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A Fundamental Theoretical Problem. . .

Problem
Given a propositional logic formula F , can we decide efficiently
whether it is true no matter how we assign values to its variables?

TAUTOLOGY: Fundamental problem in theoretical computer science
ever since Stephen Cook’s NP-completeness paper in 1971

(And significance realized much earlier — cf. Gödel’s letter in 1956)

These days recognized as one of the main challenges for all of
mathematics — one of the million dollar “Millennium Problems”

Jakob Nordström (KTH) On Proof Complexity Lower Bounds and SAT Solving Oberwolfach Nov 2011 2 / 27



A Fundamental Theoretical Problem. . .

Problem
Given a propositional logic formula F , can we decide efficiently
whether it is true no matter how we assign values to its variables?

TAUTOLOGY: Fundamental problem in theoretical computer science
ever since Stephen Cook’s NP-completeness paper in 1971

(And significance realized much earlier — cf. Gödel’s letter in 1956)
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. . . with Huge Practical Implications

All known algorithms run in exponential time in worst case

But enormous progress on applied computer programs last
10-15 years

These so-called SAT solvers are routinely deployed to solve
large-scale real-world problems with millions of variables

Used in e.g. hardware verification, software testing, software
package management, artificial intelligence, cryptography,
bioinformatics, and more

But also exist small example formulas with only hundreds of
variables that trip up even state-of-the-art SAT solvers
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What Makes Formulas Hard or Easy?

Best algorithms today based on simple DPLL method
(Davis-Putnam-Logemann-Loveland) from 1960s (although with
many clever optimizations)

Corresponds to search algorithm for resolution proof system

How can these SAT solvers be so good in practice? And how can
one know whether a particular formula is tractable or too difficult?

This talk: What can (lower bounds in) proof complexity say about
these questions?
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SAT solving and Proof Complexity Tautologies and CNF formulas

Tautologies and CNF Formulas

Conjunctive normal form (CNF)
ANDs of ORs of variables or negated variables
(or conjunctions of disjunctive clauses)

Example:

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Proving that a formula in propositional logic is always satisfied
m

Proving that a CNF formula is never satisfied
(i.e., evaluates to false however you set the variables)
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SAT solving and Proof Complexity Tautologies and CNF formulas

Some Terminology

Literal a: variable x or its negation x

Clause C = a1 ∨ · · · ∨ ak : disjunction of literals

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

k -CNF formula: CNF formula with clauses of size ≤ k

All formulas k -CNFs in this talk (for arbitrary but fixed k )
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SAT solving and Proof Complexity SAT solving and DPLL

The DPLL Method

Based on [Davis & Putnam ’60] and [Davis, Logemann & Loveland ’62]

Somewhat simplified description:
If F contains an empty clause (without literals), then report
“unsatisfiable”
Otherwise pick some variable x in F
Set x = 0, simplify F and try to refute recursively
Set x = 1, simplify F and try to refute recursively
If both cases result in “unsatisfiable”, then report “unsatisfiable”
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SAT solving and Proof Complexity SAT solving and DPLL

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨u) ∧ (y ∨u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨w) ∧ (x ∨u ∨w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when falsfied
clause found
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SAT solving and Proof Complexity SAT solving and DPLL

State-of-the-art DPLL SAT solvers

Many more ingredients in modern SAT solvers, for instance:

Choice of pivot variables crucial

When reaching falsified clause, compute why partial assignment
failed — add this info to formula as new clause (clause learning)

Every once in a while, restart from beginning (but save computed
info)
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SAT solving and Proof Complexity Proof Complexity and Resolution

Resolution

Resolution rule:
B ∨ x C ∨ x

B ∨ C

Observation
If F is a satisfiable CNF formula and D is derived from clauses
C1, C2 ∈ F by the resolution rule, then F ∧ D is satisfiable.

Prove F unsatisfiable by deriving the unsatisfiable empty clause 0
from F by resolution
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SAT solving and Proof Complexity Proof Complexity and Resolution

DPLL and Resolution

A DPLL execution is essentially a resolution proof

Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1
x

y u

z u v w

and apply resolution rule bottom-up
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Relations Between Proof Complexity Measures

Complexity Measures for Resolution

Let n = size of formula

Length
# clauses in refutation — at most exp(n)

Width
Size of largest clause in refutation — at most n

Space
Max # clauses one needs to remember when “verifying correctness of
refutation on blackboard” — at most n (!)
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Relations Between Proof Complexity Measures

Length

Clearly lower bound on running time for any DPLL algorithm

But if there is a short refutation, not clear how to find it

In fact, probably intractable [Aleknovich & Razborov ’01]

So small length upper bound might be much too optimistic

Not the right measure of “hardness in practice”
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Relations Between Proof Complexity Measures

Length vs. Width

Searching for small width refutations known heuristic in AI
community

Small width ⇒ small length (by counting)

But small length does not necessary imply small width — can
have

√
n width and linear length [Bonet & Galesi ’99]

However, really large (e.g., linear) width implies really large
(exponential) length [Ben-Sasson & Wigderson ’99]

Small width ⇒ DPLL solver will provably be fast [Atserias et al. ’09]
(but slighly idealized theoretical model)

Right hardness measure?
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Relations Between Proof Complexity Measures

Width vs. Space

In practice, memory consumption is a very important bottleneck
for SAT solvers

So maybe space complexity can be relevant hardness measure?

Sequence of lower bound results for “usual suspects” formulas
in ’99, ’00, ’01. . . — always coincided with width bounds!?

[Atserias & Dalmau ’03]: Space ≥ width
(proven via Ehrenfeucht-Fraı̈ssé games in finite model theory)

But are space and width somehow the same measure or different?

[N. ’06], [N. & Håstad ’08], [Ben-Sasson & N. ’08]:
Upper bounds on width don’t say anything about space
(but space model arguably very idealized and theoretical)
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[N. ’06], [N. & Håstad ’08], [Ben-Sasson & N. ’08]:
Upper bounds on width don’t say anything about space
(but space model arguably very idealized and theoretical)

Jakob Nordström (KTH) On Proof Complexity Lower Bounds and SAT Solving Oberwolfach Nov 2011 15 / 27



Relations Between Proof Complexity Measures

Width vs. Space

In practice, memory consumption is a very important bottleneck
for SAT solvers

So maybe space complexity can be relevant hardness measure?

Sequence of lower bound results for “usual suspects” formulas
in ’99, ’00, ’01. . . — always coincided with width bounds!?

[Atserias & Dalmau ’03]: Space ≥ width
(proven via Ehrenfeucht-Fraı̈ssé games in finite model theory)
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in ’99, ’00, ’01. . . — always coincided with width bounds!?

[Atserias & Dalmau ’03]: Space ≥ width
(proven via Ehrenfeucht-Fraı̈ssé games in finite model theory)

But are space and width somehow the same measure or different?

[N. ’06], [N. & Håstad ’08], [Ben-Sasson & N. ’08]:
Upper bounds on width don’t say anything about space
(but space model arguably very idealized and theoretical)
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Relations Between Proof Complexity Measures

Our Results (Slightly) More Formally

Theorem (Ben-Sasson & N., FOCS ’08)
There are k-CNF formula families of size O(n) with

refutation length O(n)

refutation width O(1)

refutation space Ω(n/ log n).

Theorem (Ben-Sasson & N., ICS ’11)
There are k-CNF formula families which are

very easy w.r.t. length (but then space large),
very easy w.r.t. space (but then length large),
any meaningful simultaneous optimization impossible.
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Outline of Proofs Pebble Games and Pebbling Contradictions

How to Get a Handle on Time-Space Relations?

Time-space trade-off questions well-studied for pebble games
modelling calculations described by directed acyclic graphs
([Cook & Sethi ’76] and many others)

Time needed for calculation: # pebbling moves
Space needed for calculation: max # pebbles required

Some quick graph terminology
DAGs consist of vertices with directed edges between them
vertices with no incoming edges: sources
vertices with no outgoing edges: sinks
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Outline of Proofs Pebble Games and Pebbling Contradictions

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

z

x y

u v w

# moves 0

Current # pebbles 0

Max # pebbles so far 0

1 Can place black pebble on (empty) vertex v if all immediate
predecessors have pebbles on them

2 Can always remove black pebble from vertex
3 Can always place white pebble on (empty) vertex
4 Can remove white pebble from v if all immediate predecessors

have pebbles on them
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Outline of Proofs Pebble Games and Pebbling Contradictions
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z

x y

u v w
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Outline of Proofs Pebble Games and Pebbling Contradictions

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

z

x y

u v w

# moves 2

Current # pebbles 2

Max # pebbles so far 2

1 Can place black pebble on (empty) vertex v if all immediate
predecessors have pebbles on them

2 Can always remove black pebble from vertex
3 Can always place white pebble on (empty) vertex
4 Can remove white pebble from v if all immediate predecessors
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Outline of Proofs Pebble Games and Pebbling Contradictions

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

z

x y

u v w

# moves 3

Current # pebbles 3

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all immediate
predecessors have pebbles on them

2 Can always remove black pebble from vertex
3 Can always place white pebble on (empty) vertex
4 Can remove white pebble from v if all immediate predecessors
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Outline of Proofs Pebble Games and Pebbling Contradictions

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

z

x y

u v w
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Outline of Proofs Pebble Games and Pebbling Contradictions
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Outline of Proofs Pebble Games and Pebbling Contradictions

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

z

x y

u v w

# moves 10

Current # pebbles 4

Max # pebbles so far 4
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Outline of Proofs Pebble Games and Pebbling Contradictions

The Black-White Pebble Game
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Outline of Proofs Pebble Games and Pebbling Contradictions

Pebbling Contradiction

CNF formula encoding pebble game on DAG G

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Studied by [Bonet et al. ’98, Raz & McKenzie ’99, Ben-Sasson &
Wigderson ’99] and others
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Outline of Proofs Pebble Games and Pebbling Contradictions

Resolution–Pebbling Correspondence

Observation (Ben-Sasson et al. ’00)
Any black-pebbles-only pebbling translates into refutation with

refutation length ≤ # moves
space ≤ # pebbles

Theorem (Ben-Sasson ’02)
Any refutation translates into black-white pebbling with

# moves ≤ refutation length
# pebbles ≤ # variables mentioned simultaneously in refutation

Unfortunately extremely easy w.r.t. space! (counting clauses)
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Outline of Proofs Substitution Space Theorem

Key Idea: Variable Substitution

Make formula harder by substituting x1 ⊕ x2 for every variable x
(also works for other Boolean functions with “right” properties):

x ∨ y

⇓

¬(x1 ⊕ x2) ∨ (y1 ⊕ y2)

⇓

(x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)
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Outline of Proofs Substitution Space Theorem

Key Technical Result: Substitution Theorem

Let F [⊕] denote formula with XOR x1 ⊕ x2 substituted for x

Obvious approach for refuting F [⊕]: mimic refutation of F

For such refutation of F [⊕]:
length ≥ length for F
space ≥ # variables
simultaneously for F

Prove that this is (sort of) best one can do for F [⊕]!
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Outline of Proofs Putting the Pieces Together

Pieces Together: Substitution + Pebbling Formulas

Making variable substitutions in pebbling formulas
lifts lower bound from # variables to # clauses (i.e., space)
maintains upper bound in terms of space and length

Get our results by
using known pebbling results from literature of 70s and 80s
proving a couple of new pebbling results [N. ’10]
to get tight trade-offs, showing that resolution can sometimes do
better than black-only pebbling [N. ’10]
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Open Problems

Extending the Results to Stronger Proof Systems?

Key technical theorem: amplify space lower bounds through variable
substitution

Almost completely oblivious to which proof system is being studied

Extended to strictly stronger k -DNF resolution proof systems — maybe
can be made to work for other stronger systems as well?

Open Question
Can the Substitution Theorem be proven for, say, Cutting Planes or
Polynomial Calculus (with/without Resolution), thus yielding
time-space trade-offs for these proof systems as well?
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Open Problems

Some Other Open Theoretical Problems

Many more open (theoretical) questions about length, width, and
space in proof complexity

See recent survey Pebble Games, Proof Complexity, and
Time-Space Trade-offs at my webpage for details

To conclude this talk, want to focus on main applied question
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Open Problems

Is Tractability Captured by Space Complexity?

Open Question
Do our space lower bounds and trade-offs imply anything “in real life”
for state-of-the-art SAT solvers?

That is, does space complexity capture hardness?

Preliminary experiments indicate that pebbling formulas with high
space complexity might be hard in practice for SAT solvers

Note that pebbling formulas always extremely easy with respect to
length and width, so hardness in practice would be intriguing
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Take-Home Message

Modern SAT solvers, although based on old and simple DPLL
method, can be enormously successful in practice

Key issue is to minimize time and memory consumption

However, our results suggest strong time-space trade-offs that
should make this impossible

Many remaining open questions about space in proof complexity

Main open practical question: is tractability captured by space
complexity?

Thank you for your attention!
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