of height h and Pebd

Th
the pebbling contradiction

of degree d ≥ 2 defined over Th. Then the space of refuting
Pebd

Th
in resolution is Sp

`
Pebd

Th
` 0

´
= Θ(h).

Proof. The upper bound Sp
`
Pebd

G`0
´
≤ Peb(G)+O(1)

for any DAG G is fairly obvious: given an optimal black
pebbling of G, derive

Wd
i=1 vi inductively from Axd(v) and˘Wd

i=1 ui | u ∈ pred(v)
¯

when vertex v is pebbled. With a
little care, this can be done in space independent of d. Hence
Sp

`
Pebd

Th
` 0

´
= O

`
Peb(Th)

´
= O(h).

For the lower bound, let π =
˘
C0, . . . , Cτ

¯
be a resolu-

tion derivation of
Wd

i=1 zi from *Pebd
Th

in minimal space.

Combining Lemma 9 with Theorems 8, 15 and 19, we get
that Sp

`
Pebd

Th
` 0

´
= Sp

`
*Pebd

Th
`

Wd
i=1 zi

´
= Sp(π) =

maxt∈[τ] {|Ct|} ≥ maxt∈[τ] {cost(L(Ct))}=Ω
`
L-Peb(Th)

´
=

Ω(h).

Since W
`
Pebd

G ` 0
´

= O(d) by [8], fixing d ≥ 2 and letting

Fn = Pebd
Th

for h = blog(n + 1)c in Theorem 1 yields the
stated separation of space from width.

(Restated) Corollary 2. For all k ≥ 4, there is a
family

˘
Fn

¯∞
n=1

of k-CNF formulas of size O(n) such that
W(Fn ` 0) = O(1) but Sp(Fn ` 0) = Θ(log n).

8. CONCLUSION AND OPEN PROBLEMS
We have proven the first lower bound on refutation space

in resolution which is not the consequence of a lower bound
on the refutation width for the same formulas, but instead
separates the two measures. This answers an open question
in [6, 18, 20, 34]. However, we believe that it should be
possible to strengthen our answer in several interesting ways.

Firstly, we would like to extend the lower bound on the
refutation space of pebbling contradictions over binary trees
to the k-DNF resolution proof systems Res(k) introduced
in [26], where the configurations C consist of k-DNF formu-
las instead of disjunctive clauses.

Conjecture 1. For k-DNF resolution refutations of peb-
bling contradictions over complete binary trees Thof height h,
fixing k it holds that SpRes(k+1)

`
Pebk+1

Th
` 0

´
= O(1) but

SpRes(k)

`
Pebk+1

Th
` 0

´
= Ω(h).

Proving this conjecture would establish that the k-DNF
resolution proof systems form a strict hierarchy with respect
to space, which would be an improvement of the separation
in [18] for the restricted case of tree-like k-DNF resolution.

Secondly, it would be nice to generalize the bound on refu-
tation space of pebbling contradictions to DAGs other than
trees that have better size-pebbling price trade-off. Our
guess is that the black-white pebbling price is a lower bound
for pebbling contradictions over any DAG.

Conjecture 2. For d ≥ 2 and for G an arbitrary DAG
with a unique target and with all vertices having indegree 0
or 2, Sp

`
Pebd

G ` 0
´

= Ω
`
BW-Peb(G)

´
.

Since there are DAGs Gn of fan-in 2 and size O(n) which
have black-white pebbling price BW-Peb(Gn) = Θ

`
n/ log n

´
(see [22]),3 a proof of Conjecture 2 would immediately yield
the corollary that there is a family of unsatisfiable k-CNF
formulas

˘
Fn

¯∞
n=1

of size O(n) such that W
`
Fn ` 0

´
= O(1)

but Sp
`
Fn ` 0

´
= Ω

`
n/ log n

´
.

A third and final question is whether refutation space can
be separated from refutation length in the following sense.

Conjecture 3. There is a family of unsatisfiable k-CNF
formulas

˘
Fn

¯∞
n=1

over n variables such that Sp
`
Fn ` 0

´
=

ω
`p

n log L(Fn ` 0)
´
.

This would be an interesting contrast to the relation be-
tween length and width W

`
F ` 0

´
= O

`p
n log L(F ` 0)

´
3Note that in several papers, this result is incorrectly at-
tributed to [27], but [27] itself gives the correct reference.

for k-CNF formulas shown in [9]. Of course, if we could
prove Conjecture 2, we would immediately get a positive
answer to Conjecture 3 as well, using the same formula fam-
ily as in the “corollary” of Conjecture 2.

However, it is not possible to prove Conjecture 2 by a sim-
ple generalization of the L-pebble game with reversal moves
in Section 5 to general DAGs G. As was observed in Sec-
tion 5, if we allow reversal moves of black pebbles downwards
it is not true that L-Peb(G) = Ω

`
BW-Peb(G)

´
.

As a first step, we would therefore have to modify Defini-
tion 11 so that a set of clauses C induces a black pebble on v
if there is a minimal subset Cv ⊆ C such that Cv ∪B

`
V

´
�

AP v but Cv ∪B
`
V

´
2 AP v

∗ . Otherwise we could move black
pebbles downwards through erasures simply by deriving C =˘Wd

i=1 vi,
Wd

i=1 succ(v)i

¯
and then deleting

Wd
i=1 succ(v)i.

But if we define induced pebbles in terms of minimal sub-
sets Cv ⊆ C, as a result black pebbles can slide down-
wards after inference steps, since {B ∨ C} is weaker than
{B ∨ x, C ∨ x}. This problem can be solved by defining in-
duced pebbles syntactically instead of semantically. Recall-
ing the definitions in the beginning of Section 7, we could
say that C induces a black pebble on v if there is a Cv ⊆ C
with v represented positively in Cv and a clause Dv ⊆ AP v

such that Cv ∪B
`
V

´
∀̀ Dv. With this definition, nothing

bad happens during inference or erasure steps, resolution
derivations yield legal L-pebblings, and Theorem 18 can be
used to show the bound in Theorem 1 for binary trees.

However, because of the fact that the support B(w) =Wd
l=1 wl for a non-leaf w is stronger than the set of axioms

Axd(w) =
˘
ui ∨ vj ∨

Wd
l=1 wl | i, j ∈ [d]

¯
, we can still get

black pebbles moving downwards at axiom download. This
can be avoided by defining support in terms of Axd(w) in-

stead of
Wd

i=1 wi, which leads to a quite well-behaved peb-
ble game, but then unfortunately the counting argument in
Theorem 18 to get a bound on |C| in terms of the number
of induced pebbles breaks down.

These problems arise because we do not a priori have
any restrictions on what kind of clauses a resolution deriva-
tion from a pebbling contradiction might derive. The coun-
terexample derivations we have found for the definitions
sketched in the previous paragraph all seem clearly non-
optimal, while all of the definitions yield well-behaved peb-
blings for “normal” resolution derivations. One way of solv-
ing the problems would be if one could define formally what
constitutes a “non-optimal” derivation from a pebbling con-
tradiction and then show that each “non-optimal” derivation
can be replaced by an “optimal” one in asymptotically the
same space. Alternatively, one could try to find new ideas
for the connection between the black-white pebble game and
resolution derivations from pebbling contradictions, or use
the last definition for induced pebbles outlined above but
devise new methods for proving bounds on |C| in terms of
the number of induced pebbles.

9. ACKNOWLEDGMENTS
I am grateful to my advisor Johan H̊astad for patiently

giving feed-back during this work. Also, I would like to
thank Douglas Wikström for interesting discussions about
theoretical computer science in general and pebble games
in particular. Finally, a special thanks to Joel Brynielsson,
who introduced me to the mysteries of METAPOST.

10. REFERENCES
[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and

A. Wigderson. Space complexity in propositional
calculus. SIAM Journal on Computing,
31(4):1184–1211, 2002.

[2] M. Alekhnovich, J. Johannsen, T. Pitassi, and
A. Urquhart. An exponential separation between
regular and general resolution. In Proceedings 34th
Annual ACM Symposium on Theory of Computing
(STOC ’02), pages 448–456, May 2002.

[3] A. Atserias and V. Dalmau. A combinatorical
characterization of resolution width. In Proceedings
18th IEEE Annual Conference on Conference on
Computational Complexity (CCC ’03), pages 239–247,
July 2003.

[4] S. Baumer, J. L. Esteban, and J. Torán. Minimally
unsatisfiable CNF formulas. Bulletin of the European
Association for Theoretical Computer Science,
74:190–192, June 2001.

[5] P. Beame, R. Karp, T. Pitassi, and M. Saks. The
efficiency of resolution and Davis-Putnam procedures.
SIAM Journal on Computing, 31(4):1048–1075, 2002.

[6] E. Ben-Sasson. Size space tradeoffs for resolution. In
Proceedings 34th Annual ACM Symposium on Theory
of Computing (STOC ’02), pages 457–464, May 2002.

[7] E. Ben-Sasson and N. Galesi. Space complexity of
random formulae in resolution. Random Structures
and Algorithms, 23(1):92–109, Aug. 2003.

[8] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson.
Near optimal separation of treelike and general
resolution. Combinatorica, 24(4):585–603, Sept. 2004.

[9] E. Ben-Sasson and A. Wigderson. Short proofs are
narrow—resolution made simple. Journal of the ACM,
48(2):149–169, Mar. 2001.

[10] A. Blake. Canonical Expressions in Boolean Algebra.
PhD thesis, University of Chicago, 1937.

[11] M. L. Bonet, J. L. Esteban, N. Galesi, and
J. Johannsen. On the relative complexity of resolution
refinements and cutting planes proof systems. SIAM
Journal on Computing, 30(5):1462–1484, 2000.

[12] M. L. Bonet and N. Galesi. A study of proof search
algorithms for resolution and polynomial calculus. In
Proceedings 40th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’99), pages
422–431, Oct. 1999.

[13] J. Buresh-Oppenheim and T. Pitassi. The complexity
of resolution refinements. In Proceedings 18th IEEE
Symposium on Logic in Computer Science (LICS 03),
pages 138–147, June 2003.

[14] V. Chvátal and E. Szemerédi. Many hard examples for
resolution. Journal of the ACM, 35(4):759–768, Oct.
1988.

[15] S. A. Cook and R. Reckhow. The relative efficiency of
propositional proof systems. Journal of Symbolic
Logic, 44(1):36–50, Mar. 1979.

[16] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem proving. Communications of the
ACM, 5(7):394–397, July 1962.

[17] M. Davis and H. Putnam. A computing procedure for
quantification theory. Journal of the ACM,
7(3):201–215, 1960.

[18] J. L. Esteban, N. Galesi, and J. Messner. On the
complexity of resolution with bounded conjunctions.
Theoretical Computer Science, 321(2-3):347–370, Aug.
2004.

[19] J. L. Esteban and J. Torán. Space bounds for
resolution. Information and Computation,
171(1):84–97, 2001.

[20] J. L. Esteban and J. Torán. A combinatorial
characterization of treelike resolution space.
Information Processing Letters, 87(6):295–300, 2003.

[21] Z. Galil. On resolution with clauses of bounded size.
SIAM Journal on Computing, 6(3):444–459, 1977.

[22] J. R. Gilbert and R. E. Tarjan. Variations of a pebble
game on graphs. Technical Report STAN-CS-78-661,
Stanford University, 1978. Available at
http://www-db.stanford.edu/TR/CS-TR-78-661.html.

[23] A. Haken. The intractability of resolution. Theoretical
Computer Science, 39(2-3):297–308, Aug. 1985.

[24] M. M. Klawe. A tight bound for black and white
pebbles on the pyramid. Journal of the ACM,
32(1):218–228, Jan. 1985.

[25] H. Kleine Büning and T. Letterman. Propositional
Logic: Deduction and Algorithms. Cambridge
University Press, 1999.

[26] J. Kraj́ıček. On the weak pigeonhole principle.
Fundamenta Mathematicae, 170(1-3):123–140, 2001.

[27] T. Lengauer and R. E. Tarjan. Upper and lower
bounds on time-space tradeoffs. In Proceedings 11th
Annual ACM Symposium on Theory of Computing
(STOC ’79), pages 262–277, May 1979.

[28] T. Lengauer and R. E. Tarjan. The space complexity
of pebble games on trees. Information Processing
Letters, 10(4/5):184–188, July 1980.

[29] J. Nordström. Narrow proofs may be spacious:
Separating space and width in resolution. Technical
Report TR05-066, Revision 02, Electronic Colloquium
on Computational Complexity (ECCC), Nov. 2005.
Available at http://www.eccc.uni-trier.de/eccc/.

[30] N. Pippenger. Pebbling. Technical Report RC8258,
IBM Watson Research Center, 1980.

[31] R. Raz. Resolution lower bounds for the weak
pigeonhole principle. Journal of the ACM,
51(2):115–138, 2004.

[32] J. A. Robinson. A machine-oriented logic based on the
resolution principle. Journal of the ACM, 12(1):23–41,
Jan. 1965.

[33] J. Torán. Lower bounds for space in resolution. In
Proceedings 13th International Workshop Computer
Science Logic (CSL ’99), volume 1683 of Lecture
Notes in Computer Science, pages 362–373.
Springer-Verlag, 1999.

[34] J. Torán. Space and width in propositional resolution.
Bulletin of the European Association for Theoretical
Computer Science, 83:86–104, June 2004.

[35] G. Tseitin. On the complexity of derivation in
propositional calculus. In A. O. Silenko, editor,
Structures in Constructive Mathematics and
Mathematical Logic, Part II, pages 115–125.
Consultants Bureau, New York-London, 1968.

[36] A. Urquhart. Hard examples for resolution. Journal of
the ACM, 34(1):209–219, Jan. 1987.

