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Proof Complexity and SAT Solving

Proof complexity

Satsifiability fundamental
problem in theoretical
computer science

SAT proven NP-complete by
Stephen Cook in 1971

Hence totally intractable in
worst case (probably)

One of the million dollar
“Millennium Problems”

SAT solving

Enormous progress in
performance last 10-15 years

State-of-the-art solvers can
deal with real-world instances
with millions of variables

But best solvers still based on
methods from early 1960s

Tiny formulas known that are
totally beyond reach

What makes formulas hard or easy in practice for SAT solvers?

What (if anything) can proof complexity say about this?
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SAT solving and Proof Complexity SAT solving and DPLL

From Proving Tautologies To Disproving CNF Formulas

Conjunctive normal form (CNF)

ANDs of ORs of variables or negated variables
(or conjunctions of disjunctive clauses)

Example:

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Proving that a formula in propositional logic is always satisfied
m

Proving that a CNF formula is never satisfied
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SAT solving and Proof Complexity SAT solving and DPLL

Some Terminology

Literal a: variable x or its negation x

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

k-CNF formula: CNF formula with clauses of size ≤ k
(assume k fixed)

Refer to clauses of CNF formula as axioms
(as opposed to derived clauses)
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SAT solving and Proof Complexity SAT solving and DPLL

The DPLL Method

Based on [Davis & Putnam ’60] and [Davis, Logemann & Loveland ’62]

Somewhat simplified description:

If F contains an empty clause (without literals), then report
“unsatisfiable”

Otherwise pick some variable x in F

Set x = 0, simplify F and try to refute recursively

Set x = 1, simplify F and try to refute recursively

If result in both cases “unsatisfiable”, then report “unsatisfiable”
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SAT solving and Proof Complexity SAT solving and DPLL

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨u) ∧ (y ∨u)

∧ (u∨ v) ∧ (x∨ v) ∧ (u∨w) ∧ (x∨u∨w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when falsfied clause
found
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SAT solving and Proof Complexity SAT solving and DPLL

State-of-the-art DPLL SAT solvers

Many more ingredients in modern SAT solvers, for instance:

Choice of pivot variables crucial

When reaching falsified clause, compute why partial assignment failed
— add this info to formula as new clause
Conflict-driven clause learning (CDCL)

Every once in a while, restart (but save computed info)
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SAT solving and Proof Complexity Proof Complexity and Resolution

Proof Complexity

Proof search algorithm: defines proof system with derivation rules

Proof complexity: study of proofs in such systems

Lower bounds: no algorithm can do better (even optimal one always
guessing the right move)

Upper bounds: gives hope for good algorithms if we can search for
proofs in system efficiently
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SAT solving and Proof Complexity Proof Complexity and Resolution

Resolution

Resolution rule:
B ∨ x C ∨ x

B ∨ C

Observation

If F is a satisfiable CNF formula and D is derived from clauses C1, C2 ∈ F
by the resolution rule, then F ∧D is satisfiable.

Prove F unsatisfiable by deriving the unsatisfiable empty clause ⊥
from F by resolution
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SAT solving and Proof Complexity Proof Complexity and Resolution

CDCL Solvers Generate Resolution Proofs

Simple example for DPLL:

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1
x

y u

z u v w

Conflict-driven clause learning adds “shortcut edges” in tree

But still yields resolution proof

True also for (most) preprocessing techniques
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SAT solving and Proof Complexity Proof Complexity and Resolution

The Theoretical Model

Goal: Refute given CNF formula (i.e., prove it is unsatisfiable)

Proof system operates with disjunctive clauses

Proof/refutation is “presented on blackboard”

Derivation steps:
I Write down clauses of CNF formula being refuted

(axiom clauses)
I Infer new clauses by resolution rule
I Erase clauses that are not currently needed (to save space on

blackboard)

Refutation ends when empty clause ⊥ is derived
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example CNF Formula

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

Defined in terms of directed acyclic graph (DAG):

source vertices true

truth propagates upwards

but sink vertex is false
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 0

largest clause seen on board 0

max # lines on board 0

Can write down axioms,
erase used clauses or
infer new clauses by resolution rule
(but only from clauses currently on
the board!)
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation
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2. v
3. w
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7. z

Blackboard bookkeeping

total # clauses on board 1

largest clause seen on board 1

max # lines on board 1

u Write down axiom 1: u
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation
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Write down axiom 1: u
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 3

largest clause seen on board 3

max # lines on board 3

u

v

u ∨ v ∨ x

Write down axiom 1: u
Write down axiom 2: v
Write down axiom 4: u ∨ v ∨ x

Jakob Nordström (KTH) Proof Complexity and Practical Hardness of SAT SAT Interactions ’12 14 / 32



SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 3

largest clause seen on board 3

max # lines on board 3

u

v

u ∨ v ∨ x

Write down axiom 1: u
Write down axiom 2: v
Write down axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x

Jakob Nordström (KTH) Proof Complexity and Practical Hardness of SAT SAT Interactions ’12 14 / 32



SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

largest clause seen on board 3

max # lines on board 4

u

v

u ∨ v ∨ x

v ∨ x

Write down axiom 1: u
Write down axiom 2: v
Write down axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x

Jakob Nordström (KTH) Proof Complexity and Practical Hardness of SAT SAT Interactions ’12 14 / 32



SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

largest clause seen on board 3

max # lines on board 4

u

v

u ∨ v ∨ x

v ∨ x

Write down axiom 2: v
Write down axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

largest clause seen on board 3

max # lines on board 4

u

v

v ∨ x

Write down axiom 2: v
Write down axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

largest clause seen on board 3

max # lines on board 4

u

v

v ∨ x

Write down axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
Erase the clause u
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

largest clause seen on board 3

max # lines on board 4

v

v ∨ x
Write down axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
Erase the clause u
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

largest clause seen on board 3

max # lines on board 4

v

v ∨ x
u and u ∨ v ∨ x

Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 5

largest clause seen on board 3

max # lines on board 4

v

v ∨ x

x

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 5

largest clause seen on board 3

max # lines on board 4

v

v ∨ x

x

Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 5

largest clause seen on board 3

max # lines on board 4

v

x
Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x

Jakob Nordström (KTH) Proof Complexity and Practical Hardness of SAT SAT Interactions ’12 14 / 32



SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 5

largest clause seen on board 3

max # lines on board 4

v

x
Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x
Erase the clause v
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 5

largest clause seen on board 3

max # lines on board 4

x Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x
Erase the clause v
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 6

largest clause seen on board 3

max # lines on board 4

x

x ∨ y ∨ z
Infer x from

v and v ∨ x
Erase the clause v ∨ x
Erase the clause v
Write down axiom 6: x ∨ y ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 6

largest clause seen on board 3

max # lines on board 4

x

x ∨ y ∨ z
Erase the clause v ∨ x
Erase the clause v
Write down axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 7

largest clause seen on board 3

max # lines on board 4

x

x ∨ y ∨ z

y ∨ z

Erase the clause v ∨ x
Erase the clause v
Write down axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 7

largest clause seen on board 3

max # lines on board 4

x

x ∨ y ∨ z

y ∨ z

Erase the clause v
Write down axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 7

largest clause seen on board 3

max # lines on board 4

x

y ∨ z
Erase the clause v
Write down axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 7

largest clause seen on board 3

max # lines on board 4

x

y ∨ z
Write down axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
Erase the clause x
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 7

largest clause seen on board 3

max # lines on board 4

y ∨ z Write down axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
Erase the clause x
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 8

largest clause seen on board 3

max # lines on board 4

y ∨ z

v ∨ w ∨ y
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
Erase the clause x
Write down axiom 5: v ∨ w ∨ y
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 8

largest clause seen on board 3

max # lines on board 4

y ∨ z

v ∨ w ∨ y
Erase the clause x ∨ y ∨ z
Erase the clause x
Write down axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 9

largest clause seen on board 3

max # lines on board 4

y ∨ z

v ∨ w ∨ y

v ∨ w ∨ z

Erase the clause x ∨ y ∨ z
Erase the clause x
Write down axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 9

largest clause seen on board 3

max # lines on board 4

y ∨ z

v ∨ w ∨ y

v ∨ w ∨ z

Erase the clause x
Write down axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 9

largest clause seen on board 3

max # lines on board 4

y ∨ z

v ∨ w ∨ z
Erase the clause x
Write down axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 9

largest clause seen on board 3

max # lines on board 4

y ∨ z

v ∨ w ∨ z
Write down axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 9

largest clause seen on board 3

max # lines on board 4

v ∨ w ∨ z Write down axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 10

largest clause seen on board 3

max # lines on board 4

v ∨ w ∨ z

v
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
Write down axiom 2: v
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 11

largest clause seen on board 3

max # lines on board 4

v ∨ w ∨ z

v

w

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
Write down axiom 2: v
Write down axiom 3: w
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 12

largest clause seen on board 3

max # lines on board 4

v ∨ w ∨ z

v

w

z

Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
Write down axiom 2: v
Write down axiom 3: w
Write down axiom 7: z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 12

largest clause seen on board 3

max # lines on board 4

v ∨ w ∨ z

v

w

z

Write down axiom 2: v
Write down axiom 3: w
Write down axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

largest clause seen on board 3

max # lines on board 5

v ∨ w ∨ z

v

w

z

w ∨ z

Write down axiom 2: v
Write down axiom 3: w
Write down axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

largest clause seen on board 3

max # lines on board 5

v ∨ w ∨ z

v

w

z

w ∨ z

Write down axiom 3: w
Write down axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

largest clause seen on board 3

max # lines on board 5

v ∨ w ∨ z

w

z

w ∨ z

Write down axiom 3: w
Write down axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

largest clause seen on board 3

max # lines on board 5

v ∨ w ∨ z

w

z

w ∨ z

Write down axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

largest clause seen on board 3

max # lines on board 5

w

z

w ∨ z

Write down axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

largest clause seen on board 3

max # lines on board 5

w

z

w ∨ z

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

largest clause seen on board 3

max # lines on board 5

w

z

w ∨ z

z

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

largest clause seen on board 3

max # lines on board 5

w

z

w ∨ z

z

Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

largest clause seen on board 3

max # lines on board 5

z

w ∨ z

z

Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

largest clause seen on board 3

max # lines on board 5

z

w ∨ z

z

Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w
Erase the clause w ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

largest clause seen on board 3

max # lines on board 5

z

z
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w
Erase the clause w ∨ z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

largest clause seen on board 3

max # lines on board 5

z

z
w and w ∨ z

Erase the clause w
Erase the clause w ∨ z
Infer ⊥ from

z and z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 15

largest clause seen on board 3

max # lines on board 5

z

z

⊥

w and w ∨ z
Erase the clause w
Erase the clause w ∨ z
Infer ⊥ from

z and z
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SAT solving and Proof Complexity Proof Complexity and Resolution

Complexity Measures for Resolution

Let n = size of formula

Length

# clauses in refutation — at most exp(n) [in our example: 15]

Width

Size of largest clause in refutation — at most n [in our example: 3]

Space

Max # clauses one needs to remember when “verifying correctness of
refutation on blackboard” — at most n (!) [in our example: 5]
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SAT solving and Proof Complexity Proof Complexity and Resolution

Length

Clearly lower bound on running time for any CDCL algorithm

But if there is a short refutation, not clear how to find it

In fact, probably intractable [Aleknovich & Razborov ’01]

So small length upper bound might be much too optimistic

Not the right measure of “hardness in practice”
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SAT solving and Proof Complexity Proof Complexity and Resolution

Length

Clearly lower bound on running time for any CDCL algorithm
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SAT solving and Proof Complexity Proof Complexity and Resolution

Length vs. Width

Searching for small width refutations known heuristic in AI community

Small width ⇒ small length (by counting)

But small length does not necessary imply small width — can have√
n width and linear length [Bonet & Galesi ’99]

So width stricter hardness measure than length

However, really large (e.g., linear) width implies really large
(exponential) length [Ben-Sasson & Wigderson ’99]

Small width ⇒ CDCL solver will provably be fast
[Atserias, Fichte & Thurley ’09]
(but slighly idealized theoretical model)

Right hardness measure?
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SAT solving and Proof Complexity Proof Complexity and Resolution

Width vs. Space

In practice, memory consumption is a very important bottleneck for
SAT solvers

So maybe space complexity can be relevant hardness measure?

Space ≥ width [Atserias & Dalmau ’03]

But small width does not say anything about space
[N. ’06], [N. & Håstad ’08], [Ben-Sasson & N. ’08]

So space stricter hardness measure than width
(but space model even more idealized)
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SAT solving and Proof Complexity Proof Complexity and Resolution

Space vs. Tree-like Space

Tree-like resolution: Only use each clause once
Have to rederive from scratch if needed again

Tree-like space: Usual space measure but restricted to such proofs

Proposed as practical measure of hardness of SAT instances in
[Ansótegui, Bonet, Levy & Manyà ’08]

Clearly tree-like space ≥ space but not known to be different

This work can be viewed as implementing program outlined in [ABLM08]
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SAT solving and Proof Complexity Our Results

Result 1: Separation of Space and Tree-like Space

We don’t believe in tree-like space as hardness measure

Tree-like space tightly connected with tree-like length

Corresponds to DPLL without clause learning

Would suggest CDCL doesn’t buy you anything

We prove first asymptotic separation of space and tree-like space

Theorem

There are formulas requiring space O(1) for which tree-like space grows
like Ω(log n)

Only constant-factor separation known before [Esteban & Torán ’03]
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SAT solving and Proof Complexity Our Results

Result 2: Small Backdoor Sets Imply Small Space

Backdoor sets: practically motivated hardness measure

First studied in [Williams, Gomes & Selman ’03]

Real-world SAT instances often have small backdoors

We show connections between backdoors and space complexity
(elaborating on [ABLM08])

Theorem (Informal)

If a formula has a small backdoor set, then it requires small space
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SAT solving and Proof Complexity Our Results

Result 3: Hardness in Practice Correlates with Space

Recall
log length ≤ width ≤ space ≤ tree-like space

Width and space seem like most promising hardness candidates

Run experiments on formulas with fixed complexity w.r.t. width (and
length) but varying space∗

Is running time essentially the same?

Or does it increase with increasing space?

Experimental results

Running times seem to correlate with space complexity∗∗

(*) But such formulas are nontrivial to find
(**) With some caveats to be discussed later
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Experiments Benchmark Formulas

How to Get Hold of Good Benchmark Formulas?

Questions about space complexity and time-space trade-offs fundamental
in theoretical computer science

In particular, well-studied (and well-understood) for pebble games
modelling calculations described by DAGs ([Cook & Sethi ’76] and others)

Time needed for calculation: # pebbling moves

Space needed for calculation: max # pebbles required

Some quick graph terminology

DAGs consist of vertices with directed edges between them

vertices with no incoming edges: sources

vertices with no outgoing edges: sinks
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Experiments Benchmark Formulas

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 0

Current # pebbles 0

Max # pebbles so far 0

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles
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Experiments Benchmark Formulas

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 1

Current # pebbles 1

Max # pebbles so far 1

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles
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Experiments Benchmark Formulas

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 2

Current # pebbles 2

Max # pebbles so far 2

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles
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Experiments Benchmark Formulas

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 3

Current # pebbles 3

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles
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Experiments Benchmark Formulas

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 4

Current # pebbles 2

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles
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The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 5

Current # pebbles 1

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles
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The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 6
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Max # pebbles so far 3
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The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 8

Current # pebbles 2

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex
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The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 9

Current # pebbles 3

Max # pebbles so far 3
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Experiments Benchmark Formulas

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 10

Current # pebbles 4

Max # pebbles so far 4

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles
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The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G
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x y

u v w

# moves 11

Current # pebbles 3

Max # pebbles so far 4
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Experiments Benchmark Formulas

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 12

Current # pebbles 2

Max # pebbles so far 4

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles
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Experiments Benchmark Formulas

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 13

Current # pebbles 1

Max # pebbles so far 4

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles
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Experiments Benchmark Formulas

Use Pebbling Formulas. . .

CNF formulas encoding so-called pebble games on DAGs

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

sources are true

truth propagates
upwards

but sink is false

Extensive literature on pebbling time-space trade-offs from 1970s and 80s

Pebbling formulas studied by [Bonet et al. ’98, Raz & McKenzie ’99,
Ben-Sasson & Wigderson ’99] and others

Hope that pebbling properties of DAG somehow carry over to resolution
refutations of pebbling formulas. Except. . .
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Experiments Benchmark Formulas

. . . with Functions Substituted for Variables

Won’t work — pebbling formulas solved by unit propagation, so supereasy

Make formula harder by substituting x1 ⊕ x2 for every variable x
(also works for other Boolean functions with “right” properties):

x ∨ y

⇓
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2)

⇓
(x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Now CNF formula inherits pebbling graph properties!
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Experiments Set-up

About the Experiments

12 graph families with varying space complexity

8 different substitution functions

Total of 96 formula families with around 50 instances per family

CDCL solvers Minisat 2.2.0 and Lingeling version 774

Experiments
I with and without preprocessing
I with and without random shuffling of clauses and variables

Intel Core i5-2500 3.3-GHz quad-core CPU with 8 GB of memory

Time-out 1 hour per instance

Massive amounts of data. . .
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Experiments Results

Example Results Without Preprocessing
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Looks nice. . . Easy formulas solved fast and hard formulas take longer time
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Experiments Results

Example Results with Preprocessing
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Less nice. . . Which is not surprising

Jakob Nordström (KTH) Proof Complexity and Practical Hardness of SAT SAT Interactions ’12 29 / 32



Experiments Results

Caveats and Issues

Preprocessing dampens correlations

To be expected — space of proof not captured during preprocessing

By construction formulas amenable to preprocessing

Artificial benchmarks

True, but the only formulas where we know how to control space

In general, computing space complexity probably PSPACE-complete

Theory vs. practice

In theory all substitution functions equal — not so in practice

In theory graph pebbling space all that matters — but many source
vertices make binary tree formulas “too easy”

Varying width and space independently would be more convincing

Very true, but provably impossible since space ≥ width

Want to see if space is “more fine-grained” hardness indicator
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Directions for Future Research

Some Open Questions

Get similar results with preprocessing turned on?

Do theoretical time-space trade-offs turn up in practice for CDCL
solvers?

How does space complexity (and other complexity measures) correlate
with running time for algebraic SAT solvers?

Understand relations of measures such as space and degree better for
algebraic solvers (corresponding to polynomial calculus proof system)

Build better SAT solvers based on algebra or geometry!
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Summing up

Modern CDCL SAT solvers amazingly successful in practice

But poorly understood which formulas are easy or hard

We propose space complexity as a measure of hardness in practice

Don’t claim conclusive evidence, but nontrivial correlations

Believe there are more connections between proof complexity and
SAT solving worth exploring

Thank you for your attention!
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