Understanding the Hardness of Proving Formulas in Propositional Logic

Jakob Nordström
KTH Royal Institute of Technology
Lund University
October 7, 2010
Joint work with Eli Ben-Sasson

A Fundamental Theoretical Problem. . .

Problem

Given a propositional logic formula F, is it true no matter how we assign values to its variables?

TAUTOLOGY: Fundamental problem in theoretical computer
science ever since Stephen Cook's NP-completeness paper in 1971
Also posed as one of the main challenges for all of mathematics in
the new millennium by the Clay Mathematics Institute
Widely believed intractable in worst case - deciding whether this is so is one of the famous million dollar Millennium Problems

A Fundamental Theoretical Problem...

Problem

Given a propositional logic formula F, is it true no matter how we assign values to its variables?

TAUTOLOGY: Fundamental problem in theoretical computer science ever since Stephen Cook's NP-completeness paper in 1971

Also posed as one of the main challenges for all of mathematics in the new millennium by the Clay Mathematics Institute

Widely believed intractable in worst case - deciding whether this is so is one of the famous million dollar Millennium Problems

... with Huge Practical Implications

- All known algorithms run in exponential time in worst case
- But enormous progress on applied computer programs last 10-15 years
- These so-called SAT-solvers are routinely deployed to solve large-scale real-world problems with 100 000s or even 1000 000s of variables
- Used in e.g. formal verification, software testing, artificial intelligence, bioinformatics, and more
- But also known small example formulas with only hundreds of variables that trip up even state-of-the-art SAT-solvers

What Makes Formulas Hard or Easy?

- Best known algorithms based on simple DPLL-method from 1960s (although with many clever optimizations)
- How can these SAT-solvers be so good in practice? And how can one determine whether a particular formula is tractable or too difficult?
- Key bottlenecks for SAT-solvers: time and memory
- What are the connections between these resources? Are they correlated? Are there trade-offs?
- This talk: What can the field of proof complexity say about these questions?

Outline

(1) SAT-solving and Proof Complexity

- Tautologies and CNF formulas
- SAT-solving and DPLL
- Proof Complexity and Resolution
(2) Time and Space Bounds and Trade-offs
- Previous Work
- Our Results
- Some Proof Ingredients
(3) Open Problems

Tautologies and CNF formulas

What Is a Tautology?

A tautological formula, or tautology, evaluates to true no matter how the variables are assigned values ($1=$ true or $0=$ false)

Example: "if x implies y, then not y implies not x, and vice versa'
In symbolic notation: $(x \rightarrow y) \leftrightarrow(\neg y \rightarrow \neg x)$
Varification by truth table

x	y	$x \rightarrow y$	$\neg y \rightarrow \neg x$	$(x \rightarrow y) \leftrightarrow(\neg y \rightarrow \neg x)$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	1	1	1

Non-example: $(x \rightarrow y) \leftrightarrow(y \rightarrow x)$
False for e.g. $x=0$ and $y=1$, so not a tautology

Tautologies and CNF formulas

What Is a Tautology?

A tautological formula, or tautology, evaluates to true no matter how the variables are assigned values ($1=$ true or $0=$ false $)$

Example: "if x implies y, then not y implies not x, and vice versa" In symbolic notation: $(x \rightarrow y) \leftrightarrow(\neg y \rightarrow \neg x)$

Verification by truth table:

x	y	$x \rightarrow y$	$\neg y \rightarrow \neg x$	$(x \rightarrow y) \leftrightarrow(\neg y \rightarrow \neg x)$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	1	1	1

Non-example: $(x \rightarrow y) \leftrightarrow(y \rightarrow x)$
False for e.g. $x=0$ and $y=1$, so not a tautology

Tautologies and CNF formulas

What Is a Tautology?

A tautological formula, or tautology, evaluates to true no matter how the variables are assigned values ($1=$ true or $0=$ false $)$

Example: "if x implies y, then not y implies not x, and vice versa" In symbolic notation: $(x \rightarrow y) \leftrightarrow(\neg y \rightarrow \neg x)$

Verification by truth table:

x	y	$x \rightarrow y$	$\neg y \rightarrow \neg x$	$(x \rightarrow y) \leftrightarrow(\neg y \rightarrow \neg x)$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	1	1	1

Tautologies and CNF formulas

What Is a Tautology?

A tautological formula, or tautology, evaluates to true no matter how the variables are assigned values ($1=$ true or $0=$ false)

Example: "if x implies y, then not y implies not x, and vice versa" In symbolic notation: $(x \rightarrow y) \leftrightarrow(\neg y \rightarrow \neg x)$

Verification by truth table:

x	y	$x \rightarrow y$	$\neg y \rightarrow \neg x$	$(x \rightarrow y) \leftrightarrow(\neg y \rightarrow \neg x)$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	1	1	1

Non-example: $(x \rightarrow y) \leftrightarrow(y \rightarrow x)$
False for e.g. $x=0$ and $y=1$, so not a tautology

CNF Formulas

In what follows, focus on formulas in a specific format

Conjunctive normal form (CNF)

ANDs of ORs of variables or negated variables

 (or conjunctions of disjunctive clauses)Example:

$$
\begin{aligned}
& (x \vee z) \wedge(y \vee \neg z) \wedge(x \vee \neg y \vee u) \wedge(\neg y \vee \neg u) \\
\wedge & (u \vee v) \wedge(\neg x \vee \neg v) \wedge(\neg u \vee w) \wedge(\neg x \vee \neg u \vee \neg w)
\end{aligned}
$$

A Change of Perspective

Any formula in propositional logic can be written in conjunctive normal form

Proving that a formula is always satisfied
 Proving that a formula is never satisfied (just add a negation)

So for the rest of this talk focus on refuting unsatisfiable CNF formulas

Tautologies and CNF formulas

A Change of Perspective

Any formula in propositional logic can be written in conjunctive normal form

Proving that a formula is always satisfied I
Proving that a formula is never satisfied (just add a negation)

A Change of Perspective

Any formula in propositional logic can be written in conjunctive normal form

Proving that a formula is always satisfied I
Proving that a formula is never satisfied (just add a negation)

So for the rest of this talk focus on refuting unsatisfiable CNF formulas

Some Terminology

- Literal a : variable x or its negation (from now on write \bar{x} instead of $\neg x$)
- Clause $C=a_{1} \vee \cdots \vee a_{k}$: disjunction of literals (Consider as sets, so no repetitions and order irrelevant)
- CNF formula $F=C_{1} \wedge \cdots \wedge C_{m}$: conjunction of clauses
- k-CNF formula: CNF formula with clauses of size $\leq k$ (assume k fixed)
- Refer to clauses of CNF formula as axioms (as opposed to derived clauses)

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62]

Somewhat simplified description:

- If F contains an empty clause (without literals), then report "unsatisfiable"
- Otherwise pick some variable x in F
- Set $x=0$, simplify F and try to refute recursively
- Set $x=1$, simplify F and try to refute recursively
- If result in both cases "unsatisfiable", then report "unsatisfiable"

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62]

Somewhat simplified description:

- If F contains an empty clause (without literals), then report "unsatisfiable"
- Otherwise pick some variable x in F
- Set $x=0$, simplify F and try to refute recursively
- Set $x=1$, simplify F and try to refute recursively
- If result in both cases "unsatisfiable", then report "unsatisfiable"

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62]

Somewhat simplified description:

- If F contains an empty clause (without literals), then report "unsatisfiable"
- Otherwise pick some variable x in F
- Set $x=0$, simplify F and try to refute recursively
- Set $x=1$, simplify F and try to refute recursively
- If result in both cases "unsatisfiable", then report "unsatisfiable"

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62]

Somewhat simplified description:

- If F contains an empty clause (without literals), then report "unsatisfiable"
- Otherwise pick some variable x in F
- Set $x=0$, simplify F and try to refute recursively

- If result in both cases "unsatisfiable", then report "unsatisfiable"

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62]

Somewhat simplified description:

- If F contains an empty clause (without literals), then report "unsatisfiable"
- Otherwise pick some variable x in F
- Set $x=0$, simplify F and try to refute recursively
- Set $x=1$, simplify F and try to refute recursively
- If result in both cases "unsatisfiable", then report "unsatisfiable"

The DPLL Method

Based on [Davis \& Putnam '60] and [Davis, Logemann \& Loveland '62]

Somewhat simplified description:

- If F contains an empty clause (without literals), then report "unsatisfiable"
- Otherwise pick some variable x in F
- Set $x=0$, simplify F and try to refute recursively
- Set $x=1$, simplify F and try to refute recursively
- If result in both cases "unsatisfiable", then report "unsatisfiable"

Tautologies and CNF formulas
Proof Complexity and Resolution

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
\wedge & (u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (v \vee z) \wedge(y \vee \bar{z}) \wedge(\vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (v \vee z) \wedge(y \vee \bar{z}) \wedge(v \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(v \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (v \vee z) \wedge(y \vee \bar{z}) \wedge(v \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

A DPLL Toy Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(y \vee \bar{z}) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

Visualize execution of DPLL algorithm as search tree
Pick variables in internal nodes; terminate in leaves when falsfied clause found

State-of-the-art DPLL SAT-solvers

Many more ingredients in modern SAT-solvers, for instance:

- Choice of pivot variables crucial
- When reaching falsified clause, compute why partial assignment failed - add this info to formula as new clause (clause learning)
- Every once in a while, restart from beginning (but save computed info)

Proof Complexity

Proof search algorithm: defines proof system with derivation rules
Proof complexity: study of proofs in such systems

- Lower bounds: no algorithm can do better (even optimal one always guessing the right move)
- Upper bounds: gives hope for good algorithms if we can search for proofs in system efficiently

Tautologies and CNF formulas

Resolution

Resolution rule:

$$
\frac{B \vee x \quad C \vee \bar{x}}{B \vee C}
$$

Observation
If F is a satisfiable CNF formula and D is derived from clauses $C_{1}, C_{2} \in F$ by the resolution rule, then $F \wedge D$ is satisfiable.

Prove F unsatisfiable by deriving the unsatisfiable empty clause 0 from F by resolution

Tautologies and CNF formulas

Resolution

Resolution rule:

$$
\frac{B \vee x \quad C \vee \bar{x}}{B \vee C}
$$

Observation

If F is a satisfiable CNF formula and D is derived from clauses $C_{1}, C_{2} \in F$ by the resolution rule, then $F \wedge D$ is satisfiable.

Prove F unsatisfiable by deriving the unsatisfiable empty clause 0 from F by resolution

Resolution

Resolution rule:

$$
\frac{B \vee x \quad C \vee \bar{x}}{B \vee C}
$$

Observation

If F is a satisfiable CNF formula and D is derived from clauses $C_{1}, C_{2} \in F$ by the resolution rule, then $F \wedge D$ is satisfiable.

Prove F unsatisfiable by deriving the unsatisfiable empty clause 0 from F by resolution

DPLL and Resolution

A DPLL execution is essentially a resolution proof
Look at our example again

DPLL and Resolution

A DPLL execution is essentially a resolution proof
Look at our example again

and apply resolution rule bottom-up

DPLL and Resolution

A DPLL execution is essentially a resolution proof
Look at our example again

and apply resolution rule bottom-up

DPLL and Resolution

A DPLL execution is essentially a resolution proof
Look at our example again

and apply resolution rule bottom-up

DPLL and Resolution

A DPLL execution is essentially a resolution proof
Look at our example again

and apply resolution rule bottom-up

The Theoretical Model

- Goal: Refute given CNF formula (i.e., prove it is unsatisfiable)
- Proof system operates with disjunctive clauses
- Proof/refutation is "presented on blackboard"
- Derivation steps:
- Write down clauses of CNF formula being refuted (axiom clauses)
- Infer new clauses by resolution rule
- Erase clauses that are not currently needed (to save space on blackboard)
- Refutation ends when empty clause 0 is derived

Example CNF Formula

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

Defined in terms of directed acyclic graph (DAG):

- source vertices true
- truth propagates upwards
- but sink vertex is false

Example CNF Formula

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

Defined in terms of directed acyclic graph (DAG):

- source vertices true
- truth propagates upwards
- but sink vertex is false

Example CNF Formula

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

Defined in terms of directed acyclic graph (DAG):

- source vertices true
- truth propagates upwards
- but sink vertex is false

Example CNF Formula

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

Defined in terms of directed acyclic graph (DAG):

- source vertices true
- truth propagates upwards
- but sink vertex is false

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	0
max \# lines on board	0
max \# literals on board	0

Can write down axioms, erase used clauses or infer new clauses by resolution rule

$$
\frac{B \vee x \quad C \vee \bar{x}}{B \vee C}
$$

(but only from clauses currently on the board!)

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}
u

Blackboard bookkeeping	
total \# clauses on board	1
max \# lines on board	1
max \# literals on board	1

Write down axiom 1: u

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	2
max \# lines on board	2
max \# literals on board	2

Write down axiom 1: u
Write down axiom 2: v

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

u

v
$\bar{u} \vee \bar{v} \vee x$

Blackboard bookkeeping	
total \# clauses on board	3
max \# lines on board	3
max \# literals on board	5

> Write down axiom 1: u
> Write down axiom 2: v
> Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	3
max \# lines on board	3
max \# literals on board	5

Write down axiom 1: u
Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$ Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

u

v
$\bar{u} \vee \bar{v} \vee x$
$\bar{v} \vee x$

Blackboard bookkeeping	
total \# clauses on board	4
max \# lines on board	4
max \# literals on board	7

Write down axiom 1: u
Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$ Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

u

v
$\bar{u} \vee \bar{v} \vee x$
$\bar{v} \vee x$

Blackboard bookkeeping	
total \# clauses on board	4
max \# lines on board	4
max \# literals on board	7

Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$
Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

u

v
$\bar{v} \vee x$

Blackboard bookkeeping	
total \# clauses on board	4
max \# lines on board	4
max \# literals on board	7

Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$
Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

u

v
$\bar{v} \vee x$

Blackboard bookkeeping	
total \# clauses on board	4
max \# lines on board	4
max \# literals on board	7

Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$ Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
v
$$

$$
\bar{v} \vee x
$$

Blackboard bookkeeping	
total \# clauses on board	4
max \# lines on board	4
max \# literals on board	7

Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$ Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	4
max \# lines on board	4
max \# literals on board	7

v

$\bar{v} \vee x$
u and $\bar{u} \vee \bar{v} \vee x$
Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	5
max \# lines on board	4
max \# literals on board	7

v

$\bar{v} \vee x$
x
u and $\bar{u} \vee \bar{v} \vee x$
Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u
Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	5
max \# lines on board	4
max \# literals on board	7

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u
Infer x from
v and $\bar{v} \vee x$
Erase the clause $\bar{v} \vee x$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	5
max \# lines on board	4
max \# literals on board	7

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u
Infer x from
v and $\bar{v} \vee x$
Erase the clause $\bar{v} \vee x$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	5
max \# lines on board	4
max \# literals on board	7

Erase the clause u Infer x from v and $\bar{v} \vee x$
Erase the clause $\bar{v} \vee x$ Erase the clause v

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	5
max \# lines on board	4
max \# literals on board	7

Erase the clause u Infer x from v and $\bar{v} \vee x$
Erase the clause $\bar{v} \vee x$ Erase the clause v

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	6
max \# lines on board	4
max \# literals on board	7

$$
x
$$

$\bar{x} \vee \bar{y} \vee z$

Infer x from
v and $\bar{v} \vee x$
Erase the clause $\bar{v} \vee x$
Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}
```
x
\overline{x}\vee\overline{y}\veez
```


Blackboard bookkeeping

total \# clauses on board	6
max \# lines on board	4
max \# literals on board	7

Erase the clause $\bar{v} \vee x$
Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

x

$\bar{x} \vee \bar{y} \vee z$
$\bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	7
max \# lines on board	4
max \# literals on board	7

Erase the clause $\bar{v} \vee x$
Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
x
$$

$\bar{x} \vee \bar{y} \vee z$
$\bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	7
max \# lines on board	4
max \# literals on board	7

Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Erase the clause $\bar{x} \vee \bar{y} \vee z$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

x

$\bar{y} \vee z$

Blackboard bookkeeping

total \# clauses on board	7
max \# lines on board	4
max \# literals on board	7

Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Erase the clause $\bar{x} \vee \bar{y} \vee z$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

x

$\bar{y} \vee z$

Blackboard bookkeeping	
total \# clauses on board	7
max \# lines on board	4
max \# literals on board	7

Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$ Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Erase the clause $\bar{x} \vee \bar{y} \vee z$
Erase the clause x

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	7
max \# lines on board	4
max \# literals on board	7

Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$ Infer $\bar{y} \vee z$ from x and $\bar{x} \vee \bar{y} \vee z$
Erase the clause $\bar{x} \vee \bar{y} \vee z$ Erase the clause x

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	8
max \# lines on board	4
max \# literals on board	7

Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Erase the clause $\bar{x} \vee \bar{y} \vee z$
Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee y
\end{aligned}
$$

Blackboard bookkeeping	
total \# clauses on board	8
max \# lines on board	4
max \# literals on board	7

Erase the clause $\bar{x} \vee \bar{y} \vee z$ Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee y \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Blackboard bookkeeping	
total \# clauses on board	9
max \# lines on board	4
max \# literals on board	8

Erase the clause $\bar{x} \vee \bar{y} \vee z$ Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee y \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Blackboard bookkeeping	
total \# clauses on board	9
max \# lines on board	4
max \# literals on board	8

Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$
Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Blackboard bookkeeping	
total \# clauses on board	9
max \# lines on board	4
max \# literals on board	8

Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$
Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Blackboard bookkeeping	
total \# clauses on board	9
max \# lines on board	4
max \# literals on board	8

Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from $\bar{y} \vee z$ and $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
\bar{v} \vee \bar{w} \vee z
$$

Blackboard bookkeeping	
total \# clauses on board	9
max \# lines on board	4
max \# literals on board	8

Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from $\bar{y} \vee z$ and $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	10
max \# lines on board	4
max \# literals on board	8

Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$
Write down axiom 2: v

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
\bar{v} \vee \bar{w} \vee z
$$

v
w

Blackboard bookkeeping	
total \# clauses on board	11
max \# lines on board	4
max \# literals on board	8

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$
Write down axiom 2: v
Write down axiom 3: w

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
\bar{v} \vee \bar{w} \vee z
$$

$$
v
$$

w
\bar{z}

Blackboard bookkeeping	
total \# clauses on board	12
max \# lines on board	4
max \# literals on board	8

Erase the clause $\bar{v} \vee \bar{w} \vee y$ Erase the clause $\bar{y} \vee z$
Write down axiom 2: v
Write down axiom 3: w
Write down axiom 7: \bar{z}

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	12
max \# lines on board	4
max \# literals on board	8

Write down axiom 2: v
Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from

$$
v \text { and } \bar{v} \vee \bar{w} \vee z
$$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	13
max \# lines on board	5
max \# literals on board	8

Write down axiom 2: v
Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}
```
v}\vee\overline{w}\vee
v
w
z
w}\vee
```

Blackboard bookkeeping	
total \# clauses on board	13
max \# lines on board	5
max \# literals on board	8

Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$
Erase the clause v

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}
```
v}\vee\overline{w}\vee
w
z
w}\vee
```

Blackboard bookkeeping	
total \# clauses on board	13
max \# lines on board	5
max \# literals on board	8

Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$
Erase the clause v

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	13
max \# lines on board	5
max \# literals on board	8

Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$
Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	13
max \# lines on board	5
max \# literals on board	8

Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from v and $\bar{v} \vee \bar{w} \vee z$
Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	13
max \# lines on board	5
max \# literals on board	8

$$
v \text { and } \bar{v} \vee \bar{w} \vee z
$$

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$
Infer z from

$$
w \text { and } \bar{w} \vee z
$$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	14
max \# lines on board	5
max \# literals on board	8

w
\bar{z}
$\bar{w} \vee z$
z
v and $\bar{v} \vee \bar{w} \vee z$
Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$
Infer z from

$$
w \text { and } \bar{w} \vee z
$$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	14
max \# lines on board	5
max \# literals on board	8

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$
Infer z from
w and $\bar{w} \vee z$
Erase the clause w

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	14
max \# lines on board	5
max \# literals on board	8

```
z
w}\vee
z
```

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$
Infer z from
w and $\bar{w} \vee z$
Erase the clause w

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	14
max \# lines on board	5
max \# literals on board	8

Erase the clause $\bar{v} \vee \bar{w} \vee z$ Infer z from

$$
w \text { and } \bar{w} \vee z
$$

Erase the clause w
Erase the clause $\bar{w} \vee z$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	14
max \# lines on board	5
max \# literals on board	8

Erase the clause $\bar{v} \vee \bar{w} \vee z$ Infer z from

$$
w \text { and } \bar{w} \vee z
$$

Erase the clause w
Erase the clause $\bar{w} \vee z$

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	14
max \# lines on board	5
max \# literals on board	8

w and $\bar{w} \vee z$
Erase the clause w
Erase the clause $\bar{w} \vee z$
Infer 0 from
\bar{z} and z

Tautologies and CNF formulas

Example Resolution Refutation

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Blackboard bookkeeping	
total \# clauses on board	15
max \# lines on board	5
max \# literals on board	8

\bar{z}

w and $\bar{w} \vee z$
Erase the clause w
Erase the clause $\bar{w} \vee z$
Infer 0 from
\bar{z} and z

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

\# clauses written on blackboard counted with repetitions

Space
Somewhat less straightforward - several ways of measuring

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

\# clauses written on blackboard counted with repetitions

Space
Somewhat less straightforward - several ways of measuring

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

\# clauses written on blackboard counted with repetitions

Space

Somewhat less straightforward - several ways of measuring

```
x
y \vee z
v}\vee\overline{w}\vee
```


Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

\# clauses written on blackboard counted with repetitions

Space

Somewhat less straightforward - several ways of measuring

```
1. x
2. }\overline{y}\vee
3. }\overline{v}\vee\overline{w}\vee
```

Clause space:

Total space:

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

\# clauses written on blackboard counted with repetitions

Space

Somewhat less straightforward - several ways of measuring

$$
\begin{aligned}
& x^{1} \\
& \bar{y}^{2} \vee z^{3} \\
& \bar{v}^{4} \vee \bar{w}^{5} \vee y^{6}
\end{aligned}
$$

Clause space:

Total space:
6

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

\# clauses written on blackboard counted with repetitions
(in our example resolution refutation 15)

Space

Somewhat less straightforward - several ways of measuring

```
x
y}\vee
v}\vee\overline{w}\vee
```

Clause space:
(in our refutation 5)
Total space:
6
(in our refutation 8)

Length and Space Bounds for Resolution

Let $n=$ size of formula
Length: at most 2^{n}
Matching lower bound up to constant factors in exponent
[Urquhart '87, Chvátal \& Szemerédi '88]
Clause space: at most n
Matching lower bound up to constant factors [Torán '99,
Alekhnovich et al. '00]
Total space: at most n^{2}
No better lower bound than linear in $n!$?
[Sidenote: space bounds hold even for "magic algorithms'

Length and Space Bounds for Resolution

Let $n=$ size of formula
Length: at most 2^{n}
Matching lower bound up to constant factors in exponent
[Urquhart '87, Chvátal \& Szemerédi '88]
Clause space: at most n
Matching lower bound up to constant factors [Torán '99,
Alekhnovich et al. '00]
Total space: at most n^{2}
No better lower bound than linear in $n!$?
[Sidenote: space bounds hold even for "magic algorithms" always making optimal choices - so might be much stronger in practice]

Comparing Length and Space

Some "rescaling" needed to get meaningful comparisons of length and space

- Length exponential in formula size in worst case
- Clause space at most linear
- So natural to compare space to logarithm of length

Length-Space Correlations and/or Trade-offs?

\exists constant space refutation $\Rightarrow \exists$ polynomial length refutation [Atserias \& Dalmau '03]

Does short length imply small space?
Open — even no consensus on likely "right answer"
Essentially nothing known about length space trade offs for resolution refutations in the general, unrestricted proof system
(Some trade-off results in restricted settings in [Ben-Sasson '02, Nordström '07])

Length-Space Correlations and/or Trade-offs?

\exists constant space refutation $\Rightarrow \exists$ polynomial length refutation [Atserias \& Dalmau '03]

Does short length imply small space?
Open — even no consensus on likely "right answer"

> Essentially nothing known about length-space trade-offs for resolution refutations in the general, unrestricted proof system (Some trade-off results in restricted settings in [Ben-Sasson '02, Nordström '07])

Length-Space Correlations and/or Trade-offs?

\exists constant space refutation $\Rightarrow \exists$ polynomial length refutation [Atserias \& Dalmau '03]

Does short length imply small space?
Open — even no consensus on likely "right answer"
Essentially nothing known about length-space trade-offs for resolution refutations in the general, unrestricted proof system
(Some trade-off results in restricted settings in [Ben-Sasson '02, Nordström '07])

Our results 1: An Optimal Length-Space Separation

Length and space in resolution are "completely uncorrelated"

Theorem

There are k-CNF formula families of size n with

- refutation length linear in n requiring
- clause space growing like $n / \log n$

Optimal separation of length and space - given length n, always possible to achieve clause space $\approx n / \log n$ (within constant factors)

Our Results 2: Length-Space Trade-offs

We prove collection of length-space trade-offs
Results hold for

- resolution
- even stronger proof systems (which we won't go into here)

Different trade-offs covering (almost) whole range of space from constant to linear

Simple, explicit formulas

One Example: Robust Trade-offs for Small Space

Theorem

For any arbitrarily slowly growing function g there exist explicit CNF formulas of size n

- refutable in space $g(n)$ and
- refutable in length linear in n and space $\approx \sqrt[3]{n}$ such that
- any resolution refutation in space $\ll \sqrt[3]{n}$ requires

One Example: Robust Trade-offs for Small Space

Theorem

For any arbitrarily slowly growing function g there exist explicit CNF formulas of size n

- refutable in space $g(n)$ and
- refutable in length linear in n and space $\approx \sqrt[3]{n}$ such that
- any resolution refutation in space $\ll \sqrt[3]{n}$ requires

One Example: Robust Trade-offs for Small Space

Theorem

For any arbitrarily slowly growing function g there exist explicit CNF formulas of size n

- refutable in space $g(n)$ and
- refutable in length linear in n and space $\approx \sqrt[3]{n}$ such that
- any resolution refutation in space $\ll \sqrt[3]{n}$ requires

One Example: Robust Trade-offs for Small Space

Theorem

For any arbitrarily slowly growing function g there exist explicit CNF formulas of size n

- refutable in space $g(n)$ and
- refutable in length linear in n and space $\approx \sqrt[3]{n}$ such that
- any resolution refutation in space $\ll \sqrt[3]{n}$ requires superpolynomial length

How to Get a Handle on Time-Space Relations?

Questions about time-space trade-offs fundamental in theoretical computer science

In particular, well-studied (and well-understood) for
pebble games modelling calculations described by DAGs ([Cook \& Sethi '76] and many others)

- Time needed for calculation: \# pebbling moves
- Space needed for calculation: max \# pebbles required
- DAGs consist of vertices with directed edges between them
- vertices with no incoming edges: sources
- vertices with no outgoing edges: sinks

How to Get a Handle on Time-Space Relations?

Questions about time-space trade-offs fundamental in theoretical computer science

In particular, well-studied (and well-understood) for pebble games modelling calculations described by DAGs ([Cook \& Sethi '76] and many others)

- Time needed for calculation: \# pebbling moves
- Space needed for calculation: max \# pebbles required
- DAGs consist of vertices with directed edges between them
- vertices with no incoming edges:
- vertices with no outgoing edges:

How to Get a Handle on Time-Space Relations?

Questions about time-space trade-offs fundamental in theoretical computer science

In particular, well-studied (and well-understood) for pebble games modelling calculations described by DAGs ([Cook \& Sethi '76] and many others)

- Time needed for calculation: \# pebbling moves
- Space needed for calculation: max \# pebbles required

Some quick graph terminology

- DAGs consist of vertices with directed edges between them
- vertices with no incoming edges: sources
- vertices with no outgoing edges: sinks

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	0
Current \# pebbles	0
Max \# pebbles so far	0

© Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
© Can always place white pebble on (empty) vertex
(Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	1
Current \# pebbles	1
Max \# pebbles so far	1

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(Can always place white pebble on (empty) vertex
(드 Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	2
Current \# pebbles	2
Max \# pebbles so far	2

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(Can always place white pebble on (empty) vertex
(드 Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	3
Current \# pebbles	3
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(Can always place white pebble on (empty) vertex
(드 Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	4
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
© Can always place white pebble on (empty) vertex
(Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	5
Current \# pebbles	1
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	6
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
© Can f all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	7
Current \# pebbles	3
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
© Can f all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	8
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
© Can f all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	8
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(1) Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	9
Current \# pebbles	3
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(1) Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	10
Current \# pebbles	4
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(1) Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	11
Current \# pebbles	3
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(1) Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	12
Current \# pebbles	2
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(1) Can remove white pebble if all predecessors have pebbles

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

\# moves	13
Current \# pebbles	1
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all predecessors (vertices with edges to v) have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(1) Can remove white pebble if all predecessors have pebbles

Pebbling Contradiction

CNF formula encoding pebble game on DAG G

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

- sources are true
- truth propagates upwards
- but sink is false

7. \bar{z}

Studied by [Bonet et al. '98, Raz \& McKenzie '99, Ben-Sasson \& Wigderson '99] and others

Our hope is that pebbling properties of DAG somehow carry over to resolution refutations of pebbling contradictions

Pebbling Contradiction

CNF formula encoding pebble game on DAG G

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

- sources are true
- truth propagates upwards
- but sink is false

7. \bar{z}

Studied by [Bonet et al. '98, Raz \& McKenzie '99, Ben-Sasson \& Wigderson '99] and others

Our hope is that pebbling properties of DAG somehow carry over to resolution refutations of pebbling contradictions

Interpreting Refutations as Black-White Pebblings

Black-white pebbling models non-deterministic computation (where one can guess partial results and verify later)

- black pebbles \Leftrightarrow computed results
- white pebbles \Leftrightarrow guesses needing to be verified

Interpreting Refutations as Black-White Pebblings

Black-white pebbling models non-deterministic computation (where one can guess partial results and verify later)

- black pebbles \Leftrightarrow computed results
- white pebbles \Leftrightarrow guesses needing to be verified

Interpreting Refutations as Black-White Pebblings

Black-white pebbling models non-deterministic computation (where one can guess partial results and verify later)

- black pebbles \Leftrightarrow computed results
- white pebbles \Leftrightarrow guesses needing to be verified

Corresponds to $(v \wedge w) \rightarrow z$, i.e., blackboard clause $\bar{v} \vee \bar{w} \vee z$

So translate clauses to pebbles by: unnegated variable \Rightarrow black pebble negated variable \Rightarrow white pebble

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

u
Write down axiom 1: u

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Write down axiom 1: u
Write down axiom 2: v

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

u
v
$\bar{u} \vee \bar{v} \vee x$

Write down axiom 1: u
Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

u
v
$\bar{u} \vee \bar{v} \vee x$

Write down axiom 1: u
Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$
Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

u
v
$\bar{u} \vee \bar{v} \vee x$
$\bar{v} \vee x$

Write down axiom 1: u
Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$
Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
\begin{aligned}
& u \\
& v \\
& \bar{u} \vee \bar{v} \vee x \\
& \bar{v} \vee x
\end{aligned}
$$

Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$ Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

u

v
$\bar{v} \vee x$

Write down axiom 2: v
Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$ Infer $\bar{v} \vee x$ from

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

u
v
$\bar{v} \vee x$

Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$
Infer $\bar{v} \vee x$ from
u and $\bar{u} \vee \bar{v} \vee x$
Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

v
$\bar{v} \vee x$

Write down axiom 4: $\bar{u} \vee \bar{v} \vee x$ Infer $\bar{v} \vee x$ from
u and $\bar{u} \vee \bar{v} \vee x$
Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& v \\
& \bar{v} \vee x
\end{aligned}
$$

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}
```
v
v}\vee
x
```

$$
u \text { and } \bar{u} \vee \bar{v} \vee x
$$

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

v
$\bar{v} \vee x$
x

Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u
Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Erase the clause $\bar{v} \vee x$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

v
Erase the clause $\bar{u} \vee \bar{v} \vee x$
Erase the clause u
Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Erase the clause $\bar{v} \vee x$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

v
x

Erase the clause u Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Erase the clause $\bar{v} \vee x$
Erase the clause v

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

x

Erase the clause u Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Erase the clause $\bar{v} \vee x$
Erase the clause v

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}
```
x
x}\vee\overline{y}\vee
```

Infer x from

$$
v \text { and } \bar{v} \vee x
$$

Erase the clause $\bar{v} \vee x$
Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}
```
x
x}\vee\overline{y}\vee
```

Erase the clause $\bar{v} \vee x$

Erase the clause v

Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& x \\
& \bar{x} \vee \bar{y} \vee z \\
& \bar{y} \vee z
\end{aligned}
$$

Erase the clause $\bar{v} \vee x$

Erase the clause v

Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& x \\
& \bar{x} \vee \bar{y} \vee z \\
& \bar{y} \vee z
\end{aligned}
$$

Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from
x and $\bar{x} \vee \bar{y} \vee z$
Erase the clause $\bar{x} \vee \bar{y} \vee z$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
\begin{aligned}
& x \\
& \bar{y} \vee z
\end{aligned}
$$

Erase the clause v
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from
x and $\bar{x} \vee \bar{y} \vee z$
Erase the clause $\bar{x} \vee \bar{y} \vee z$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$$
\begin{aligned}
& x \\
& \bar{y} \vee z
\end{aligned}
$$

Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from
x and $\bar{x} \vee \bar{y} \vee z$
Erase the clause $\bar{x} \vee \bar{y} \vee z$
Erase the clause x

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

$\bar{y} \vee z$
Write down axiom 6: $\bar{x} \vee \bar{y} \vee z$
Infer $\bar{y} \vee z$ from
x and $\bar{x} \vee \bar{y} \vee z$
Erase the clause $\bar{x} \vee \bar{y} \vee z$
Erase the clause x

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee y
\end{aligned}
$$

Infer $\bar{y} \vee z$ from

$$
x \text { and } \bar{x} \vee \bar{y} \vee z
$$

Erase the clause $\bar{x} \vee \bar{y} \vee z$
Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee y
\end{aligned}
$$

Erase the clause $\bar{x} \vee \bar{y} \vee z$

Erase the clause x

Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$
Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee y \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Erase the clause $\bar{x} \vee \bar{y} \vee z$

Erase the clause x

Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$
Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee y \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Erase the clause x
Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{y} \vee z \\
& \bar{v} \vee \bar{w} \vee z
\end{aligned}
$$

Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from $\bar{y} \vee z$ and $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\bar{v} \vee \bar{w} \vee z
$$

Write down axiom 5: $\bar{v} \vee \bar{w} \vee y$ Infer $\bar{v} \vee \bar{w} \vee z$ from $\bar{y} \vee z$ and $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{v} \vee \bar{w} \vee z \\
& v
\end{aligned}
$$

Infer $\bar{v} \vee \bar{w} \vee z$ from

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$
Write down axiom 2: v

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{v} \vee \bar{w} \vee z \\
& v
\end{aligned}
$$

$$
\bar{y} \vee z \text { and } \bar{v} \vee \bar{w} \vee y
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$
Erase the clause $\bar{y} \vee z$
Write down axiom 2: v
Write down axiom 3: w

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{v} \vee \bar{w} \vee z \\
& v \\
& w \\
& \bar{z}
\end{aligned}
$$

Erase the clause $\bar{v} \vee \bar{w} \vee y$ Erase the clause $\bar{y} \vee z$
Write down axiom 2: v
Write down axiom 3: w
Write down axiom 7: \bar{z}

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

```
\overline{v}\vee\overline{w}\veez
v
w
z
```

Write down axiom 2: v
Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{v} \vee \bar{w} \vee z \\
& v \\
& w \\
& \bar{z} \\
& \bar{w} \vee z
\end{aligned}
$$

Write down axiom 2: v
Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{v} \vee \bar{w} \vee z \\
& v \\
& w \\
& \bar{z} \\
& \bar{w} \vee z
\end{aligned}
$$

Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$
Erase the clause v

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{v} \vee \bar{w} \vee z \\
& w \\
& \bar{z} \\
& \bar{w} \vee z
\end{aligned}
$$

Write down axiom 3: w
Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$
Erase the clause v

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
\begin{aligned}
& \bar{v} \vee \bar{w} \vee z \\
& w \\
& \bar{z} \\
& \bar{w} \vee z
\end{aligned}
$$

Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from

$$
v \text { and } \bar{v} \vee \bar{w} \vee z
$$

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

Write down axiom 7: \bar{z}
Infer $\bar{w} \vee z$ from
v and $\bar{v} \vee \bar{w} \vee z$
Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}
```
w
z
w}\vee
```

$$
v \text { and } \bar{v} \vee \bar{w} \vee z
$$

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$ Infer z from

$$
w \text { and } \bar{w} \vee z
$$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}
```
w
z
w}\vee
z
```

$$
v \text { and } \bar{v} \vee \bar{w} \vee z
$$

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$
Infer z from

$$
w \text { and } \bar{w} \vee z
$$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}
```
w
z
w}\vee
z
```

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$
Infer z from
w and $\bar{w} \vee z$
Erase the clause w

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}
```
z
w}\vee
z
```

Erase the clause v
Erase the clause $\bar{v} \vee \bar{w} \vee z$
Infer z from
w and $\bar{w} \vee z$
Erase the clause w

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}
```
z
w}\vee
z
```

Erase the clause $\bar{v} \vee \bar{w} \vee z$ Infer z from
w and $\bar{w} \vee z$
Erase the clause w
Erase the clause $\bar{w} \vee z$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

Erase the clause $\bar{v} \vee \bar{w} \vee z$ Infer z from
w and $\bar{w} \vee z$
Erase the clause w
Erase the clause $\bar{w} \vee z$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
w \text { and } \bar{w} \vee z
$$

Erase the clause w
Erase the clause $\bar{w} \vee z$
Infer 0 from

$$
\bar{z} \text { and } z
$$

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

7. \bar{z}

$$
w \text { and } \bar{w} \vee z
$$

Erase the clause w
Erase the clause $\bar{w} \vee z$
Infer 0 from

$$
\bar{z} \text { and } z
$$

Formal Refutation-Pebbling Correspondence

Theorem (Ben-Sasson '02)
Any refutation translates into black-white pebbling with

- \# moves \leq refutation length
- \# pebbles \leq \# variables on blackboard

- refutation length \leq \# moves
- total space ≤ 11 pebbles

Unfortunately pebbling contradictions are extremely easy w.r.t. clause space! - not what we want

Formal Refutation-Pebbling Correspondence

Theorem (Ben-Sasson '02)
Any refutation translates into black-white pebbling with

- \# moves \leq refutation length
- \# pebbles \leq \# variables on blackboard

Observation (Ben-Sasson et al. '00)
Any black-pebbles-only pebbling translates into refutation with

- refutation length \leq \# moves
- total space $\leq \#$ pebbles

Unfortunately pebbling contradictions are extremely easy w.r.t. clause space! - not what we want

Formal Refutation-Pebbling Correspondence

Theorem (Ben-Sasson '02)
Any refutation translates into black-white pebbling with

- \# moves \leq refutation length
- \# pebbles \leq \# variables on blackboard

Observation (Ben-Sasson et al. '00)
Any black-pebbles-only pebbling translates into refutation with

- refutation length $\leq \#$ moves
- total space $\leq \#$ pebbles

Unfortunately pebbling contradictions are extremely easy w.r.t. clause space! - not what we want

Key Idea: Variable Substitution

Make formula harder by substituting exclusive or $x_{1} \oplus x_{2}$ of two new variables x_{1} and x_{2} for every variable x

$$
\begin{gathered}
\bar{x} \vee y \\
\Downarrow \\
\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \\
\Downarrow \\
\left(x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right)
\end{gathered}
$$

Key Technical Result: Substitution Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for refuting $F[\oplus]$: mimic refutation of F

Key Technical Result: Substitution Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for refuting $F[\oplus]$: mimic refutation of F

Key Technical Result: Substitution Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for refuting $F[\oplus]$: mimic refutation of F

Key Technical Result: Substitution Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for refuting $F[\oplus]$: mimic refutation of F

Key Technical Result: Substitution Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for refuting $F[\oplus]$: mimic refutation of F

$$
\begin{aligned}
& x_{1} \vee x_{2} \\
& \bar{x}_{1} \vee \bar{x}_{2}
\end{aligned}
$$

Key Technical Result: Substitution Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for refuting $F[\oplus]$: mimic refutation of F

$$
\begin{aligned}
& x \\
& \bar{x} \vee y \\
& y
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \vee x_{2} \\
& \bar{x}_{1} \vee \bar{x}_{2} \\
& x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2} \\
& x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& \bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2} \\
& \bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}
\end{aligned}
$$

Key Technical Result: Substitution Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for refuting $F[\oplus]$: mimic refutation of F

$$
\begin{aligned}
& x \\
& \bar{x} \vee y \\
& y
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \vee x_{2} \\
& \bar{x}_{1} \vee \bar{x}_{2} \\
& x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2} \\
& x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& \bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2} \\
& \bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& y_{1} \vee y_{2} \\
& \bar{y}_{1} \vee \bar{y}_{2}
\end{aligned}
$$

Key Technical Result: Substitution Theorem

Let $F[\oplus]$ denote formula with XOR $x_{1} \oplus x_{2}$ substituted for x
Obvious approach for refuting $F[\oplus]$: mimic refutation of F

$$
\begin{aligned}
& x \\
& \bar{x} \vee y \\
& y
\end{aligned}
$$

For such refutation of $F[\oplus]$:

- length \geq length for F
- clause space $\geq \#$ variables on board in proof for F

$$
\begin{aligned}
& x_{1} \vee x_{2} \\
& \bar{x}_{1} \vee \bar{x}_{2} \\
& x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2} \\
& x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& \bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2} \\
& \bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& y_{1} \vee y_{2} \\
& \bar{y}_{1} \vee \bar{y}_{2}
\end{aligned}
$$

Key Technical Result: Substitution Theorem

Let $F[\oplus]$ denote formula with XOR $x_{1} \oplus x_{2}$ substituted for x
Obvious approach for refuting $F[\oplus]$: mimic refutation of F

$$
\begin{aligned}
& x \\
& \bar{x} \vee y \\
& y
\end{aligned}
$$

For such refutation of $F[\oplus]$:

- length \geq length for F
- clause space $\geq \#$ variables on board in proof for F
Prove that this is (sort of) best one can do for $F[\oplus]$!

$$
\begin{aligned}
& x_{1} \vee x_{2} \\
& \bar{x}_{1} \vee \bar{x}_{2} \\
& x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2} \\
& x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& \bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2} \\
& \bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& y_{1} \vee y_{2} \\
& \bar{y}_{1} \vee \bar{y}_{2}
\end{aligned}
$$

Putting the Pieces Together

Making variable substitutions in pebbling formulas

- lifts lower bound from number of variables to clause space
- maintains upper bound in terms of total space and length

Get our results by

- using known pebbling results from literature of 70 s and 80 s
- proving a couple of new pebbling results [Nordström '10]
- to get tight trade-offs, showing that resolution proofs can sometimes do better than black-only pebblings [Nordström '10]

Putting the Pieces Together

Making variable substitutions in pebbling formulas

- lifts lower bound from number of variables to clause space
- maintains upper bound in terms of total space and length

Get our results by

- using known pebbling results from literature of 70 s and 80 s
- proving a couple of new pebbling results [Nordström '10]
- to get tight trade-offs, showing that resolution proofs can sometimes do better than black-only pebblings [Nordström '10]

Some Open Problems

- Many remaining open (theoretical) questions about space in proof complexity
- See recent survey Pebble Games, Proof Complexity, and Time-Space Trade-offs at my webpage for details
- In this talk, want to focus on main applied question

Is the Theoretical Model Good Enough?

- Research motivated (among other things) by questions regarding applied SAT-solving, but results purely theoretical
- On the face of it, the "blackboard model" for resolution looks quite far from what a DPLL SAT-solver actually does
- More recent models in e.g. [Buss et al.'08, Pipatsrisawat \& Darwiche '09] seem closer to practice (but not as nice to work with)
- Do our results hold in these models as well?
- Preliminary answer: at least for [Buss et al.'08] this seems to be the case

Is Tractability Captured by Space Complexity?

Open Question

Do our trade-off phenomena show up in real life for state-of-the-art SAT-solvers run on pebbling contradictions?

That is, does space complexity capture hardness?
Space suggested as hardness measure in [Ansótegui et al. '08]
Some results in [Sabharwal et al.'03] indicate pebbling formulas
hard for SAT-solvers at that time
Note that pebbling formulas are always extremely easy with respect to length, so hardness in practice would be intriguing

Is Tractability Captured by Space Complexity?

Open Question

Do our trade-off phenomena show up in real life for state-of-the-art SAT-solvers run on pebbling contradictions?

That is, does space complexity capture hardness?
Space suggested as hardness measure in [Ansótegui et al.'08]
Some results in [Sabharwal et al.'03] indicate pebbling formulas hard for SAT-solvers at that time

Note that pebbling formulas are always extremely easy with respect to length, so hardness in practice would be intriguing

Is Tractability Captured by Space Complexity?

Open Question

Do our trade-off phenomena show up in real life for state-of-the-art SAT-solvers run on pebbling contradictions?

That is, does space complexity capture hardness?
Space suggested as hardness measure in [Ansótegui et al.'08]
Some results in [Sabharwal et al.'03] indicate pebbling formulas hard for SAT-solvers at that time

Note that pebbling formulas are always extremely easy with respect to length, so hardness in practice would be intriguing

Summing up

- Modern SAT-solvers, although based on old and simple DPLL-method, can be enormously successful in practice
- Key issue is to minimize time and memory consumption
- However, our results suggest strong time-space trade-offs that should make this impossible
- Main open question: is tractability captured by space complexity?

Thank you for your attention!

