Information Processing Letters 109 (2009) 1030-1035

www.elsevier.com/locate/ipl

Contents lists available at ScienceDirect

Information Processing Letters

b
Infarmation
Processing Letters

A simplified way of proving trade-off results for resolution ™

Jakob Nordstrém -2

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 13 January 2009

Received in revised form 21 May 2009
Accepted 14 June 2009

Available online 17 June 2009
Communicated by L.A. Hemaspaandra

We present a greatly simplified proof of the length-space trade-off result for resolution
in [P. Hertel, T. Pitassi, Exponential time/space speedups for resolution and the PSPACE-
completeness of black-white pebbling, in: Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Science (FOCS '07), Oct. 2007, pp. 137-149], and also prove
a couple of other theorems in the same vein. We point out two important ingredients

needed for our proofs to work, and discuss some possible conclusions. Our key trick is to

Keywords:

Computational complexity
Automatic theorem proving
Proof complexity
Resolution

Trade-offs

Length

Width

Space

look at formulas of the type F = G A H, where G and H are over disjoint sets of variables
and have very different length-space properties with respect to resolution.

© 2009 Elsevier B.V. All rights reserved.

In these notes, we present a simplification of the
length-space trade-off result for resolution in Hertel and
Pitassi [9], and show how the same ideas can be used to
prove other related theorems. After some brief preliminar-
ies in Section 1, the simplified proof is given in Section 2.
In Section 3 we prove two other trade-off results of a sim-
ilar flavor. We point out two key ingredients needed for
our proofs to work in Sections 4 and 5, and discuss pos-
sible conclusions to be drawn regarding proving trade-off

* These results have previously been reported in [J. Nordstrom, A sim-
plified way of proving trade-off results for resolution, Technical Report
TRO7-114, Electronic Colloquium on Computational Complexity (ECCC),
Sept. 2007] and []. Nordstrom, J. Hastad, Towards an optimal separation of
space and length in resolution (Extended abstract), in: Proceedings of the
40th Annual ACM Symposium on Theory of Computing (STOC ’'08), May
2008, pp. 701-710].

E-mail address: jakobn@mit.edu.

1 Research supported in part by the Ericsson Research Foundation, the
Foundation Olle Engkvist Byggmadstare, and the Foundation Blanceflor
Boncompagni-Ludovisi, née Bildt.

2 This work performed while at the Royal Institute of Technology (KTH)
in Stockholm, Sweden.

0020-0190/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.06.006

results for resolution. Finally, in Section 6 we mention a
few related open problems.

1. Definitions, notation and some useful facts

This is a very brief summary of the background material
needed for this paper. We refer the reader to, for instance,
[10, Chapter 4] for more details.

A literal is either a propositional logic variable x or its
negation x. A clause C =a; va; Vv ---Vvag is a set of lit-
erals with width W(C) =k equal to the number of literals
appearing in it. A CNF formula F =C1 A--- A Cy, is a set of
clauses. A k-CNF formula is a CNF formula with all clauses
of width at most k. We let Vars(C) denote the set of vari-
ables in a clause C, and extend this notation to formulas
by taking unions over clauses. The size S(F) of a CNF for-
mula F is the total number of literals in F (counted with
repetitions). Also, the width W(F) of F is the width of its
largest clause.

As in [9], we use the “configuration-style” definition
of resolution. We employ the standard notation [n] =
{1,2,...,n}.

J. Nordstrom / Information Processing Letters 109 (2009) 1030-1035 1031

Definition 1.1 (Resolution). (See [1].) A clause configuration
C is a set of clauses. A sequence of clause configurations
{Cy, ...,C;} is a resolution derivation from a CNF formula
F if Co =9 and for all t € [t], C; is obtained from C;_;
by one of the following rules:

Axiom download. C; = C;_1 U {C} for a clause C € F (an
axiom).

Erasure. C, = C;_1 \ {C} for some clause C € C;_1.

Inference. C; = C;_1 U{C Vv D} for a clause C v D inferred
by the resolution rule from clauses C v x,D Vv xe€ C¢_1.

A resolution refutation of F is a derivation m : F 0 of the
empty clause 0 (the clause with no literals) from F.

We are interested in the following complexity mea-
sures:

e The length L(;t) of a resolution derivation 7 is the
number of clauses in s, i.e., the number of axiom
downloads and inference steps.

e The width W(sr) of a derivation 7t is the number of
literals in the largest clause in 7.

e The clause space Sp(;r) of a derivation 7t is the max-
imal number of clauses in any clause configuration
Ciem.

e The variable space VarSp(sr) of a derivation 7 is the
maximal number of literals, counted with repetitions,
in any clause configuration C; € 7.

The length of refuting F is L(F 0) = ming.pof{L(7T)},
where the minimum is taken over all resolution refuta-
tions of F. The width W(F F 0), clause space Sp(F + 0)
and variable space VarSp(F + 0) of refuting F are defined
completely analogously.

It is easy to see that any CNF formula F over n variables
is refutable in length exp(O(n)) and width O(n). In [8] it
was proved that the clause space of refuting F is upper-
bounded by the formula size. We will need the fact that
there are polynomial-size k-CNF formulas that are very
hard with respect to length, width and clause space, es-
sentially meeting the upper bounds just stated.

Theorem 1.2. (See [1,3,6,16,17].) There are arbitrarily large un-
satisfiable 3-CNF formulas F, of size ®(n) with ®(n) clauses
and ©(n) variables for which it holds that L(F, F 0) =
exp(©(n)), W(Fp - 0) = ©(n) and Sp(F, - 0) = O (n).

One example of such formulas are random 3-CNF for-
mulas, which are almost surely unsatisfiable if one picks
Kn clauses over n variables for some suitably large K. An-
other, more explicit, example is provided by formulas en-
coding (the negation of) the fact that if a function f:V
{0,1} assigns values to the vertices V in an undirected
graph G in such a way that f(v) is equal to the parity of
the number of edges incident to v, then),y f(v) cannot
be odd (since each edge is counted twice). Such formulas
are hard if G is an expander with suitable parameters.

Clearly, for formulas F, as in Theorem 1.2 it also holds
that £2(n) = VarSp(F, + 0) = O(n?), since the clause space

is a lower bound for the variable space, which is in turn
upper-bounded by the clause space multiplied by the num-
ber of variables in the formula (which is the maximum size
of any clause). We note in passing that determining the
exact variable space complexity of any of these formula
families was mentioned as an open problem in [1], and to
the best of our knowledge this problem is still unsolved.

We will also need that there are formulas that are easy
with respect to length but moderately hard with respect to
width and clause space. These are formulas encoding (the
negation of) the fact that any strict order over a finite set
must have at least one minimal element.

Theorem 1.3. (See [1,7,15].) There are arbitrarily large unsatis-
fiable 3-CNF formulas Fy of size ® (n3) with ©® (n3) clauses and
©(n?) variables such that W(F, + 0) = ©®(n) and Sp(F, F 0)
= O(n), but for which there are resolution refutations’ m; :
Fn b 0 in length L(7ry) = O(n?), width W(mr,) = O(n) and
clause space Sp () = O(n).

Finally, we will use the following easy observation.

Observation 1.4. Suppose that F = G A H where G and H are
unsatisfiable CNF formulas over disjoint sets of variables. Then
any resolution refutation it : F - 0 must contain a refutation of
either G or H.

Proof. By induction, we can never resolve a clause derived
from G with a clause derived from H, since the sets of
variables of the two clauses are disjoint. O

2. A proof of Hertel and Pitassi’s trade-off result

We show the following version of the length-space
trade-off theorem of Hertel and Pitassi [9], with somewhat
improved parameters® and a very much simpler proof.

Theorem 2.1. There is a family of CNF formulas {Fy}72 ; of size
®(n) such that:

3 Note that [7], where an explicit resolution refutation upper-bounding
the proof complexity measures is presented, does not talk about clause
space, but it is straightforward to verify that the refutation there can be
carried out in length O(n3) and clause space O(n).

4 Although the exact parameter values are not the focus of this paper,
for the interested reader we give a short comparison to the result of Her-
tel and Pitassi in this footnote. Letting n denote the formula size, in [9]
the formulas require variable space £2(/n), refutations in minimal space
must have length exp(£2(/n)), but allowing 3 more literals in memory
brings the length down to (sub)linear in n. Our formulas require space
£2(4/n), refutations in minimal space must have length exp(£2(4/n)), and
2 more literals are sufficient to get down to linear length. By padding,
it is easy to go from our parameters to those in [9] but not the other
way round. Also, our trade-offs hold for resolution refutations of unsatisfi-
able formulas, whereas [9] deals with derivations of a specific unit clause
x from satisfiable formulas. Again, it is easy to go from the refutation
setting to the derivation setting. In the other direction, the natural thing
to do would be to add the clause % to the formulas and argue that the
trade-off should still hold. Such a modification introduces nontrivial tech-
nical problems, however, and it is unclear to us whether the (already very
intricate) proof in [9] can be extended to handle this case. As a final com-
ment, let us note that a drawback of our result is that our formulas are
non-explicit while those in [9] are explicitly constructible.

1032 J. Nordstrom / Information Processing Letters 109 (2009) 1030-1035

e The variable space required to refute Fy in resolution is
VarSp (Fp = 0) = ®(n).

e Any refutation m : F, - 0 in minimal variable space has
length L(7r) = exp(£2(s/n)).

e Adding at most 2 extra units of storage, one can obtain a
refutation 7’ in space VarSp(mw') = VarSp(F, - 0) + 2 =
®(n) and length L(zt") = O(n), i.e., linear in the formula
size.

We note that the CNF formulas used by Hertel and
Pitassi, as well as those in our proof, have clauses of
width ®(n).

Proof. Let G, be CNF formulas as in Theorem 1.2 having
size ®(n), refutation length L(G, F 0) = exp(£2(n)), and
refutation clause space Sp(Gp = 0) = ®(n). Let us define
g(n) = VarSp(G, = 0) to be the refutation variable space of
the formulas. Then it holds that £2(n) = g(n) = 0(n?).

Let Hy,;, be the formulas Hpy = y1 A AymA (Y1 V-V
Ym). It is not hard to see that there are resolution refu-
tations 7 : Hy - 0 in length L(w) =2m + 1 and variable
space VarSp(mr) = 2m, and that L(H, - 0) =2m + 1 and
VarSp(Hp F 0) = 2m are also the lower bounds (all clauses
must be used in any refutation, and the minimum space
refutation must start by downloading the wide clause and
some unit clause, and then resolve).

Now define F, = Gy A H|gm)2)+1, where G, and
H|gn)/2j+1 have disjoint sets of variables. By Observa-
tion 1.4, any resolution refutation of Fj refutes either G,
or HLg(n)/ZJ-H- We have

VarSp(H gmy/2141 = 0) =2 - (|gm) /2] + 1)
> g(n) = VarSp(G, + 0), (1)

so a resolution refutation in minimal variable space g(n)
must refute G,. This requires length exp(§2(n)). However,
by construction H|gm)/2)+1 is refutable in variable space
2(lgm)/2] + 1) < g(n) + 2, so if we allow at most two
more literals in memory, the resolution refutation can in-
stead disprove the formula H|gm)/2j+1 in length linear in
the (total) formula size.

Thus, we have a formula family {F;}2; of size £2(n) =
S(Fp) = O(n?) refutable in length and variable space both
linear in the formula size, but where any minimum vari-
able space refutation must have length exp(£2(n)). Adjust-
ing the indices as needed, we get a formula family with a
trade-off of the form stated in Theorem 2.1. O

We note that the trick of “gluing together” two unre-
lated formulas with very different length-space properties
in resolution is not present in the proof of Hertel and
Pitassi, and thus it might be possible to use their tech-
niques to prove results not obtainable by our methods.

3. Some other trade-off results for resolution

Using a similar trick as in the previous section, we can
prove the following length-clause space trade-off.

Theorem 3.1. There is a family of k-CNF formulas {Fp}32 ; of
size ®(n) such that:

e The minimal clause space of refuting F, in resolution is
Sp(Fn = 0) = ©(J/n).

e Any refutation m : F, = 0 in minimal clause space must
have length L(;r) = exp(£2(3/n)).

o There are resolution refutations 7w’ : F, - 0 in asymptot-
ically minimal clause space Sp(;t") = O(Sp(F, - 0)) and
length L(;t") = O(n), i.e., linear in the formula size.

The same game can be played with refutation width as
well.

Theorem 3.2. There is a family of k-CNF formulas {Fn};2, of
size ®(n) such that:

o The minimal width of refuting Fy, is W(F, - 0) = ©(/n).

e Any resolution refutation 7 : F, b 0 in minimal width must
have length L(7r) = exp(£2(/n)).

e There are refutations ©w’ : F, = 0 in width W(r') =
O(W(F, - 0)) and length L(zw") = O(n).

We only present the proof of Theorem 3.1, as Theo-
rem 3.2 is proved in exactly the same manner.

Proof of Theorem 3.1. Let G, be a 3-CNF formula fam-
ily as in Theorem 1.2 having size ®(n), refutation length
L(G, F 0) = exp(®(n)), and refutation clause space
Sp(Gp + 0) = ®(n). Let Hy be a 3-CNF formula family
as in Theorem 1.3 of size ®(m3) such that L(Hpy - 0) =
0O(m?) and Sp(Hpn + 0) = ©(m). Define g(n) = min{m |
Sp(Hm F 0) > Sp(G, F 0)}. Note that since Sp(Hp F0) =
£2(m) and Sp(Gp = 0) = 0(n), we know that g(n) = 0(n).
Now as before let F; = Gy A Hg(n), where G, and Hg
have disjoint sets of variables. By Observation 1.4, any
resolution refutation of F, is a refutation of either G,
or Hgmy. Since g(n) has been chosen so that Sp(Hgm) - 0)
> Sp(Gp F 0), a refutation in minimal clause space has
to refute G,, which requires exponential length. However,
since g(n) = 0(n), Theorem 1.3 tells us that there are refu-
tations of Hg() in length 0(n3) and clause space O(n). O

4. Making the main trick explicit

The proofs of the theorems in Sections 2 and 3 come
very easily; in fact almost too easily. What is it that makes
this possible? In this and the next section, we want to
highlight two key ingredients in the constructions.

The common paradigm for the proofs of Theorems 2.1,
3.1, and 3.2 is as follows. We are given two complexity
measures M7 and M, that we want to trade off against
one another. We do this by finding formulas G, and Hy
such that:

e The formulas G, are very hard with respect to the first
resource measured by Mp, while M;(Gy) is at most
some (more or less trivial) upper bound.

e The formulas Hp, are very easy with respect to Mj,
but there is some nontrivial lower bound on the usage
M>(Hy,) of the second resource.

e The index m = m(n) is chosen so as to minimize
Ma(Hm@m)) — M2(Gy) > 0, ie., so that Hpg) requires
just a little bit more of the second resource than Gj.

J. Nordstrom / Information Processing Letters 109 (2009) 1030-1035 1033

Then for F, = Gn A Hpmy, if we demand that a resolution
refutation 7w must use the minimal amount of the second
resource, it will have to use a large amount of the first
resource. However, relaxing the requirement on the second
resource by the very small expression Ma(Hmm)) —M2(Gyp),
we can get a refutation 77’ using small amounts of both
resources.

Clearly, the formula families {F,}3°, that we get in this
way are “redundant” in the sense that each formula F is
the conjunction of two formulas G, and H,, which are
themselves already unsatisfiable. Formally, we say that a
formula F is minimally unsatisfiable if F is unsatisfiable, but
removing any clause C € F makes the remaining subfor-
mula F \ {C} satisfiable. We note that if we would add the
requirement in Sections 2 and 3 that the formulas under
consideration should be minimally unsatisfiable, the proof
idea outlined above fails completely. What conclusions can
be drawn from this?

On the one hand, trade-off results for minimally unsat-
isfiable formulas would seem more interesting, since they
tell us something about a property that some natural for-
mula family has, rather than about some funny phenomena
arising because we glue together two totally unrelated for-
mulas.

On the other hand, one could argue that the main mo-
tivation for studying space is the connection to memory
requirements for proof search algorithms, for instance, al-
gorithms using clause learning. And for such algorithms,
a minimality condition might appear somewhat arbitrary.
There are no guarantees that “real-life” formulas will be
minimally unsatisfiable, and most probably there is no ef-
ficient way of testing this condition. More precisely, the
problem of deciding minimal unsatisfiability is NP-hard
but not known to be in NP. Formally, a language L is in the
complexity class DP if and only if there are two languages
L1 e NP and Ly € co-NP such that L =L1 N Ly [13]. MIN-
IMAL UNSATISFIABILITY is DP-complete [14], and it seems
to be commonly believed that DP ¢ NP U co-NP.> There-
fore, in practice trade-off results for non-minimal formulas
might be just as interesting.

5. An auxiliary trick for variable space

A second important reason why our proof of Theo-
rem 2.1 gives sharp results is that we are allowed to use
CNF formulas of growing width. It is precisely because of
this that we can easily construct the needed formulas Hp
that are hard with respect to variable space but easy with
respect to length. If we would have to restrict ourselves
to k-CNF formulas for k constant, it would be much more
difficult to find such examples. Although the formulas in
Theorem 1.3 could be plugged in to give a slightly weaker

5 It should be pointed out, however, that although finding a minimal
unsatisfiable subformula is presumably hard, partitioning a formula into
subformulas over distinct variable sets is easy. For instance, a SAT solver
which runs a preprocessor looking for distinct variable sets will easily
find the partition of F into G and H. Nevertheless, the time-space re-
quirements of the SAT solver will still be subject to the trade-offs shown
above, and there are also (artificial) ways to construct formulas in such
a way that the subformulas do not have distinct variable sets (by adding
small sets of dummy variables that overlap in G and H).

trade-off, we are not aware of any family of k-CNF formu-
las that can provably give the very sharp result in Theo-
rem 2.1.

This is not the only example of a space measure behav-
ing badly for formulas of growing width. Another example
of this is the relationship between clause space and width.
When space began to be studied in the late 1990s, it was
soon noted in several papers (for instance [1,3,16]) that the
lower bounds on refutation width and refutation space for
different formula families coincided. In [2], it was shown
that this was not a coincidence, but that the minimal refu-
tation clause space upper-bounds the minimal refutation
width by

Sp(FF0)>W(FFO0)—F +3, (2)

but it remained open whether space and width could
be separated or the two measures were asymptotically
the same. In the sequence of works [11,12,4] jointly with
Hastad and Ben-Sasson we proved that the inequality is
asymptotically strict in the sense that there are k-CNF for-
mula families F, with W(F, - 0) = O(1) but Sp(F, +0) =
®(n/logn).

However, if we are allowed to consider formulas of
growing width, the fact that the inequality (2) is not tight
is entirely trivial. Namely, let us say that a CNF formula
F is k-wide if all clauses in F have size at least k. In [8],
it was proven that for F a k-wide unsatisfiable CNF for-
mula it holds that Sp(F, +0) > k + 2. So in order to get
a formula family F, such that W(F, F0) — W(F,) = 0(1)
but Sp(F, = 0) = w(1), just pick some suitable formulas
{Fn}52, of growing width.

In our opinion, these phenomena are clearly artificial.
Since every CNF formula can be rewritten as an equivalent
k-CNF formula without increasing the size more than lin-
early (using extension variables), the right approach when
studying space measures in resolution seems to be to re-
quire that the formulas under study should have constant
width.

6. Conclusion and some open problems

We have established that for all the measures clause
space, variable space and width, there are nontrivial trade-
offs with respect to length in resolution. However, our
trade-off results apply only for a very carefully selected
ratio of space/width-to-formula-size and display a abrupt
decay of proof length when the space/width is increased
even by very small amounts. It would be desirable to ob-
tain a clearer and more complete view of what kind of
trade-off phenomena can occur if we are interested in a
wider range of parameters and also in trade-offs which
are more robust in the sense that they are not sensitive
to small changes in the proof complexity measures.

For width, [6] showed that given a resolution refutation
7 of a k-CNF formula F in length L(;r) = L, there exists a
refutation in width O(,/nlogL), where n is the number of
variables in F. However, the refutation resulting from the
proof is not the same 7, but another refutation 7" which
is potentially exponentially longer than 7. A very natural
question is whether this increase in length is necessary or

1034 J. Nordstrom / Information Processing Letters 109 (2009) 1030-1035

whether the exponential blow-up is just an artifact of the
proof.

Open Problem 1. If F is a k-CNF formula over n vari-
ables refutable in length L, can one always find a refu-
tation r of F in width W(rr) = O(y/nlogL) with length
no more than, say, L(;t) = O(L) or at most poly(L)? Or is
there a formula family which necessarily exhibits a length-
width trade-off in the sense that there are short refuta-
tions and narrow refutations, but all narrow refutations
have a length blow-up (polynomial or superpolynomial)?

Note that here we do not ask that the resolution refu-
tations should attain the exact minimum with respect to
refutation length or width, but rather that it should be
within a constant factor (or for length possibly within a
polynomial factor). Therefore, the ideas in Sections 2 and 3
can no longer be used.

Similar questions can be posed for clause space and
variable space. Suppose that we have a formula that is
refutable in both small space and short length. Is it then
possible to refute the formula in small space and short
length simultaneously, possibly increasing the space by a
constant factor or the length by some polynomial factor?
In recent joint work with Ben-Sasson [5], we give a very
strong negative answer to this question by proving su-
perpolynomial or even exponential trade-offs for length
with respect to both variable space and clause space for
space in almost the whole range between constant and
linear in the formula size. However, it still remains open
what kind of trade-offs are possible at the extremal points
of the space interval, i.e,, for constant and (super)linear
space.

Given a formula refutable in constant space, we know
that there must exist a refutation in polynomial length
as well. This follows by applying the upper bound (2) on
width in terms of clause space, and then noting that nar-
row proofs are trivially short (for width w, (2-#variables)"
is an upper bound on the total number of distinct clauses).
But as in [6], the refutation we end up with is not the
same as that with which we started. This leads to the fol-
lowing question.

Open Problem 2. Given a family of polynomial-size k-
CNF formulas {Fp}2°, with refutation clause space
Sp(F, = 0) = O(1), are there refutations 7 : F, - 0 si-
multaneously in length L(;xr) = poly(n) and clause space
Sp(mr) = 0(1)? Or is it possible that restricting the space
to constant can force the length to be superpolynomial?

At the other end of the space interval, one can ask
whether refutations of a formula in linear clause space,
which have to exist, might have to be longer than the
shortest refutation of the same formula.

Open Problem 3. Are there formulas with trade-offs in the
range space > formula size? Or can every refutation be
carried out in, say, at most linear clause space?

We find Open Question 3 especially intriguing. Note
that all bounds on clause space proven so far are in the

regime where the space is less than formula size (which
is quite natural, since by [8] we know the size of the
formula is an upper bound on the minimal clause space
needed). It is unclear to what extent such lower bounds on
space are relevant to state-of-the-art SAT solvers, however,
since such algorithms will presumably use at least a linear
amount of memory to store the formula to begin with. For
this reason, it seems to be a highly interesting problem to
determine what can be said if we allow extra clause space
above linear.

Acknowledgements

We are most grateful to Philipp Hertel and Toniann
Pitassi for patiently answering several technical questions
about Theorem 2.1. Also, we want to thank Per Austrin,
Eli Ben-Sasson, Mikael Goldmann, Johan Hastad, and Jan
Krajicek for useful discussions and insightful comments. Fi-
nally, we thankfully acknowledge the anonymous referees
for their valuable suggestions that helped to improve the
presentation in this paper.

References

[1] M. Alekhnovich, E. Ben-Sasson, A.A. Razborov, A. Wigderson, Space
complexity in propositional calculus, SIAM Journal on Comput-
ing 31 (4) (2002) 1184-1211. Preliminary version appeared in
STOC '00.

[2] A. Atserias, V. Dalmau, A combinatorial characterization of resolution
width, Journal of Computer and System Sciences 74 (3) (2008) 323-
334. Preliminary version appeared in CCC '03.

[3] E. Ben-Sasson, N. Galesi, Space complexity of random formulae in

resolution, Random Structures and Algorithms 23 (1) (2003) 92-109.

Preliminary version appeared in CCC '01.

E. Ben-Sasson, J. Nordstréom, Short proofs may be spacious: An opti-

mal separation of space and length in resolution, in: Proceedings of

the 49th Annual IEEE Symposium on Foundations of Computer Sci-

ence (FOCS '08), Oct. 2008, pp. 709-718.

E. Ben-Sasson, J. Nordstrom, Understanding space in resolution: Opti-

mal lower bounds and exponential trade-offs, Technical Report TR09-

034, Electronic Colloquium on Computational Complexity (ECCC),

Mar. 2009.

[6] E. Ben-Sasson, A. Wigderson, Short proofs are narrow—resolution
made simple, Journal of the ACM 48 (2) (2001) 149-169. Prelimi-
nary version appeared in STOC '99.

[7] M.L. Bonet, N. Galesi, Optimality of size-width tradeoffs for resolu-
tion, Computational Complexity 10 (4) (2001) 261-276.

[8] J.L. Esteban, J. Tordn, Space bounds for resolution, Information and
Computation 171 (1) (2001) 84-97. Preliminary version appeared in
STACS '99.

[9] P. Hertel, T. Pitassi, Exponential time/space speedups for resolution
and the PSPACE-completeness of black-white pebbling, in: Proceed-
ings of the 48th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS ’07), Oct. 2007, pp. 137-149.

[10] J. Nordstrom, Short proofs may be spacious: Understanding space in
resolution, PhD thesis, Royal Institute of Technology, Stockholm, Swe-
den, May 2008. Available at the webpage http://people.csail.mit.edu/
jakobn/research/.

[11] J. Nordstréom, Narrow proofs may be spacious: Separating space and
width in resolution, SIAM Journal on Computing 39 (1) (2009) 59-
121. Preliminary version appeared in STOC '06.

[12] J. Nordstroém, J. Hastad, Towards an optimal separation of space and
length in resolution (Extended abstract), in: Proceedings of the 40th
Annual ACM Symposium on Theory of Computing (STOC '08), May
2008, pp. 701-710.

[13] C.H. Papadimitriou, Computational Complexity, Addison-Wesley,
1994.

[14] C.H. Papadimitriou, D. Wolfe, The complexity of facets resolved, Jour-
nal of Computer and System Sciences 37 (1) (1988) 2-13.

[4

5

J. Nordstrom / Information Processing Letters 109 (2009) 1030-1035 1035

[15] G. Stdlmarck, Short resolution proofs for a sequence of tricky formu- in: Lecture Notes in Computer Science, vol. 1683, Springer, 1999,
las, Acta Informatica 33 (3) (1996) 277-280. pp. 362-373.
[16] J. Toran, Lower bounds for space in resolution, in: Proceedings of the [17] A. Urquhart, Hard examples for resolution, Journal of the ACM 34 (1)

13th International Workshop on Computer Science Logic (CSL '99), (1987) 209-219.

	SimplifiedWayPublished.pdf

