Relating Proof Complexity Measures and Practical Hardness of SAT

Jakob Nordström

KTH Royal Institute of Technology
Stockholm, Sweden
SAT Interactions
Schloss Dagstuhl, Germany
November 18-23, 2012
Joint work with Matti Järvisalo, Arie Matsliah, and Stanislav Živný

Proof Complexity and SAT Solving

Proof complexity

- Satsifiability fundamental problem in theoretical computer science
- SAT proven NP-complete by Stephen Cook in 1971
- Hence totally intractable in worst case (probably)
- One of the million dollar "Millennium Problems"

Proof Complexity and SAT Solving

Proof complexity

- Satsifiability fundamental problem in theoretical computer science
- SAT proven NP-complete by Stephen Cook in 1971
- Hence totally intractable in worst case (probably)
- One of the million dollar "Millennium Problems"

SAT solving

- Enormous progress in performance last 10-15 years
- State-of-the-art solvers can deal with real-world instances with millions of variables
- But best solvers still based on methods from early 1960s
- Tiny formulas known that are totally beyond reach

Proof Complexity and SAT Solving

Proof complexity

- Satsifiability fundamental problem in theoretical computer science
- SAT proven NP-complete by Stephen Cook in 1971
- Hence totally intractable in worst case (probably)
- One of the million dollar "Millennium Problems"

SAT solving

- Enormous progress in performance last 10-15 years
- State-of-the-art solvers can deal with real-world instances with millions of variables
- But best solvers still based on methods from early 1960s
- Tiny formulas known that are totally beyond reach

What makes formulas hard or easy in practice for SAT solvers?

Proof Complexity and SAT Solving

Proof complexity

- Satsifiability fundamental problem in theoretical computer science
- SAT proven NP-complete by Stephen Cook in 1971
- Hence totally intractable in worst case (probably)
- One of the million dollar "Millennium Problems"

SAT solving

- Enormous progress in performance last 10-15 years
- State-of-the-art solvers can deal with real-world instances with millions of variables
- But best solvers still based on methods from early 1960s
- Tiny formulas known that are totally beyond reach

What makes formulas hard or easy in practice for SAT solvers? What (if anything) can proof complexity say about this?

Outline

(1) SAT solving and Proof Complexity

- SAT solving and DPLL
- Proof Complexity and Resolution
- Our Results
(2) Experiments
- Benchmark Formulas
- Set-up
- Results
(3) Directions for Future Research

From Proving Tautologies To Disproving CNF Formulas

Conjunctive normal form (CNF)
ANDs of ORs of variables or negated variables (or conjunctions of disjunctive clauses)

Example:

$$
\begin{aligned}
& (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
\wedge & (u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

From Proving Tautologies To Disproving CNF Formulas

Conjunctive normal form (CNF)

ANDs of ORs of variables or negated variables (or conjunctions of disjunctive clauses)

Example:

$$
\begin{aligned}
& (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
\wedge & (u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Proving that a formula in propositional logic is always satisfied I
Proving that a CNF formula is never satisfied

Some Terminology

- Literal a : variable x or its negation \bar{x}
- Clause $C=a_{1} \vee \cdots \vee a_{k}$: disjunction of literals (Consider as sets, so no repetitions and order irrelevant)
- CNF formula $F=C_{1} \wedge \cdots \wedge C_{m}$: conjunction of clauses
- k-CNF formula: CNF formula with clauses of size $\leq k$ (assume k fixed)
- Refer to clauses of CNF formula as axioms (as opposed to derived clauses)

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62] Somewhat simplified description:

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62]
Somewhat simplified description:

- If F contains an empty clause (without literals), then report "unsatisfiable"

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62]
Somewhat simplified description:

- If F contains an empty clause (without literals), then report "unsatisfiable"
- Otherwise pick some variable x in F

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62]
Somewhat simplified description:

- If F contains an empty clause (without literals), then report "unsatisfiable"
- Otherwise pick some variable x in F
- Set $x=0$, simplify F and try to refute recursively

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62]
Somewhat simplified description:

- If F contains an empty clause (without literals), then report "unsatisfiable"
- Otherwise pick some variable x in F
- Set $x=0$, simplify F and try to refute recursively
- Set $x=1$, simplify F and try to refute recursively

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62]
Somewhat simplified description:

- If F contains an empty clause (without literals), then report "unsatisfiable"
- Otherwise pick some variable x in F
- Set $x=0$, simplify F and try to refute recursively
- Set $x=1$, simplify F and try to refute recursively
- If result in both cases "unsatisfiable", then report "unsatisfiable"

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & \quad z) \\
& \wedge(y \vee \bar{z}) \wedge(\quad \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & \quad z) \\
& \wedge(\quad \bar{z}) \wedge(\quad \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & \quad(\quad \wedge) \\
& \wedge\left(u \vee(\quad \bar{z}) \wedge\left(\begin{array}{r}
\bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
\\
\wedge(u \vee v)
\end{array}\right)(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})\right.
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & \quad(\quad) \\
& \wedge(\quad) \wedge(\quad \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & \quad z) \\
& \wedge(y \vee \bar{z}) \wedge(\quad u) \wedge(\quad \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (\quad z) \wedge(y \vee \bar{z}) \wedge(\quad) \wedge(\quad \bar{u}) \\
& \wedge(\quad v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
& F=(\quad z) \wedge(y \vee \bar{z}) \wedge(\quad u) \wedge(\quad) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\quad w) \wedge(\bar{x} \vee \quad \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

State-of-the-art DPLL SAT solvers

Many more ingredients in modern SAT solvers, for instance:

- Choice of pivot variables crucial
- When reaching falsified clause, compute why partial assignment failed
- add this info to formula as new clause Conflict-driven clause learning (CDCL)
- Every once in a while, restart (but save computed info)

Proof Complexity

Proof search algorithm: defines proof system with derivation rules
Proof complexity: study of proofs in such systems

- Lower bounds: no algorithm can do better (even optimal one always guessing the right move)
- Upper bounds: gives hope for good algorithms if we can search for proofs in system efficiently

Resolution

Resolution rule:

$$
\frac{B \vee x \quad C \vee \bar{x}}{B \vee C}
$$

Resolution

Resolution rule:

$$
\frac{B \vee x \quad C \vee \bar{x}}{B \vee C}
$$

Observation

If F is a satisfiable CNF formula and D is derived from clauses $C_{1}, C_{2} \in F$ by the resolution rule, then $F \wedge D$ is satisfiable.

Resolution

Resolution rule:

$$
\frac{B \vee x \quad C \vee \bar{x}}{B \vee C}
$$

Observation

If F is a satisfiable CNF formula and D is derived from clauses $C_{1}, C_{2} \in F$ by the resolution rule, then $F \wedge D$ is satisfiable.

Prove F unsatisfiable by deriving the unsatisfiable empty clause \perp from F by resolution

CDCL Solvers Generate Resolution Proofs

Simple example for DPLL:

CDCL Solvers Generate Resolution Proofs

Simple example for DPLL:

CDCL Solvers Generate Resolution Proofs

Simple example for DPLL:

CDCL Solvers Generate Resolution Proofs

Simple example for DPLL:

CDCL Solvers Generate Resolution Proofs

Simple example for DPLL:

- Conflict-driven clause learning adds "shortcut edges" in tree
- But still yields resolution proof
- True also for (most) preprocessing techniques

The Theoretical Model

- Goal: Refute given CNF formula (i.e., prove it is unsatisfiable)
- Proof system operates with disjunctive clauses
- Proof/refutation is "presented on blackboard"
- Derivation steps:
- Write down clauses of CNF formula being refuted (axiom clauses)
- Infer new clauses by resolution rule
- Erase clauses that are not currently needed (to save space on blackboard)
- Refutation ends when empty clause \perp is derived

Example CNF Formula

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

Defined in terms of directed acyclic graph (DAG):

- source vertices true
- truth propagates upwards
- but sink vertex is false

Example CNF Formula

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

Defined in terms of directed acyclic graph (DAG):

- source vertices true
- truth propagates upwards
- but sink vertex is false

Example CNF Formula

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

Defined in terms of directed acyclic graph (DAG):

- source vertices true
- truth propagates upwards
- but sink vertex is false

Example CNF Formula

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

Defined in terms of directed acyclic graph (DAG):

- source vertices true
- truth propagates upwards
- but sink vertex is false

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	0
largest clause seen on board	0
max \# lines on board	0

> Can write down axioms, erase used clauses or infer new clauses by resolution rule (but only from clauses currently on the board!)

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	1
largest clause seen on board	1
max \# lines on board	1

Write down axiom 1: u

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	2
largest clause seen on board	1
max \# lines on board	2

Write down axiom 1: u
Write down axiom 2: v

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	3
largest clause seen on board	3
max \# lines on board	3

Write down axiom 1: u
Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	3
largest clause seen on board	3
max \# lines on board	3

7. \bar{z}
u
v
$\bar{u} \vee \bar{v} \vee x$

Write down axiom 1: u
Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$ Infer $\bar{v} \vee x$ from
u and $\bar{u} \vee \bar{v} \vee x$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	4
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}
u
v
$\bar{u} \vee \bar{v} \vee x$
$\bar{v} \vee x$

Write down axiom 1: u
Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$ Infer $\bar{v} \vee x$ from
u and $\bar{u} \vee \bar{v} \vee x$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	4
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

u
v
$\bar{u} \vee \bar{v} \vee x$
$\bar{v} \vee x$

Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$
Infer $\bar{v} \vee x$ from
u and $\bar{u} \vee \bar{v} \vee x$
Erase the clause $\bar{u} \vee \bar{v} \vee x$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	4
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}
u

$$
v
$$

$$
\bar{v} \vee x
$$

Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$
Infer $\bar{v} \vee x$ from
u and $\bar{u} \vee \bar{v} \vee x$
Erase the clause $\bar{u} \vee \bar{v} \vee x$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	4
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}
u
v
$\bar{v} \vee x$

Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$ Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	4
largest clause seen on board	3
max \# lines on board	4

v
$\bar{v} \vee x$

Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$ Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	4
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u
Infer x from
v and $\bar{v} \vee x$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	5
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

v
$\bar{v} \vee x$
x

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u
Infer x from
v and $\bar{v} \vee x$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	5
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u
Infer x from
v and $\bar{v} \vee x$
Erase the clause $\bar{v} \vee x$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	5
largest clause seen on board	3
max \# lines on board	4

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u
Infer x from
v and $\bar{v} \vee x$
Erase the clause $\bar{v} \vee x$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	5
largest clause seen on board	3
max \# lines on board	4

Erase the clause u Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Erase the clause $\bar{v} \vee x$
Erase the clause v

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	5
largest clause seen on board	3
max \# lines on board	4

Erase the clause u Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Erase the clause $\bar{v} \vee x$
Erase the clause v

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	6
largest clause seen on board	3
max \# lines on board	4

Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Erase the clause $\bar{v} \vee x$
Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	6
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

x

$\bar{x} \vee \bar{y} \vee z$

Erase the clause $\bar{v} \vee x$
Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	7
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

$$
x
$$

$\bar{x} \vee \bar{y} \vee z$
$\bar{y} \vee z$

Erase the clause $\bar{v} \vee x$
Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$ Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	7
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

$$
x
$$

$$
\bar{x} \vee \bar{y} \vee z
$$

$$
\bar{y} \vee z
$$

Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from
x and $\bar{x} \vee \bar{y} \vee z$
Erase the clause $\bar{x} \vee \bar{y} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	7
largest clause seen on board	3
max \# lines on board	4

Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$ Infer $\bar{y} \vee z$ from
x and $\bar{x} \vee \bar{y} \vee z$
Erase the clause $\bar{x} \vee \bar{y} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	7
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$ Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Erase the clause $\bar{x} \vee \bar{y} \vee z$
Erase the clause x

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	7
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

$$
\bar{y} \vee z
$$

Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$ Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Erase the clause $\bar{x} \vee \bar{y} \vee z$
Erase the clause x

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	8
largest clause seen on board	3
max \# lines on board	4

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee y
\end{aligned}
$$

Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Erase the clause $\bar{x} \vee \bar{y} \vee z$
Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	8
largest clause seen on board	3
max \# lines on board	4

```
\overline{y}\veez
    v}\vee\overline{w}\vee
```

Erase the clause $\bar{x} \vee \bar{y} \vee z$
Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	9
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee y \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Erase the clause $\bar{x} \vee \bar{y} \vee z$
Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	9
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee y \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from $\bar{y} \vee z$ and $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{v} \vee \bar{w} \vee y$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	9
largest clause seen on board	3
max \# lines on board	4

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$
Infer $\bar{v} \vee \bar{w} \vee z$ from
$\bar{y} \vee z$ and $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{v} \vee \bar{w} \vee y$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	9
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	9
largest clause seen on board	3
max \# lines on board	4

$\bar{v} \vee \bar{w} \vee z$
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	10
largest clause seen on board	3
max \# lines on board	4

$\bar{v} \vee \bar{w} \vee z$ v

Infer $\bar{v} \vee \bar{w} \vee z$ from $\bar{y} \vee z$ and $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$
Write down axiom 2: v

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	11
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}
$\bar{v} \vee \bar{w} \vee z$ v
w

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$
Write down axiom 2: v
Write down axiom 3: w

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	12
largest clause seen on board	3
max \# lines on board	4

$$
\begin{aligned}
& \bar{v} \vee \bar{w} \vee z \\
& v \\
& w \\
& \bar{z}
\end{aligned}
$$

> Erase the clause $\bar{v} \vee \bar{w} \vee y$
> Erase the clause $\bar{y} \vee z$
> Write down axiom 2: v
> Write down axiom 3: w
> Write down axiom 7: \bar{z}

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	12
largest clause seen on board	3
max \# lines on board	4

7. \bar{z}
$\bar{v} \vee \bar{w} \vee z$
v
w
\bar{z}
Write down axiom 2: v
Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	13
largest clause seen on board	3
max \# lines on board	5

7. \bar{z}
```
v}\vee\overline{w}\vee
v
w
z
w}\vee
```

Write down axiom 2: v
Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	13
largest clause seen on board	3
max \# lines on board	5

7. \bar{z}
```
\overline{v}}\vee\overline{w}\vee
v
w
z
w}\vee
```

Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$
Erase the clause v

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	13
largest clause seen on board	3
max \# lines on board	5

7. \bar{z}
$\bar{v} \vee \bar{w} \vee z$
w
\bar{z}
$\bar{w} \vee z$

Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$
Erase the clause v

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	13
largest clause seen on board	3
max \# lines on board	5

7. \bar{z}
$\bar{v} \vee \bar{w} \vee z$
w
\bar{z}
$\bar{w} \vee z$

Write down axiom 7: \bar{z} Infer $\bar{w} \vee z$ from

$$
v \text { and } \bar{v} \vee \bar{w} \vee z
$$

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	13
largest clause seen on board	3
max \# lines on board	5

7. \bar{z}

Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$
Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	13
largest clause seen on board	3
max \# lines on board	5

7. \bar{z}

$$
v \text { and } \bar{v} \vee \bar{w} \vee z
$$

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$
Infer z from
w and $\bar{w} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	14
largest clause seen on board	3
max \# lines on board	5

7. \bar{z}

$$
v \text { and } \bar{v} \vee \bar{w} \vee z
$$

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$
Infer z from
w and $\bar{w} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	14
largest clause seen on board	3
max \# lines on board	5

7. \bar{z}

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$
Infer z from
w and $\bar{w} \vee z$
Erase the clause w

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	14
largest clause seen on board	3
max \# lines on board	5

7. \bar{z}
\bar{z}
$\bar{w} \vee z$
z

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$
Infer z from
w and $\bar{w} \vee z$
Erase the clause w

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	14
largest clause seen on board	3
max \# lines on board	5

7. \bar{z}

Erase the clause $\bar{v} \vee \bar{w} \vee z$ Infer z from
w and $\bar{w} \vee z$
Erase the clause w
Erase the clause $\bar{w} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	14
largest clause seen on board	3
max \# lines on board	5

Erase the clause $\bar{v} \vee \bar{w} \vee z$ Infer z from
w and $\bar{w} \vee z$
Erase the clause w
Erase the clause $\bar{w} \vee z$

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	14
largest clause seen on board	3
max \# lines on board	5

w and $\bar{w} \vee z$
Erase the clause w
Erase the clause $\bar{w} \vee z$
Infer \perp from
\bar{z} and z

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	15
largest clause seen on board	3
max \# lines on board	5

w and $\bar{w} \vee z$
Erase the clause w
Erase the clause $\bar{w} \vee z$
Infer \perp from
\bar{z} and z

Complexity Measures for Resolution

Let $n=$ size of formula

Length

\# clauses in refutation - at most $\exp (n)$
[in our example: 15]

Width

Size of largest clause in refutation - at most n
[in our example: 3]

Space

Max \# clauses one needs to remember when "verifying correctness of refutation on blackboard" - at most n (!)
[in our example: 5]

Length

- Clearly lower bound on running time for any CDCL algorithm

Length

- Clearly lower bound on running time for any CDCL algorithm
- But if there is a short refutation, not clear how to find it

Length

- Clearly lower bound on running time for any CDCL algorithm
- But if there is a short refutation, not clear how to find it
- In fact, probably intractable [Aleknovich \& Razborov '01]

Length

- Clearly lower bound on running time for any CDCL algorithm
- But if there is a short refutation, not clear how to find it
- In fact, probably intractable [Aleknovich \& Razborov '01]
- So small length upper bound might be much too optimistic

Length

- Clearly lower bound on running time for any CDCL algorithm
- But if there is a short refutation, not clear how to find it
- In fact, probably intractable [Aleknovich \& Razborov '01]
- So small length upper bound might be much too optimistic
- Not the right measure of "hardness in practice"

Length vs. Width

- Searching for small width refutations known heuristic in Al community

Length vs. Width

- Searching for small width refutations known heuristic in AI community
- Small width \Rightarrow small length (by counting)

Length vs. Width

- Searching for small width refutations known heuristic in Al community
- Small width \Rightarrow small length (by counting)
- But small length does not necessary imply small width - can have \sqrt{n} width and linear length [Bonet \& Galesi '99]

Length vs. Width

- Searching for small width refutations known heuristic in Al community
- Small width \Rightarrow small length (by counting)
- But small length does not necessary imply small width - can have \sqrt{n} width and linear length [Bonet \& Galesi '99]
- So width stricter hardness measure than length

Length vs. Width

- Searching for small width refutations known heuristic in Al community
- Small width \Rightarrow small length (by counting)
- But small length does not necessary imply small width - can have \sqrt{n} width and linear length [Bonet \& Galesi '99]
- So width stricter hardness measure than length
- However, really large (e.g., linear) width implies really large (exponential) length [Ben-Sasson \& Wigderson '99]

Length vs. Width

- Searching for small width refutations known heuristic in AI community
- Small width \Rightarrow small length (by counting)
- But small length does not necessary imply small width - can have \sqrt{n} width and linear length [Bonet \& Galesi '99]
- So width stricter hardness measure than length
- However, really large (e.g., linear) width implies really large (exponential) length [Ben-Sasson \& Wigderson '99]
- Small width \Rightarrow CDCL solver will provably be fast [Atserias, Fichte \& Thurley '09] (but slighly idealized theoretical model)

Length vs. Width

- Searching for small width refutations known heuristic in AI community
- Small width \Rightarrow small length (by counting)
- But small length does not necessary imply small width - can have \sqrt{n} width and linear length [Bonet \& Galesi '99]
- So width stricter hardness measure than length
- However, really large (e.g., linear) width implies really large (exponential) length [Ben-Sasson \& Wigderson '99]
- Small width \Rightarrow CDCL solver will provably be fast [Atserias, Fichte \& Thurley '09] (but slighly idealized theoretical model)
- Right hardness measure?

Width vs. Space

- In practice, memory consumption is a very important bottleneck for SAT solvers

Width vs. Space

- In practice, memory consumption is a very important bottleneck for SAT solvers
- So maybe space complexity can be relevant hardness measure?

Width vs. Space

- In practice, memory consumption is a very important bottleneck for SAT solvers
- So maybe space complexity can be relevant hardness measure?
- Space \geq width [Atserias \& Dalmau '03]

Width vs. Space

- In practice, memory consumption is a very important bottleneck for SAT solvers
- So maybe space complexity can be relevant hardness measure?
- Space \geq width [Atserias \& Dalmau '03]
- But small width does not say anything about space [N. '06], [N. \& Håstad '08], [Ben-Sasson \& N. '08]

Width vs. Space

- In practice, memory consumption is a very important bottleneck for SAT solvers
- So maybe space complexity can be relevant hardness measure?
- Space \geq width [Atserias \& Dalmau '03]
- But small width does not say anything about space [N. '06], [N. \& Håstad '08], [Ben-Sasson \& N. '08]
- So space stricter hardness measure than width (but space model even more idealized)

Space vs. Tree-like Space

- Tree-like resolution: Only use each clause once Have to rederive from scratch if needed again

Space vs. Tree-like Space

- Tree-like resolution: Only use each clause once Have to rederive from scratch if needed again
- Tree-like space: Usual space measure but restricted to such proofs

Space vs. Tree-like Space

- Tree-like resolution: Only use each clause once Have to rederive from scratch if needed again
- Tree-like space: Usual space measure but restricted to such proofs
- Proposed as practical measure of hardness of SAT instances in [Ansótegui, Bonet, Levy \& Manyà '08]

Space vs. Tree-like Space

- Tree-like resolution: Only use each clause once Have to rederive from scratch if needed again
- Tree-like space: Usual space measure but restricted to such proofs
- Proposed as practical measure of hardness of SAT instances in [Ansótegui, Bonet, Levy \& Manyà '08]
- Clearly tree-like space \geq space but not known to be different

Space vs. Tree-like Space

- Tree-like resolution: Only use each clause once Have to rederive from scratch if needed again
- Tree-like space: Usual space measure but restricted to such proofs
- Proposed as practical measure of hardness of SAT instances in [Ansótegui, Bonet, Levy \& Manyà '08]
- Clearly tree-like space \geq space but not known to be different

This work can be viewed as implementing program outlined in [ABLM08]

Result 1: Separation of Space and Tree-like Space

We don't believe in tree-like space as hardness measure

- Tree-like space tightly connected with tree-like length
- Corresponds to DPLL without clause learning
- Would suggest CDCL doesn't buy you anything

Result 1: Separation of Space and Tree-like Space

We don't believe in tree-like space as hardness measure

- Tree-like space tightly connected with tree-like length
- Corresponds to DPLL without clause learning
- Would suggest CDCL doesn't buy you anything

We prove first asymptotic separation of space and tree-like space

Theorem

There are formulas requiring space $\mathcal{O}(1)$ for which tree-like space grows like $\Omega(\log n)$

Only constant-factor separation known before [Esteban \& Torán '03]

Result 2: Small Backdoor Sets Imply Small Space

- Backdoor sets: practically motivated hardness measure
- First studied in [Williams, Gomes \& Selman '03]
- Real-world SAT instances often have small backdoors

Result 2: Small Backdoor Sets Imply Small Space

- Backdoor sets: practically motivated hardness measure
- First studied in [Williams, Gomes \& Selman '03]
- Real-world SAT instances often have small backdoors

We show connections between backdoors and space complexity (elaborating on [ABLM08])

Theorem (Informal)
If a formula has a small backdoor set, then it requires small space

Result 3: Hardness in Practice Correlates with Space

Recall

$$
\text { log length } \leq \text { width } \leq \text { space } \leq \text { tree-like space }
$$

Result 3: Hardness in Practice Correlates with Space

Recall

$$
\text { log length } \leq \text { width } \leq \text { space } \leq \text { tree-like space }
$$

Width and space seem like most promising hardness candidates

Result 3: Hardness in Practice Correlates with Space

Recall

$$
\text { log length } \leq \text { width } \leq \text { space } \leq \text { tree-like space }
$$

Width and space seem like most promising hardness candidates
Run experiments on formulas with fixed complexity w.r.t. width (and length) but varying space*

- Is running time essentially the same?
- Or does it increase with increasing space?

Result 3: Hardness in Practice Correlates with Space

Recall

$$
\text { log length } \leq \text { width } \leq \text { space } \leq \text { tree-like space }
$$

Width and space seem like most promising hardness candidates
Run experiments on formulas with fixed complexity w.r.t. width (and length) but varying space*

- Is running time essentially the same?
- Or does it increase with increasing space?

Experimental results

Running times seem to correlate with space complexity**

Result 3: Hardness in Practice Correlates with Space

Recall

$$
\text { log length } \leq \text { width } \leq \text { space } \leq \text { tree-like space }
$$

Width and space seem like most promising hardness candidates
Run experiments on formulas with fixed complexity w.r.t. width (and length) but varying space*

- Is running time essentially the same?
- Or does it increase with increasing space?

Experimental results

Running times seem to correlate with space complexity**
(*) But such formulas are nontrivial to find
(**) With some caveats to be discussed later

How to Get Hold of Good Benchmark Formulas?

Questions about space complexity and time-space trade-offs fundamental in theoretical computer science

How to Get Hold of Good Benchmark Formulas?

Questions about space complexity and time-space trade-offs fundamental in theoretical computer science

In particular, well-studied (and well-understood) for pebble games modelling calculations described by DAGs ([Cook \& Sethi '76] and others)

- Time needed for calculation: \# pebbling moves
- Space needed for calculation: max \# pebbles required

How to Get Hold of Good Benchmark Formulas?

Questions about space complexity and time-space trade-offs fundamental in theoretical computer science

In particular, well-studied (and well-understood) for pebble games modelling calculations described by DAGs ([Cook \& Sethi '76] and others)

- Time needed for calculation: \# pebbling moves
- Space needed for calculation: max \# pebbles required

Some quick graph terminology

- DAGs consist of vertices with directed edges between them
- vertices with no incoming edges: sources
- vertices with no outgoing edges: sinks

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	0
Current \# pebbles	0
Max \# pebbles so far	0

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	1
Current \# pebbles	1
Max \# pebbles so far	1

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	2
Current \# pebbles	2
Max \# pebbles so far	2

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	3
Current \# pebbles	3
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	4
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	5
Current \# pebbles	1
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	6
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	7
Current \# pebbles	3
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	8
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	8
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(9) Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	9
Current \# pebbles	3
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(9) Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	10
Current \# pebbles	4
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(9) Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	11
Current \# pebbles	3
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(9) Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	12
Current \# pebbles	2
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(9) Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	13
Current \# pebbles	1
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(9) Can remove white pebble if all predecessors have pebbles

Use Pebbling Formulas...

CNF formulas encoding so-called pebble games on DAGs

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

- sources are true
- truth propagates upwards
- but sink is false

7. \bar{z}

Use Pebbling Formulas...

CNF formulas encoding so-called pebble games on DAGs

1.	u
2.	v
3.	w
4.	$\bar{u} \vee \bar{v} \vee x$
5.	$\bar{v} \vee \bar{w} \vee y$
6.	$\bar{x} \vee \bar{y} \vee z$
7.	\bar{z}

- sources are true
- truth propagates upwards
- but sink is false

Use Pebbling Formulas...

CNF formulas encoding so-called pebble games on DAGs

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

- sources are true
- truth propagates upwards
- but sink is false

7. \bar{z}

Use Pebbling Formulas...

CNF formulas encoding so-called pebble games on DAGs

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

- sources are true
- truth propagates upwards
- but sink is false

Use Pebbling Formulas...

CNF formulas encoding so-called pebble games on DAGs

1.	u
2.	v
3.	w
4.	$\bar{u} \vee \bar{v} \vee x$
5.	$\bar{v} \vee \bar{w} \vee y$
6.	$\bar{x} \vee \bar{y} \vee z$
7.	\bar{z}

- sources are true
- truth propagates upwards
- but sink is false

Extensive literature on pebbling time-space trade-offs from 1970s and 80s
Pebbling formulas studied by [Bonet et al. '98, Raz \& McKenzie '99, Ben-Sasson \& Wigderson '99] and others

Hope that pebbling properties of DAG somehow carry over to resolution refutations of pebbling formulas.

Use Pebbling Formulas...

CNF formulas encoding so-called pebble games on DAGs

1.	u
2.	v
3.	w
4.	$\bar{u} \vee \bar{v} \vee x$
5.	$\bar{v} \vee \bar{w} \vee y$
6.	$\bar{x} \vee \bar{y} \vee z$
7.	\bar{z}

- sources are true
- truth propagates upwards
- but sink is false

Extensive literature on pebbling time-space trade-offs from 1970s and 80s
Pebbling formulas studied by [Bonet et al. '98, Raz \& McKenzie '99, Ben-Sasson \& Wigderson '99] and others

Hope that pebbling properties of DAG somehow carry over to resolution refutations of pebbling formulas. Except...

. . . with Functions Substituted for Variables

Won't work - pebbling formulas solved by unit propagation, so supereasy
Make formula harder by substituting $x_{1} \oplus x_{2}$ for every variable x (also works for other Boolean functions with "right" properties):

$$
\begin{gathered}
\bar{x} \vee y \\
\Downarrow \\
\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \\
\Downarrow \\
\left(x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right)
\end{gathered}
$$

Now CNF formula inherits pebbling graph properties!

About the Experiments

- 12 graph families with varying space complexity
- 8 different substitution functions
- Total of 96 formula families with around 50 instances per family
- CDCL solvers Minisat 2.2.0 and Lingeling version 774
- Experiments
- with and without preprocessing
- with and without random shuffling of clauses and variables
- Intel Core i5-2500 3.3-GHz quad-core CPU with 8 GB of memory
- Time-out 1 hour per instance
- Massive amounts of data...

Example Results Without Preprocessing

Lingeling (no prepro.), eq_3

Looks nice. . . Easy formulas solved fast and hard formulas take longer time

Example Results with Preprocessing

Less nice. . . Which is not surprising

Caveats and Issues

Preprocessing dampens correlations

- To be expected - space of proof not captured during preprocessing
- By construction formulas amenable to preprocessing

Caveats and Issues

Preprocessing dampens correlations

- To be expected - space of proof not captured during preprocessing
- By construction formulas amenable to preprocessing

Artificial benchmarks

- True, but the only formulas where we know how to control space
- In general, computing space complexity probably PSPACE-complete

Caveats and Issues

Preprocessing dampens correlations

- To be expected - space of proof not captured during preprocessing
- By construction formulas amenable to preprocessing

Artificial benchmarks

- True, but the only formulas where we know how to control space
- In general, computing space complexity probably PSPACE-complete

Theory vs. practice

- In theory all substitution functions equal - not so in practice
- In theory graph pebbling space all that matters - but many source vertices make binary tree formulas "too easy"

Caveats and Issues

Preprocessing dampens correlations

- To be expected - space of proof not captured during preprocessing
- By construction formulas amenable to preprocessing

Artificial benchmarks

- True, but the only formulas where we know how to control space
- In general, computing space complexity probably PSPACE-complete

Theory vs. practice

- In theory all substitution functions equal - not so in practice
- In theory graph pebbling space all that matters - but many source vertices make binary tree formulas "too easy"

Varying width and space independently would be more convincing

- Very true, but provably impossible since space \geq width
- Want to see if space is "more fine-grained" hardness indicator

Some Open Questions

- Get similar results with preprocessing turned on?
- Do theoretical time-space trade-offs turn up in practice for CDCL solvers?
- How does space complexity (and other complexity measures) correlate with running time for algebraic SAT solvers?
- Understand relations of measures such as space and degree better for algebraic solvers (corresponding to polynomial calculus proof system)
- Build better SAT solvers based on algebra or geometry!

Summing up

- Modern CDCL SAT solvers amazingly successful in practice
- But poorly understood which formulas are easy or hard
- We propose space complexity as a measure of hardness in practice
- Don't claim conclusive evidence, but nontrivial correlations
- Believe there are more connections between proof complexity and SAT solving worth exploring

Thank you for your attention!

