Short Proofs Are Narrow (Well, Sort of), But Are They Tight?

ROYAL INSTITUTE OF TECHNOLOGY

Jakob Nordström

jakobn@kth.se

Theory Group
KTH Computer Science and Communication

PhD Student Seminar in Theoretical Computer Science April 3rd, 2006

Outline of Part I: Proof Complexity and Resolution

Introduction
Propositional Proof Systems
Proof Systems and Computational Complexity
Resolution
Propositional Proof Systems and Unsatisfiable CNFs Resolution Basics
Proof Length
Two Useful Tools
Resolution Width
Definition of Width
Two Technical Lemmas
Width is Upper-Bounded by Length

Outline of Part II: Resolution Width and Space

Resolution Space
Definition of Space
Some Basic Properties
Combinatorial Characterization of Width
Boolean Existential Pebble Game
Existential Pebble Game Characterizes Resolution Width
Space is Greater than Width
Open Questions

Part I

Proof Complexity and Resolution

What Is a Proof?

Claim: 25957 is the product of two primes.
True or false? What kind of proof would convince us?

Key demand: A proof should be efficiently verifiable.

What Is a Proof?

Claim: 25957 is the product of two primes.
True or false? What kind of proof would convince us?

- "I told you so. Just factor and check it yourself!" Not much of a proof.

-"25957 = 101 $\cdot 257$; check yourself that these are primes
Key demand: A proof should be efficiently verifiable

What Is a Proof?

Claim: 25957 is the product of two primes.
True or false? What kind of proof would convince us?

- "I told you so. Just factor and check it yourself!" Not much of a proof.
- "25957 $=101 \cdot 257.101$ is prime since $101 \equiv 1(\bmod 2)$ and $101 \equiv 2(\bmod 3)$ and $101 \equiv 1(\bmod 5)$ and $101 \equiv 3$ $(\bmod 7) .257$ is prime since $\ldots 257 \equiv 10(\bmod 13)$. ."
OK, but maybe even a bit of overkill.

257; check yourself that these are primes.

Key demand: A proof should be efficiently verifiable.

What Is a Proof?

Claim: 25957 is the product of two primes.
True or false? What kind of proof would convince us?

- "I told you so. Just factor and check it yourself!" Not much of a proof.
- "25957 $=101 \cdot 257.101$ is prime since $101 \equiv 1(\bmod 2)$ and $101 \equiv 2(\bmod 3)$ and $101 \equiv 1(\bmod 5)$ and $101 \equiv 3$ $(\bmod 7) .257$ is prime since $\ldots 257 \equiv 10(\bmod 13)$." OK, but maybe even a bit of overkill.
- "25957 $=101 \cdot 257$; check yourself that these are primes."

Key demand: A proof should be efficiently verifiable.

Proof system

Proof system for a language L :
Deterministic algorithm $P(s, \pi)$ that runs in time polynomial in $|s|$ and $|\pi|$ such that

- for all $s \in L$ there is a string π (a proof) such that $P(s, \pi)=1$,
- for all $s \notin L$ it holds for all strings π that $P(s, \pi)=0$.

Propositional proof system: proof system for the language TAUT of all valid propositional logic formulas (or tautologies)

Proof system

Proof system for a language L :
Deterministic algorithm $P(s, \pi)$ that runs in time polynomial in $|s|$ and $|\pi|$ such that

- for all $s \in L$ there is a string π (a proof) such that $P(s, \pi)=1$,
- for all $s \notin L$ it holds for all strings π that $P(s, \pi)=0$.

Propositional proof system: proof system for the language TAUT of all valid propositional logic formulas (or tautologies)

Example Propositional Proof System

Example (Truth table)

p	q	r	$(p \wedge(q \vee r)) \leftrightarrow((p \wedge q) \vee(p \wedge r))$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Certainly polynomial-time checkable measured in "proof" size Why does this not make us happy?

Example Propositional Proof System

Example (Truth table)

p	q	r	$(p \wedge(q \vee r)) \leftrightarrow((p \wedge q) \vee(p \wedge r))$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Certainly polynomial-time checkable measured in "proof" size Why does this not make us happy?

Proof System Complexity

Complexity comp_{P} of a proof system P :
Smallest $g: \mathbb{N} \mapsto \mathbb{N}$ such that $s \in L$ if and only if there is a proof π of size $|\pi| \leq g(|s|)$ such that $P(s, \pi)=1$.

If a proof system is of polynomial complexity, it is said to be polynomially bounded or p-bounded.

Example (Truth table continued)
Truth table is a propositional proof system, but of exponential complexity!

Proof System Complexity

Complexity comp_{P} of a proof system P :
Smallest $g: \mathbb{N} \mapsto \mathbb{N}$ such that $s \in L$ if and only if there is a proof π of size $|\pi| \leq g(|s|)$ such that $P(s, \pi)=1$.

If a proof system is of polynomial complexity, it is said to be polynomially bounded or p-bounded.

Example (Truth table continued)
Truth table is a propositional proof system, but of exponential complexity!

Proof systems and P vs. NP

Theorem (Cook \& Reckhow 1979)
$\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ if and only if there exists a polynomially bounded propositional proof system.

Proof.
NP exactly the set of languages with p-bounded proof systems
\Rightarrow TAUT \in CO-ND since F is not a tautology iff $\neg F \in$ SAT. If $N P=c o-N P$, then $T A U T \in N P$ has a p-bounded proof system by definition.
\leftarrow Suppose there exists a p-bounded proof system. Then TAUT $\in N P$, and since TAUT is complete for co-NP it follows that NP $=\mathrm{co}-\mathrm{NP}$

Proof systems and P vs. NP

Theorem (Cook \& Reckhow 1979)
$\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ if and only if there exists a polynomially bounded propositional proof system.

Proof.

NP exactly the set of languages with p-bounded proof systems
\square

Proof systems and P vs. NP

Theorem (Cook \& Reckhow 1979)
$\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ if and only if there exists a polynomially bounded propositional proof system.

Proof.

NP exactly the set of languages with p-bounded proof systems
\Rightarrow TAUT \in co-NP since F is not a tautology iff $\neg F \in$ SAT. If $N P=c o-N P$, then TAUT $\in N P$ has a p-bounded proof system by definition.
\Leftarrow Suppose there exists a p-bounded proof system. Then TAUT $\in N P$, and since TAUT is complete for co-NP it follows that $N P=$ co-NP

Proof systems and P vs. NP

Theorem (Cook \& Reckhow 1979)
$\mathrm{NP}=\mathrm{co}-\mathrm{NP}$ if and only if there exists a polynomially bounded propositional proof system.

Proof.

NP exactly the set of languages with p-bounded proof systems
\Rightarrow TAUT \in co-NP since F is not a tautology iff $\neg F \in$ SAT. If $N P=c o-N P$, then TAUT $\in N P$ has a p-bounded proof system by definition.
\Leftarrow Suppose there exists a p-bounded proof system. Then TAUT $\in N P$, and since TAUT is complete for co-NP it follows that $N P=c o-N P$.

Polynomial Simulation

The guess is that NP \neq co-NP Seems that proof of this is lightyears away (Would imply $\mathrm{P} \neq \mathrm{NP}$ as a corollary)

Proof complexity tries to approach this distant goal by studying successively stronger propositional proof systems and relating their strengths.

Polynomial Simulation

The guess is that NP \neq co-NP
Seems that proof of this is lightyears away (Would imply $\mathrm{P} \neq \mathrm{NP}$ as a corollary)

Proof complexity tries to approach this distant goal by studying successively stronger propositional proof systems and relating their strengths.
Definition (p-simulation)
P_{1} polynomially simulates, or p-simulates, P_{2} if there exists a polynomial-time computable function f such that for all $F \in$ TAUT it holds that $P_{2}(F, \pi)=1$ iff $P_{1}(F, f(\pi))=1$.
Weak p-simulation: $\operatorname{comp}_{P_{1}}=\left(\operatorname{comp}_{P_{2}}\right)^{\mathcal{O}(1)}$ but we do not know explicit translation function f from P_{2}-proofs to P_{1}-proofs

Polynomial Equivalence

Definition (p-equivalence)
Two propositional proof systems P_{1} and P_{2} are polynomially equivalent, or p-equivalent, if each proof system p-simulates the other.

If $P_{1} p$-simulates P_{2} but P_{2} does not p-simulate P_{1}, then P_{1} is strictly stronger than P_{2}.

Lots of results proven relating strength of different propositional proof systems

Proof Search Algorithms and Automatizability

But how do we find proofs?
Proof search algorithm A_{P} for propositional proof system P : deterministic algorithm with

- input: formula F
- output: P-proof π of F or report that F is falsifiable

Definition (Automatizability)
P is automatizable if there exists a proof search algorithm A_{P} such that if $F \in \operatorname{TAUT}$ then A_{P} on input F outputs a P-proof of F in time polynomial in the size of a smallest P-proof of F.

Proof Search Algorithms and Automatizability

But how do we find proofs?
Proof search algorithm A_{P} for propositional proof system P : deterministic algorithm with

- input: formula F
- output: P-proof π of F or report that F is falsifiable

Definition (Automatizability)
P is automatizable if there exists a proof search algorithm A_{P} such that if $F \in$ TAUT then A_{P} on input F outputs a P-proof of F in time polynomial in the size of a smallest P-proof of F.

Short Proofs Seem Hard to Find

Example (Truth table continued)

Truth table is (trivially) an automatizable propositional proof system. (But the proofs we find are of exponential size, so this is not very exciting.)

We want proof systems that are both

- strong (i.e., have short proofs for all tautologies) and
- automatizable (ie we can find these short proofs)

Seems that this is not possible (under reasonable complexity assumptions)

Short Proofs Seem Hard to Find

Example (Truth table continued)

Truth table is (trivially) an automatizable propositional proof system. (But the proofs we find are of exponential size, so this is not very exciting.)

We want proof systems that are both

- strong (i.e., have short proofs for all tautologies) and
- automatizable (i.e., we can find these short proofs)

Seems that this is not possible (under reasonable complexity assumptions)

Transforming Tautologies to Unsatisfiable CNFs

Any propositional logic formula F can be converted to formula F^{\prime} in conjunctive normal form (CNF) such that

- F^{\prime} only linearly larger than F
- F^{\prime} unsatisfiable iff F tautology

Idea:

- Introduce new variable x_{G} for each subformula $G \doteq H_{1} \circ H_{2}$
in $F, \circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$
- Translate G to set of disjunctive clauses $C I(G)$ which enforces that the truth value of x_{G} is computed correctly given truth values of $X_{H_{1}}$ and $X_{H_{2}}$

Transforming Tautologies to Unsatisfiable CNFs

Any propositional logic formula F can be converted to formula F^{\prime} in conjunctive normal form (CNF) such that

- F^{\prime} only linearly larger than F
- F^{\prime} unsatisfiable iff F tautology

Idea:

- Introduce new variable x_{G} for each subformula $G \doteq H_{1} \circ H_{2}$ in $F, \circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$
- Translate G to set of disjunctive clauses $C I(G)$ which enforces that the truth value of x_{G} is computed correctly given truth values of $x_{H_{1}}$ and $x_{H_{2}}$

Sketch of Transformation

Two examples for \vee and \rightarrow (\wedge and \leftrightarrow are analogous):

$$
\begin{aligned}
G \equiv H_{1} \vee H_{2}: \quad C l(G):= & \left(\bar{x}_{G} \vee x_{H_{1}} \vee x_{H_{2}}\right) \\
& \wedge\left(x_{G} \vee \bar{x}_{H_{1}}\right) \\
& \wedge\left(x_{G} \vee \bar{x}_{H_{2}}\right) \\
G \equiv H_{1} \rightarrow H_{2}: \quad \quad C l(G):= & \left(\bar{x}_{G} \vee \bar{x}_{H_{1}} \vee x_{H_{2}}\right) \\
& \wedge\left(x_{G} \vee x_{H_{1}}\right) \\
& \wedge\left(x_{G} \vee \bar{x}_{H_{2}}\right)
\end{aligned}
$$

- Finally, add clause $\overline{X_{F}}$

Proof Systems for Refuting Unsatisfiable CNFs

Easy to verify that constructed CNF formula F^{\prime} is unsatisfiable iff F is a tautology

So any sound and complete proof system which produces refutations of formulas in conjunctive normal form can be used as a propositional proof system

This talk will focus on resolution, which is such a proof system

Some Notation and Terminology

- Literal a: variable x or its negation \bar{x}
- Clause $C=a_{1} \vee \ldots \vee a_{k}$: set of literals At most k literals: k-clause
- CNF formula $F=C_{1} \wedge \ldots \wedge C_{m}$: set of clauses k-CNF formula: CNF formula consisting of k-clauses
- Vars(•): set of variables in clause or formula Lit(•): set of literals in clause or formula
- $F \vDash D$: semantical implication, $\alpha(F)$ true $\Rightarrow \alpha(D)$ true for all truth value assignments α
- $[n]=\{1,2, \ldots, n\}$

Resolution Proof System

Resolution derivation $\pi: F \vdash A$ of clause A from F :
Sequence of clauses $\pi=\left\{D_{1}, \ldots, D_{s}\right\}$ such that $D_{s}=A$ and each line $D_{i}, 1 \leq i \leq s$, is either

```
> a clause C F F (an axiom)
a resolvent derived from clauses }\mp@subsup{D}{j}{},\mp@subsup{D}{k}{}\mathrm{ in }\pi\mathrm{ (with j,k<i)
by the resolution rule
```


resolving on the variable x

Resolution refutation of CNF formula F :
Derivation of empty clause 0 (clause with no literals) from F

Resolution Proof System

Resolution derivation $\pi: F \vdash A$ of clause A from F :
Sequence of clauses $\pi=\left\{D_{1}, \ldots, D_{s}\right\}$ such that $D_{s}=A$ and each line $D_{i}, 1 \leq i \leq s$, is either

- a clause $C \in F$ (an axiom)
- a resolvent derived from clauses D_{j}, D_{k} in π (with $j, k<i$) by the resolution rule

resolving on the variable x
Resolution refutation of CNF formula F :
Derivation of empty clause 0 (clause with no literals) from F

Resolution Proof System

Resolution derivation $\pi: F \vdash A$ of clause A from F :
Sequence of clauses $\pi=\left\{D_{1}, \ldots, D_{s}\right\}$ such that $D_{s}=A$ and each line $D_{i}, 1 \leq i \leq s$, is either

- a clause $C \in F$ (an axiom)
- a resolvent derived from clauses D_{j}, D_{k} in π (with $j, k<i$) by the resolution rule

$$
\frac{B \vee x \quad C \vee \bar{x}}{B \vee C}
$$

resolving on the variable x
Resolution refutation of CNF formula F:
Derivation of empty clause 0 (clause with no literals) from F

Resolution Proof System

Resolution derivation $\pi: F \vdash A$ of clause A from F :
Sequence of clauses $\pi=\left\{D_{1}, \ldots, D_{s}\right\}$ such that $D_{s}=A$ and each line $D_{i}, 1 \leq i \leq s$, is either

- a clause $C \in F$ (an axiom)
- a resolvent derived from clauses D_{j}, D_{k} in π (with $j, k<i$) by the resolution rule

$$
\frac{B \vee x \quad C \vee \bar{x}}{B \vee C}
$$

resolving on the variable x
Resolution refutation of CNF formula F :
Derivation of empty clause 0 (clause with no literals) from F

Example Resolution Refutation

$$
\begin{aligned}
F= & (x \vee z) \wedge(\bar{z} \vee y) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

1.	$x \vee z$	Axiom	9.	$x \vee y$	$\operatorname{Res}(1,2)$
2.	$\bar{z} \vee y$	Axiom	10.	$x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3.	$x \vee \bar{y} \vee u$	Axiom	11.	$\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4.	$\bar{y} \vee \bar{u}$	Axiom	12.	$\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5.	$u \vee v$	Axiom	13.	x	$\operatorname{Res}(9,10)$
6.	$\bar{x} \vee \bar{v}$	Axiom	14.	\bar{x}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15.	0	$\operatorname{Res}(13,14)$	
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom				

Resolution Sound and Complete

Resolution is sound and implicationally complete.
Sound If there is a resolution derivation $\pi: F \vdash A$ then $F \vDash A$
Complete If $F \vDash A$ then there is a resolution derivation $\pi: F \vdash A^{\prime}$ for some $A^{\prime} \subseteq A$.

In particular,
F is unsatisfiable $\Leftrightarrow \exists$ resolution refutation of F

Completeness of Resolution: Proof by Example

Decision tree:

Resulting resolution refutation:

Completeness of Resolution: Proof by Example

Decision tree:

Resulting resolution refutation:

Derivation Graph and Tree-Like Derivations

Derivation graph G_{π} of a resolution derivation π : directed acyclic graph (DAG) with

- vertices: clauses of the derivations
- edges: from $B \vee x$ and $C \vee \bar{x}$ to $B \vee C$ for each application of the resolution rule

A resolution derivation π is tree-like if G_{π} is a tree
(We can make copies of axiom clauses to make G_{π} into a tree)
Example
Our example resolution proof is tree-like.
(The derivation graph is on the previous slide.)

Derivation Graph and Tree-Like Derivations

Derivation graph G_{π} of a resolution derivation π : directed acyclic graph (DAG) with

- vertices: clauses of the derivations
- edges: from $B \vee x$ and $C \vee \bar{x}$ to $B \vee C$ for each application of the resolution rule

A resolution derivation π is tree-like if G_{π} is a tree
(We can make copies of axiom clauses to make G_{π} into a tree)
Example
Our example resolution proof is tree-like.
(The derivation graph is on the previous slide.)

Length

- Length $L(F)$ of CNF formula F is \# clauses in it
- Length of derivation $\pi: F \vdash A$ is \# clauses in π (with repetitions)
- Length of deriving A from F is

$$
L(F \vdash A)=\min _{\pi: F \vdash A}\{L(\pi)\}
$$

where minimum taken over all derivations of A

- Length of deriving A from F in tree-like resolution is $L_{T}(F \vdash A)$ (min of all tree-like derivations)

Exponential Lower Bound for Proof Length

Theorem (Haken 1985)
There is a family of unsatisfiable CNF formulas $\left\{F_{n}\right\}_{n=1}^{\infty}$ of size polynomial in n such that $L\left(F_{n} \vdash 0\right)=\exp (\Omega(n))$.

Also known: general resolution is exponentially stronger than tree-like resolution (Bonet et al. 1998, Ben-Sasson et al. 1999)

Resolution widely used in practice anyway because of nice properties for proof search algorithms (but is probably not automatizable)

Theoretical point of view: we want to understand resolution Gain insights and develop techniques that perhaps can be used to attack more powerful proof systems

Exponential Lower Bound for Proof Length

Theorem (Haken 1985)
There is a family of unsatisfiable CNF formulas $\left\{F_{n}\right\}_{n=1}^{\infty}$ of size polynomial in n such that $L\left(F_{n} \vdash 0\right)=\exp (\Omega(n))$.

Also known: general resolution is exponentially stronger than tree-like resolution (Bonet et al. 1998, Ben-Sasson et al. 1999)

Resolution widely used in practice anyway because of nice
properties for proof search algorithms (but is probably not automatizable)

Theoretical point of view: we want to understand resolution
Gain insights and develop techniques that perhaps can be used to attack more powerful proof systems

Exponential Lower Bound for Proof Length

Theorem (Haken 1985)

There is a family of unsatisfiable CNF formulas $\left\{F_{n}\right\}_{n=1}^{\infty}$ of size polynomial in n such that $L\left(F_{n} \vdash 0\right)=\exp (\Omega(n))$.

Also known: general resolution is exponentially stronger than tree-like resolution (Bonet et al. 1998, Ben-Sasson et al. 1999)

Resolution widely used in practice anyway because of nice properties for proof search algorithms (but is probably not automatizable)
Theoretical point of view: we want to understand resolution Gain insights and develop techniques that perhaps can be used to attack more powerful proof systems

Weakening

In proofs, sometimes convenient to add a derivation rule for weakening

$$
\frac{B}{B \vee C}
$$

(for arbitrary clauses B, C).
Proposition
Any resolution refutation π : $F \vdash 0$ using weakening can be transformed into a refutation $\pi^{\prime}: F \vdash 0$ without weakening in at most the same length.

Proof.
Easy proof by induction over the resolution refutation.

Weakening

In proofs, sometimes convenient to add a derivation rule for weakening

$$
\frac{B}{B \vee C}
$$

(for arbitrary clauses B, C).

Proposition

Any resolution refutation $\pi: F \vdash 0$ using weakening can be transformed into a refutation $\pi^{\prime}: F \vdash 0$ without weakening in at most the same length.

Proof.

Easy proof by induction over the resolution refutation.

Restriction

Restriction ρ : partial truth value assignment
Represented as set of literals $\rho=\left\{a_{1}, \ldots, a_{m}\right\}$ set to true by ρ
For a clause C, the ρ-restriction of C is

where 1 denotes the trivially true clause
For a formula F, define $F_{p}=\Lambda_{C \in F} C \mid$
For a derivation $\pi=\left\{D_{1}, \ldots, D_{S}\right\}$, define $\left.\pi\right|_{\rho}=\left\{\left.D_{1}\right|_{\rho}, \ldots,\left.D_{S}\right|_{\rho}\right\}$ (with all trivial clauses 1 removed)

Restriction

Restriction ρ : partial truth value assignment
Represented as set of literals $\rho=\left\{a_{1}, \ldots, a_{m}\right\}$ set to true by ρ
For a clause C, the ρ-restriction of C is

$$
\left.C\right|_{\rho}= \begin{cases}1 & \text { if } \rho \cap \operatorname{Lit}(C) \neq \emptyset \\ C \backslash\{\bar{a} \mid a \in \rho\} & \text { otherwise }\end{cases}
$$

where 1 denotes the trivially true clause
For a formula F, define $\left.F\right|_{\rho}=\bigwedge_{C \in F} C \mid$
For a derivation $\pi=\left\{D_{1}, \ldots, D_{s}\right\}$, define $\left.\pi\right|_{\rho}=\left\{\left.D_{1}\right|_{\rho}, \ldots,\left.D_{S}\right|_{\rho}\right\}$
(with all trivial clauses 1 removed)

Restriction

Restriction ρ : partial truth value assignment
Represented as set of literals $\rho=\left\{a_{1}, \ldots, a_{m}\right\}$ set to true by ρ
For a clause C, the ρ-restriction of C is

$$
\left.C\right|_{\rho}= \begin{cases}1 & \text { if } \rho \cap \operatorname{Lit}(C) \neq \emptyset \\ C \backslash\{\bar{a} \mid a \in \rho\} & \text { otherwise }\end{cases}
$$

where 1 denotes the trivially true clause
For a formula F, define $\left.F\right|_{\rho}=\left.\bigwedge_{C \in F} C\right|_{\rho}$
For a derivation $\pi=\left\{D_{1}, \ldots, D_{s}\right\}$, define $\left.\pi\right|_{\rho}=\left\{\left.D_{1}\right|_{\rho}, \ldots,\left.D_{s}\right|_{\rho}\right\}$ (with all trivial clauses 1 removed)

Example Restriction

$\pi=$		
1.	$x \vee z$	Axiom in F
2.	$\bar{z} \vee y$	Axiom in F
3.	$x \vee \bar{y} \vee u$	Axiom in F
4.	$\bar{y} \vee \bar{u}$	Axiom in F
5.	$u \vee v$	Axiom in F
6.	$\bar{x} \vee \bar{v}$	Axiom in F
7.	$\bar{u} \vee w$	Axiom in F
8.	$\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom in F
9.	$x \vee y$	$\operatorname{Res}(1,2)$
10.	$x \vee \bar{y}$	$\operatorname{Res}(3,4)$
11.	$\bar{x} \vee u$	$\operatorname{Res}(5,6)$
12.	$\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
13.	x	$\operatorname{Res}(9,10)$
14.	\bar{x}	$\operatorname{Res}(11,12)$
15.	0	$\operatorname{Res}(13,14)$

$$
\left.\pi\right|_{x}=
$$

$$
1 .-
$$

2. $\bar{z} \vee y \quad$ Axiom in $\left.F\right|_{x}$ 3. -
3. $\bar{y} \vee \bar{u}$ Axiom in $\left.F\right|_{x}$ 5. $u \vee v$ Axiom in $\left.F\right|_{x}$ 6. $\bar{v} \quad$ Axiom in $\left.F\right|_{x}$ 7. $\bar{u} \vee w$ Axiom in $\left.F\right|_{x}$ 8. $\bar{u} \vee \bar{w}$ Axiom in $\left.F\right|_{x}$ 9. -
4. -
5. $u \operatorname{Res}(5,6)$
6. $\bar{u} \operatorname{Res}(7,8)$
7. -
8. $0 \operatorname{Res}(11,12)$

Restrictions Preserve Resolution Derivations

Proposition

If $\pi: F \vdash A$ is a resolution derivation and ρ is a restriction on $\operatorname{Vars}(F)$, then $\left.\pi\right|_{\rho}$ is a derivation of $\left.A\right|_{\rho}$ from $\left.F\right|_{\rho}$, possibly using weakening.

Proof.

Easy proof by induction over the resolution derivation.
In particular, if $\pi: F \vdash 0$ then $\left.\pi\right|_{\rho}$ can be transformed into a resolution refutation of $\left.F\right|_{\rho}$ without weakening in at most the same length as π.

Width

- Width $W(C)$ of clause C is $|C|$, i.e., \# literals
- Width of formula F or derivation π is width of the widest clause in the formula / derivation
- Width of deriving A from F is

$$
W(F \vdash A)=\min _{\pi: F \vdash A}\{W(\pi)\}
$$

(No difference between tree-like and general resolution)
Always $W(F \vdash 0) \leq|\operatorname{Vars}(F)|$

Width and Length

A narrow resolution proof is necessarily short.
For a proof in width $w,(2 \cdot|\operatorname{Vars}(F)|)^{w}$ is an upper bound on the number of possible clauses.

Ben-Sasson \& Wigderson proved (sort of) that the
converse also holds.
If there is a short resolution refutation of F, then there is a resolution refutation in small width as well.

Width and Length

A narrow resolution proof is necessarily short.
For a proof in width $w,(2 \cdot|\operatorname{Vars}(F)|)^{w}$ is an upper bound on the number of possible clauses.

Ben-Sasson \& Wigderson proved (sort of) that the converse also holds.

If there is a short resolution refutation of F, then there is a resolution refutation in small width as well.

Technical Lemma 1

Lemma
If $W\left(\left.F\right|_{x} \vdash A\right) \leq w$ then $W(F \vdash A \vee \bar{x}) \leq w+1$ (possibly by use of the weakening rule).

Proof

- Suppose $\pi=\left\{D_{1}, \ldots, D_{s}\right\}$ derives A from $\left.F\right|_{x}$
in width $W(\pi) \leq w$.
> Add the literal \bar{x} to all clauses in π.
- Claim: this yields a legal derivation π^{\prime} from F
(possibly with weakening).
- If so, obviously $W\left(\pi^{\prime}\right) \leq W+1$, and last line is $A \vee \bar{X}$.

Technical Lemma 1

Lemma
If $W\left(\left.F\right|_{x} \vdash A\right) \leq w$ then $W(F \vdash A \vee \bar{x}) \leq w+1$
(possibly by use of the weakening rule).

Proof.

- Suppose $\pi=\left\{D_{1}, \ldots, D_{s}\right\}$ derives A from $\left.F\right|_{x}$ in width $W(\pi) \leq w$.
- Add the literal \bar{x} to all clauses in π.
- Claim: this yields a legal derivation π^{\prime} from F (possibly with weakening).
- If so, obviously $W\left(\pi^{\prime}\right) \leq w+1$, and last line is $A \vee \bar{x}$.

Proof of Technical Lemma 1 (continued)

Proof of claim.
Need to show that each $D_{i} \vee \bar{x} \in \pi^{\prime}$ can be derived from previous clauses by resolution and/or weakening.
Let $F_{\bar{x}}=\{C \in F \mid \bar{x} \in \operatorname{Lit}(C)\}$ be the set of all clauses of F
containing the literal \bar{x}.
Three cases:

Proof of Technical Lemma 1 (continued)

Proof of claim.
Need to show that each $D_{i} \vee \bar{x} \in \pi^{\prime}$ can be derived from previous clauses by resolution and/or weakening.

Let $F_{\bar{x}}=\{C \in F \mid \bar{x} \in \operatorname{Lit}(C)\}$ be the set of all clauses of F containing the literal \bar{x}.

Three cases:

Proof of Technical Lemma 1 (continued)

Proof of claim.
Need to show that each $D_{i} \vee \bar{x} \in \pi^{\prime}$ can be derived from previous clauses by resolution and/or weakening.

Let $F_{\bar{x}}=\{C \in F \mid \bar{x} \in \operatorname{Lit}(C)\}$ be the set of all clauses of F containing the literal \bar{x}.

Three cases:

1. $\left.D_{i} \in F_{\bar{x}}\right|_{x}$: This means that $D_{i} \vee \bar{x} \in F$, which is OK.

Proof of Technical Lemma 1 (continued)

Proof of claim.
Need to show that each $D_{i} \vee \bar{x} \in \pi^{\prime}$ can be derived from previous clauses by resolution and/or weakening.

Let $F_{\bar{x}}=\{C \in F \mid \bar{x} \in \operatorname{Lit}(C)\}$ be the set of all clauses of F containing the literal \bar{x}.

Three cases:

1. $\left.D_{i} \in F_{\bar{x}}\right|_{x}$: This means that $D_{i} \vee \bar{x} \in F$, which is OK.
2. $\left.\left.D_{i} \in F\right|_{x} \backslash F_{\bar{x}}\right|_{x}$: This means that $D_{i} \in F$, so $D_{i} \vee \bar{x}$ can be derived by weakening.

Proof of Technical Lemma 1 (continued)

Proof of claim.
Need to show that each $D_{i} \vee \bar{x} \in \pi^{\prime}$ can be derived from previous clauses by resolution and/or weakening.

Let $F_{\bar{x}}=\{C \in F \mid \bar{x} \in \operatorname{Lit}(C)\}$ be the set of all clauses of F containing the literal \bar{x}.

Three cases:

1. $\left.D_{i} \in F_{\bar{x}}\right|_{x}$: This means that $D_{i} \vee \bar{x} \in F$, which is OK.
2. $\left.\left.D_{i} \in F\right|_{x} \backslash F_{\bar{x}}\right|_{x}$: This means that $D_{i} \in F$, so $D_{i} \vee \bar{x}$ can be derived by weakening.
3. D_{i} derived from $D_{j}, D_{k} \in \pi$ by resolution: By induction $D_{j} \vee \bar{x}$ and $D_{k} \vee \bar{x} \in \pi^{\prime}$ derivable; resolve to get $D_{i} \vee \bar{x}$.

Technical Lemma 2

Lemma
If

- $W\left(\left.F\right|_{x} \vdash 0\right) \leq w-1$ and
- $W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq w$
then
- $W(F \vdash 0) \leq \max \{w, W(F)\}$.

Proof

- Derive \bar{x} in width $\leq w$ by Technical Lemma 1 .
- Resolve \bar{x} with all clauses $C \in F$ containing literal x to get $\left.F\right|_{\bar{x}}$ in width $\leq W(F)$.
\Rightarrow Derive 0 from $\left.F\right|_{\bar{x}}$ in width $\leq w$ (by assumption).

Technical Lemma 2

Lemma
If

- $W\left(\left.F\right|_{x} \vdash 0\right) \leq w-1$ and
- $W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq w$
then
- $W(F \vdash 0) \leq \max \{w, W(F)\}$.

Proof.

- Derive \bar{x} in width $\leq w$ by Technical Lemma 1.
- Resolve \bar{x} with all clauses $C \in F$ containing literal x to get $\left.F\right|_{\bar{x}}$ in width $\leq W(F)$.
- Derive 0 from $\left.F\right|_{\bar{x}}$ in width $\leq w$ (by assumption).

Technical Lemma 2

Lemma
If

- $W\left(\left.F\right|_{x} \vdash 0\right) \leq w-1$ and
- $W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq w$
then
- $W(F \vdash 0) \leq \max \{w, W(F)\}$.

Proof.

- Derive \bar{x} in width $\leq w$ by Technical Lemma 1.
- Resolve \bar{x} with all clauses $C \in F$ containing literal x to get $\left.F\right|_{\bar{x}}$ in width $\leq W(F)$.
\rightarrow Derive 0 from $\left.F\right|_{\bar{x}}$ in width $\leq w$ (by assumption).

Technical Lemma 2

Lemma
If

- $W\left(\left.F\right|_{x} \vdash 0\right) \leq w-1$ and
- $W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq w$
then
- $W(F \vdash 0) \leq \max \{w, W(F)\}$.

Proof.

- Derive \bar{x} in width $\leq w$ by Technical Lemma 1.
- Resolve \bar{x} with all clauses $C \in F$ containing literal x to get $\left.F\right|_{\bar{x}}$ in width $\leq W(F)$.
- Derive 0 from $\left.F\right|_{\bar{x}}$ in width $\leq w$ (by assumption).

Warm-Up: Tree-Like Resolution

Theorem (Ben-Sasson \& Wigderson 1999)
For tree-like resolution, the width of refuting a CNF formula F is bounded from above by

$$
W(F \vdash 0) \leq W(F)+\log _{2} L_{T}(F \vdash 0) .
$$

Corollary
For tree-like resolution, the length of refuting a CNF formula F is bounded from below by

$$
L_{T}(F \vdash 0) \geq 2^{(W(F \vdash-0)-W(F))} .
$$

Warm-Up: Tree-Like Resolution

Theorem (Ben-Sasson \& Wigderson 1999)
For tree-like resolution, the width of refuting a CNF formula F is bounded from above by

$$
W(F \vdash 0) \leq W(F)+\log _{2} L_{T}(F \vdash 0) .
$$

Corollary

For tree-like resolution, the length of refuting a CNF formula F is bounded from below by

$$
L_{T}(F \vdash 0) \geq 2^{(W(F \vdash-0)-W(F))} .
$$

Proof for Tree-Like Resolution (1 / 2)

Proof by nested induction over b and \# variables n that

$$
L_{T}(F \vdash 0) \leq 2^{b} \Rightarrow W(F \vdash 0) \leq W(F)+b
$$

> Base cases:
> $b=0 \Rightarrow$ proof of length $1 \Rightarrow$ empty clause $0 \in F$
> $n=1 \Rightarrow$ formula over 1 variable, i.e., $x \wedge \bar{x} \Rightarrow \exists$ proof of width 1
> Induction step:
> Suppose for formula F with n variables that π is tree-like refutation in length $\leq 2^{b}$

> Last step in refutation $\pi: F \vdash 0$ is $\frac{x_{0} \bar{x}}{0}$ for some x
> Let π_{x} and $\pi_{\bar{x}}$ be the tree-like subderivations of x and \bar{x},
> respectively

Proof for Tree-Like Resolution (1 / 2)

Proof by nested induction over b and \# variables n that

$$
L_{T}(F \vdash 0) \leq 2^{b} \Rightarrow W(F \vdash 0) \leq W(F)+b
$$

Base cases:
$b=0 \Rightarrow$ proof of length $1 \Rightarrow$ empty clause $0 \in F$
$n=1 \Rightarrow$ formula over 1 variable, i.e., $x \wedge \bar{x} \Rightarrow \exists$ proof of width 1
Induction step:
Suppose for formula F with n variables that π is tree-like refutation in length $\leq 2^{b}$

Last step in refutation $\pi: F \vdash 0$ is $\frac{x}{0}$ for some x
Let π_{x} and $\pi_{\bar{x}}$ be the tree-like subderivations of x and \bar{x},
respectively

Proof for Tree-Like Resolution (1 / 2)

Proof by nested induction over b and \# variables n that

$$
L_{T}(F \vdash 0) \leq 2^{b} \Rightarrow W(F \vdash 0) \leq W(F)+b
$$

Base cases:
$b=0 \Rightarrow$ proof of length $1 \Rightarrow$ empty clause $0 \in F$
$n=1 \Rightarrow$ formula over 1 variable, i.e., $x \wedge \bar{x} \Rightarrow \exists$ proof of width 1
Induction step:
Suppose for formula F with n variables that π is tree-like refutation in length $\leq 2^{b}$
Last step in refutation $\pi: F \vdash 0$ is $\frac{x}{0}$ for some x
Let π_{x} and $\pi_{\bar{x}}$ be the tree-like subderivations of x and \bar{x}, respectively

Proof for Tree-Like Resolution (2 / 2)

Since $L(\pi)=L\left(\pi_{x}\right)+L\left(\pi_{\bar{x}}\right)+1 \leq 2^{b}$ (true since π is tree-like), one of π_{x} and $\pi_{\bar{x}}$ has length $\leq 2^{b-1}$
Suppose w.l.o.g. $L\left(\pi_{\bar{x}}\right) \leq 2^{b-1}$

$\left.\pi_{\bar{x}}\right|_{x}$ is a refutation of $\left.F\right|_{x}$ in length $\leq 2^{b-1}$
\Rightarrow by induction $W\left(\left.F\right|_{x} \vdash 0\right) \leq W\left(\left.F\right|_{x}\right)+b-1 \leq W(F)+b-1$
$\left.\pi_{x}\right|_{x}$ is a refutation in length $\leq 2^{b}$ of $\left.F\right|_{x}$ with $\leq n-1$ variables \Rightarrow by induction $W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq W\left(\left.F\right|_{\bar{x}}\right)+b \leq W(F)+b$

$$
\begin{aligned}
& \text { Technical Lemma 2: } W\left(\left.F\right|_{x} \vdash 0\right) \leq W(F)+b-1 \text { and } \\
& W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq W(F)+b \Rightarrow W(F \vdash 0) \leq W(F)+b
\end{aligned}
$$

(But construction leads to exponential blow-up in length, so short proofs are not narrow after all)

Proof for Tree-Like Resolution (2 / 2)

Since $L(\pi)=L\left(\pi_{x}\right)+L\left(\pi_{\bar{x}}\right)+1 \leq 2^{b}$ (true since π is tree-like), one of π_{x} and $\pi_{\bar{x}}$ has length $\leq 2^{b-1}$
Suppose w.l.o.g. $L\left(\pi_{\bar{x}}\right) \leq 2^{b-1}$

$\left.\pi_{\bar{x}}\right|_{x}$ is a refutation of $\left.F\right|_{x}$ in length $\leq 2^{b-1}$
\Rightarrow by induction $W\left(\left.F\right|_{x} \vdash 0\right) \leq W\left(\left.F\right|_{x}\right)+b-1 \leq W(F)+b-1$
$\left.\pi_{x}\right|_{\bar{x}}$ is a refutation in length $\leq 2^{b}$ of $\left.F\right|_{\bar{x}}$ with $\leq n-1$ variables
\Rightarrow by induction $W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq W\left(\left.F\right|_{\bar{x}}\right)+b \leq W(F)+b$
Technical Lemma 2: $W\left(\left.F\right|_{x} \vdash 0\right)<W(F)+b-1$ and
$W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq W(F)+b \Rightarrow W(F \vdash 0) \leq W(F)+b$
(But construction leads to exponential blow-up in length, so short proofs are not narrow after all)

Proof for Tree-Like Resolution (2 / 2)

Since $L(\pi)=L\left(\pi_{x}\right)+L\left(\pi_{\bar{x}}\right)+1 \leq 2^{b}$ (true since π is tree-like), one of π_{x} and $\pi_{\bar{x}}$ has length $\leq 2^{b-1}$
Suppose w.l.o.g. $L\left(\pi_{\bar{x}}\right) \leq 2^{b-1}$

$\left.\pi_{\bar{x}}\right|_{x}$ is a refutation of $\left.F\right|_{x}$ in length $\leq 2^{b-1}$
\Rightarrow by induction $W\left(\left.F\right|_{x} \vdash 0\right) \leq W\left(\left.F\right|_{x}\right)+b-1 \leq W(F)+b-1$
$\left.\pi_{x}\right|_{\bar{x}}$ is a refutation in length $\leq 2^{b}$ of $\left.F\right|_{\bar{x}}$ with $\leq n-1$ variables
\Rightarrow by induction $W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq W\left(\left.F\right|_{\bar{x}}\right)+b \leq W(F)+b$
Technical Lemma 2: $W\left(\left.F\right|_{x} \vdash 0\right) \leq W(F)+b-1$ and
$W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq W(F)+b \Rightarrow W(F \vdash 0) \leq W(F)+b$
(But construction leads to exnonential blow-un in length, so short proofs are not narrow after all)

Proof for Tree-Like Resolution (2 / 2)

Since $L(\pi)=L\left(\pi_{x}\right)+L\left(\pi_{\bar{x}}\right)+1 \leq 2^{b}$ (true since π is tree-like), one of π_{x} and $\pi_{\bar{x}}$ has length $\leq 2^{b-1}$
Suppose w.l.o.g. $L\left(\pi_{\bar{x}}\right) \leq 2^{b-1}$

$\left.\pi_{\bar{x}}\right|_{x}$ is a refutation of $\left.F\right|_{x}$ in length $\leq 2^{b-1}$
\Rightarrow by induction $W\left(\left.F\right|_{x} \vdash 0\right) \leq W\left(\left.F\right|_{x}\right)+b-1 \leq W(F)+b-1$
$\left.\pi_{x}\right|_{\bar{x}}$ is a refutation in length $\leq 2^{b}$ of $\left.F\right|_{\bar{x}}$ with $\leq n-1$ variables
\Rightarrow by induction $W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq W\left(\left.F\right|_{\bar{x}}\right)+b \leq W(F)+b$
Technical Lemma 2: $W\left(\left.F\right|_{x} \vdash 0\right) \leq W(F)+b-1$ and $W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq W(F)+b \Rightarrow W(F \vdash 0) \leq W(F)+b$
(But construction leads to exponential blow-up in length, so
short proofs are not narrow after all)

Proof for Tree-Like Resolution (2 / 2)

Since $L(\pi)=L\left(\pi_{x}\right)+L\left(\pi_{\bar{x}}\right)+1 \leq 2^{b}$ (true since π is tree-like), one of π_{x} and $\pi_{\bar{x}}$ has length $\leq 2^{b-1}$
Suppose w.l.o.g. $L\left(\pi_{\bar{x}}\right) \leq 2^{b-1}$

$\left.\pi_{\bar{x}}\right|_{x}$ is a refutation of $\left.F\right|_{x}$ in length $\leq 2^{b-1}$
\Rightarrow by induction $W\left(\left.F\right|_{x} \vdash 0\right) \leq W\left(\left.F\right|_{x}\right)+b-1 \leq W(F)+b-1$
$\left.\pi_{x}\right|_{\bar{x}}$ is a refutation in length $\leq 2^{b}$ of $\left.F\right|_{\bar{x}}$ with $\leq n-1$ variables
\Rightarrow by induction $W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq W\left(\left.F\right|_{\bar{x}}\right)+b \leq W(F)+b$
Technical Lemma 2: $W\left(\left.F\right|_{x} \vdash 0\right) \leq W(F)+b-1$ and $W\left(\left.F\right|_{\bar{x}} \vdash 0\right) \leq W(F)+b \Rightarrow W(F \vdash 0) \leq W(F)+b$
(But construction leads to exponential blow-up in length, so short proofs are not narrow after all)

The General Case

Theorem (Ben-Sasson \& Wigderson 1999)
The width of refuting a CNF formula F over n variables in general resolution is bounded from above by

$$
W(F \vdash 0) \leq W(F)+\mathcal{O}(\sqrt{n \log L(F \vdash 0)}) .
$$

Note: $2^{\text {n+1 }}-1$ maximal possible proof length, so bound is
$W / F \vdash 0) \lesssim W /(F)+\sqrt{\log (\text { max possible }) \cdot \log L(F \vdash 0)}$

This bound on width in terms of length is essentially optimal (Bonet \& Galesi 1999).

The General Case

Theorem (Ben-Sasson \& Wigderson 1999)
The width of refuting a CNF formula F over n variables in general resolution is bounded from above by

$$
W(F \vdash 0) \leq W(F)+\mathcal{O}(\sqrt{n \log L(F \vdash 0)}) .
$$

Note: $2^{n+1}-1$ maximal possible proof length, so bound is

$$
W(F \vdash 0) \lesssim W(F)+\sqrt{\log (\max \text { possible }) \cdot \log L(F \vdash 0)}
$$

This bound on width in terms of length is essentially optimal (Bonet \& Galesi 1999).

The General Case

Theorem (Ben-Sasson \& Wigderson 1999)
The width of refuting a CNF formula F over n variables in general resolution is bounded from above by

$$
W(F \vdash 0) \leq W(F)+\mathcal{O}(\sqrt{n \log L(F \vdash 0)}) .
$$

Note: $2^{n+1}-1$ maximal possible proof length, so bound is

$$
W(F \vdash 0) \lesssim W(F)+\sqrt{\log (\text { max possible }) \cdot \log L(F \vdash 0)}
$$

This bound on width in terms of length is essentially optimal (Bonet \& Galesi 1999).

The General Case: Corollary

Corollary

For general resolution, the length of refuting a CNF formula F over n variables is bounded from below by

$$
L(F \vdash 0) \geq \exp \left(\Omega\left(\frac{(W(F \vdash 0)-W(F))^{2}}{n}\right)\right) .
$$

Has been used to simplify many length lower bound proofs in resolution (and to prove a couple of new ones)

Need $W(F \vdash 0)-W(F)=\omega(\sqrt{n})$ to get non-trivial bounds

(Not a) Proof of the General Case

Proof for tree-like resolution breaks down in general case
Not true that $L(\pi)=L\left(\pi_{x}\right)+L\left(\pi_{\bar{x}}\right)+1$ Subderivations π_{x} and $\pi_{\bar{x}}$ may share clauses!

Instead

- Look at very wide clauses in π

- Eliminate many of them by applying restriction setting commonly occurring literal to true
- More complicated inductive argument (still exponential blow-up in length)

(Not a) Proof of the General Case

Proof for tree-like resolution breaks down in general case
Not true that $L(\pi)=L\left(\pi_{x}\right)+L\left(\pi_{\bar{x}}\right)+1$ Subderivations π_{x} and $\pi_{\bar{x}}$ may share clauses!

Instead

- Look at very wide clauses in π

- Eliminate many of them by applying restriction setting commonly occurring literal to true
- More complicated inductive argument (still exponential blow-up in length)

Part II

Resolution Width and Space

Outline of Part II: Resolution Width and Space

Resolution Space
Definition of Space
Some Basic Properties
Combinatorial Characterization of Width
Boolean Existential Pebble Game
Existential Pebble Game Characterizes Resolution Width
Space is Greater than Width
Open Questions

Introducing Space

- Results on width lead to question: Can other complexity measures yield interesting insights as well?
- Esteban \& Torán (1999) introduced proof space (maximal \# clauses in memory while verifying proof)
- Many lower bounds for space proven All turned out to match width bounds! Coincidence?
- Atserias \& Dalmau (2003): space \geq width - constant for k-CNF formulas

The subject of the 2nd part of this talk

Resolution Derivation (Revisited)

Sequence of sets of clauses, or clause configurations, $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{0}=\emptyset$ and \mathbb{C}_{t} follows from \mathbb{C}_{t-1} by:

Resolution derivation $\pi: F \vdash D$ of clause D from F : Derivation $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{\tau}=\{D\}$

Resolution refutation of F :
Derivation $\pi: F \vdash 0$ of empty clause 0 from F

Resolution Derivation (Revisited)

Sequence of sets of clauses, or clause configurations, $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{0}=\emptyset$ and \mathbb{C}_{t} follows from \mathbb{C}_{t-1} by: Download $\mathbb{C}_{t}=\mathbb{C}_{t-1} \cup\{C\}$ for clause $C \in F$ (axiom) Erasure $\mathbb{C}_{t}=\mathbb{C}_{t-1} \backslash\{C\}$ for clause $C \in \mathbb{C}_{t-1}$ Inference $\mathbb{C}_{t}=\mathbb{C}_{t-1} \cup\{C \vee D\}$ for clause $C \vee D$ inferred by resolution rule from $C \vee x, D \vee \bar{x} \in \mathbb{C}_{t-1}$

Resolution derivation $\pi: F \vdash D$ of clause D from F : Derivation $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{\tau}=\{D\}$

Resolution refutation of F :
Derivation $\pi: F \vdash 0$ of empty clause 0 from F

Resolution Derivation (Revisited)

Sequence of sets of clauses, or clause configurations, $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{0}=\emptyset$ and \mathbb{C}_{t} follows from \mathbb{C}_{t-1} by:
Download $\mathbb{C}_{t}=\mathbb{C}_{t-1} \cup\{C\}$ for clause $C \in F$ (axiom)
Erasure $\mathbb{C}_{t}=\mathbb{C}_{t-1} \backslash\{C\}$ for clause $C \in \mathbb{C}_{t-1}$

Resolution derivation $\pi: F \vdash D$ of clause D from F : Derivation $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{\tau}=\{D\}$

Resolution refutation of F :
Derivation $\pi: F \vdash 0$ of empty clause 0 from F

Resolution Derivation (Revisited)

Sequence of sets of clauses, or clause configurations, $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{0}=\emptyset$ and \mathbb{C}_{t} follows from \mathbb{C}_{t-1} by:

Download $\mathbb{C}_{t}=\mathbb{C}_{t-1} \cup\{C\}$ for clause $C \in F$ (axiom)
Erasure $\mathbb{C}_{t}=\mathbb{C}_{t-1} \backslash\{C\}$ for clause $C \in \mathbb{C}_{t-1}$
Inference $\mathbb{C}_{t}=\mathbb{C}_{t-1} \cup\{C \vee D\}$ for clause $C \vee D$ inferred by resolution rule from $C \vee x, D \vee \bar{x} \in \mathbb{C}_{t-1}$

Resolution derivation $\pi: F \vdash D$ of clause D from F
Derivation $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{\tau}=\{D\}$
Resolution refutation of F :
Derivation $\pi: F \vdash 0$ of empty clause 0 from F

Resolution Derivation (Revisited)

Sequence of sets of clauses, or clause configurations, $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{0}=\emptyset$ and \mathbb{C}_{t} follows from \mathbb{C}_{t-1} by:

Download $\mathbb{C}_{t}=\mathbb{C}_{t-1} \cup\{C\}$ for clause $C \in F$ (axiom)
Erasure $\mathbb{C}_{t}=\mathbb{C}_{t-1} \backslash\{C\}$ for clause $C \in \mathbb{C}_{t-1}$
Inference $\mathbb{C}_{t}=\mathbb{C}_{t-1} \cup\{C \vee D\}$ for clause $C \vee D$ inferred by resolution rule from $C \vee x, D \vee \bar{x} \in \mathbb{C}_{t-1}$

Resolution derivation $\pi: F \vdash D$ of clause D from F :
Derivation $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{\tau}=\{D\}$
Resolution refutation of F :
Derivation $\pi: F \vdash 0$ of empty clause 0 from F

Resolution Derivation (Revisited)

Sequence of sets of clauses, or clause configurations, $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{0}=\emptyset$ and \mathbb{C}_{t} follows from \mathbb{C}_{t-1} by:

Download $\mathbb{C}_{t}=\mathbb{C}_{t-1} \cup\{C\}$ for clause $C \in F$ (axiom)
Erasure $\mathbb{C}_{t}=\mathbb{C}_{t-1} \backslash\{C\}$ for clause $C \in \mathbb{C}_{t-1}$
Inference $\mathbb{C}_{t}=\mathbb{C}_{t-1} \cup\{C \vee D\}$ for clause $C \vee D$ inferred by resolution rule from $C \vee x, D \vee \bar{x} \in \mathbb{C}_{t-1}$

Resolution derivation $\pi: F \vdash D$ of clause D from F :
Derivation $\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ such that $\mathbb{C}_{\tau}=\{D\}$
Resolution refutation of F :
Derivation $\pi: F \vdash 0$ of empty clause 0 from F

Example (Our Favourite Resolution Refutation Again)

1.	$x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$	
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$	
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$	
5. $u \vee v$	Axiom	13.	x	$\operatorname{Res}(9,10)$
$6 . ~$	$\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$
7.	$\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom			

Empty start configuration

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$x \vee z$			
		Download axiom $x \vee z$	

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$x \vee z$			
		Download axiom $x \vee z$	

Example (Our Favourite Resolution Refutation Again)

	$x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2.	$\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3.	$x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4.	$\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5.	$u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6.	$\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7.	$\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$ Axiom				
$\left[\begin{array}{l}x \vee z \\ \bar{z} \vee y \\ \end{array}\right] \quad$ Download axiom $\bar{z} \vee y$				

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$	
2. $\bar{z} \vee y$	Axiom	10.	$x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\overline{\bar{l}} \vee u$	$\operatorname{Res}(5,6)$	
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$	
5. $u \vee v$	Axiom	13.	x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$	
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$	
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom			
$\left[\begin{array}{ll}x \vee z \\ \bar{z} \vee y\end{array}\right.$				

Download axiom $\bar{z} \vee y$

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom		$x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10.	$x \vee \bar{y}$	Res(3,4)
3. $x \vee \bar{y} \vee u$	Axiom	11.	$\bar{x} \vee u$	Res $(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12.	$\bar{x} \vee \bar{u}$	Res $(7,8)$
5. $u \vee v$	Axiom	13.	x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14.	\bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15.	0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom			
$\left[\begin{array}{l} x \vee z \\ \bar{z} \vee y \\ x \vee y \end{array}\right.$		Infer $x \vee y$ from $x \vee z$ and $\bar{z} \vee y$		

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{Z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x,	$\operatorname{Res}(9,10)$
6. $\bar{X} \vee \bar{V}$	Axiom	14. \bar{X}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{X} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l}x \vee z \\ \bar{z} \vee y \\ x \vee y\end{array}\right.$		Infer $x \vee y$ from $x \vee z$ and $\bar{z} \vee y$	

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res(3,4)
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	Res $(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \vee z \\ \bar{z} \vee y \\ x \vee y \end{array}\right.$		Erase clause	$\vee z$

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} \bar{z} \vee y \\ x \vee y \end{array}\right.$		Erase clause	

Example (Our Favourite Resolution Refutation Again)

	$x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
	$\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3.	$x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4.	$\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5.	$u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6.	$\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7.	$\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$ Axiom				
$x \vee y$				
			Erase clause	$\checkmark y$

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res(3,4)
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	Res $(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \vee y \\ x \vee \bar{y} \vee u \\ \bar{y} \vee \bar{u} \end{array}\right.$		Download axi	$m \bar{y} \vee \bar{u}$

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \vee y \\ x \vee \bar{y} \vee u \\ \bar{y} \vee \bar{u} \end{array}\right.$		Download axi	$m \bar{y} \vee \bar{u}$

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\begin{aligned} & x \vee y \\ & x \vee \bar{y} \vee u \\ & \bar{y} \vee \bar{u} \end{aligned}$		Infer $x \vee \bar{y}$ fro $x \vee \bar{y} \vee u$ and	

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \vee y \\ x \vee \bar{y} \vee u \\ \bar{y} \vee \bar{u} \\ x \vee \bar{y} \end{array}\right.$		Erase clause $x \vee \bar{y} \vee u$	

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \vee y \\ \bar{y} \vee \bar{u} \\ x \vee \bar{y} \end{array}\right.$		Erase clause	$\vee \bar{y} \vee u$

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \vee y \\ x \vee \bar{y} \end{array}\right.$		Erase clause	

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \vee y \\ x \vee \bar{y} \\ x \end{array}\right.$		Infer x from $x \vee y$ and $x \vee \bar{y}$	

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \vee y \\ x \vee \bar{y} \\ x \end{array}\right.$		Infer x from $x \vee y$ and $x \vee \bar{y}$	

Example (Our Favourite Resolution Refutation Again)

1.	$x \vee z$	Axiom		$x \vee y$	Res(1,2)
2.	$\bar{z} \vee y$	Axiom	10.	$x \vee \bar{y}$	Res(3,4)
3.	$x \vee \bar{y} \vee u$	Axiom	11.	$\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4.	$\bar{y} \vee \bar{u}$	Axiom	12.	$\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5.	$u \vee v$	Axiom	13.	x	$\operatorname{Res}(9,10)$
6.	$\bar{x} \vee \bar{v}$	Axiom	14.	\bar{x}	Res(11, 12)
7.	$\bar{u} \vee w$	Axiom	15.	0	$\operatorname{Res}(13,14)$
8.	$\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom			
	$x \vee y$ $x \vee \bar{y}$ x		Erase	clause	$\vee y$

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res(3,4)
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \vee \bar{y} \\ x \end{array}\right.$			
	Erase clause $x \vee y$		

Example (Our Favourite Resolution Refutation Again)

1.	$x \vee z$	Axiom		$x \vee y$	Res(1,2)
2.	$\bar{z} \vee y$	Axiom	10.	$x \vee \bar{y}$	Res(3,4)
3.	$x \vee \bar{y} \vee u$	Axiom	11.	$\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4.	$\bar{y} \vee \bar{u}$	Axiom	12.	$\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5.	$u \vee v$	Axiom	13.	x	$\operatorname{Res}(9,10)$
6.	$\bar{x} \vee \bar{v}$	Axiom	14.	\bar{x}	Res(11, 12)
7.	$\bar{u} \vee w$	Axiom	15.	0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$ Axiom					
$\left[\begin{array}{l}x \vee \bar{y} \\ x\end{array}\right] \quad$ Erase clause $x \vee \bar{y}$					

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res(3,4)
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	Res $(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \\ u \vee v \end{array}\right.$			

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res(3,4)
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	Res $(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \\ u \vee v \\ \bar{x} \vee \bar{v} \end{array}\right.$		Download axi	$m \bar{\chi} \vee \bar{v}$

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \\ u \vee v \\ \bar{x} \vee \bar{v} \end{array}\right.$		Download axi	$m \bar{x} \vee \bar{v}$

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom		$x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10.	$x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11.	$\bar{x} \vee u$	Res $(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12.	$\bar{x} \vee \bar{u}$	Res $(7,8)$
5. $u \vee v$	Axiom	13.	x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14.	\bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15.	0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom			
$\begin{aligned} & x \\ & u \vee v \\ & \bar{x} \vee \bar{v} \end{aligned}$	Infer $\bar{x} \vee u$ from $u \vee v$ and $\bar{x} \vee \bar{v}$	Infer $\bar{x} \vee u$ from $u \vee v$ and $\bar{x} \vee \bar{v}$		

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
x		Erase clause $u \vee v$	
$\bar{x} \vee \bar{v}$			
$\bar{x} \vee u$			

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \\ \bar{x} \vee \bar{v} \\ \bar{x} \vee u \end{array}\right.$		Erase clause	$v v$

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res(3,4)
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \\ \bar{x} \vee \bar{v} \end{array}\right.$		Erase clause $\bar{\chi} \vee \bar{v}$	
$\bar{x} \vee u$			

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \\ \bar{x} \vee u \end{array}\right.$		Erase clause	$\bar{\vee} \vee \bar{v}$

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \\ \bar{x} \vee u \\ \bar{u} \vee w \end{array}\right.$		Download axi	$m \bar{u} \vee w$

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{X} \vee \bar{V}$	Axiom	14. \bar{X}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{X} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l}x \\ \bar{x} \vee u \\ \bar{u} \vee w \\ \bar{x} \vee \bar{u} \vee \bar{w} \\ \bar{x} \vee \bar{u}\end{array}\right.$		Infer $\bar{x} \vee \bar{u}$ from $\bar{u} \vee w$ and \bar{x}	$\bar{u} \vee \bar{w}$

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$	
2. $\bar{z} \vee y$	Axiom	10.	$x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$	
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$	
5. $u \vee v$	Axiom	13.	x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$	
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$	
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom			
$\left[\begin{array}{lll}x & & \\ \bar{x} \vee u \\ \bar{u} \vee w \\ \bar{x} \vee \bar{u} \vee \bar{w} \\ \bar{x} \vee \bar{u}\end{array}\right] \quad$			Infer $\bar{x} \vee \bar{u}$ from	

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{X} \vee \bar{V}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{X} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l}x \\ \bar{x} \vee u \\ \bar{x} \vee \bar{u} \vee \bar{w} \\ \bar{x} \vee \bar{u}\end{array}\right.$		Erase clause	$\checkmark W$

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$	
2. $\bar{z} \vee y$	Axiom	10.	$x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$	
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$	
5. $u \vee v$	Axiom	13.	x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$	
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$	
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom			
$\left[\begin{array}{lll}x \\ \bar{x} \vee u \\ \bar{x} \vee \bar{u} \vee \bar{w} \\ \bar{x} \vee \bar{u}\end{array}\right] \quad$				
			Erase clause $\bar{x} \vee \bar{u} \vee \bar{w}$	

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \\ \bar{x} \vee u \\ \bar{x} \vee \bar{u} \end{array}\right.$		Erase clause	$\checkmark \bar{u} \vee \bar{w}$

Example (Our Favourite Resolution Refutation Again)

$x \vee Z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{X} \vee \bar{V}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{X} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l}x \\ \bar{x} \vee u \\ \bar{x} \vee \bar{u}\end{array}\right.$		Infer \bar{x} from $\bar{x} \vee u$ and $\bar{x} \vee \bar{u}$	

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{Z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{X} \vee \bar{V}$	Axiom	14. \bar{X}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{X} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l}x \\ \bar{x} \vee u \\ \bar{x} \vee \bar{u} \\ \bar{x}\end{array}\right.$		Infer \bar{x} from $\bar{x} \vee u$ and $\bar{x} \vee \bar{u}$	

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{X} \vee \bar{V}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{X} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l}x \\ \bar{x} \vee u \\ \bar{x} \vee \bar{u} \\ \bar{x}\end{array}\right.$		Infer \bar{x} from $\bar{x} \vee u$ and $\bar{x} \vee \bar{u}$	

Example (Our Favourite Resolution Refutation Again)

1.	$x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10.	$x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$	
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$	
5. $u \vee v$	Axiom	13.	x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	$\operatorname{Res}(11,12)$	
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$	
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom			
$\left[\begin{array}{lll}x \\ \bar{x} \vee u \\ \bar{x} \vee \bar{u} \\ \bar{x}\end{array}\right] \quad$				

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res $(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \\ \bar{x} \vee \bar{u} \\ \bar{x} \end{array}\right.$		Erase clause	$\vee u$

Example (Our Favourite Resolution Refutation Again)

1.	$x \vee z$	Axiom	9.	$x \vee y$	Res(1,2)
2.	$\bar{z} \vee y$	Axiom	10.	$x \vee \bar{y}$	Res(3,4)
3.	$x \vee \bar{y} \vee u$	Axiom	11.	$\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4.	$\bar{y} \vee \bar{u}$	Axiom	12.	$\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5.	$u \vee v$	Axiom	13.	x	$\operatorname{Res}(9,10)$
6.	$\bar{x} \vee \bar{v}$	Axiom	14.	\bar{x}	Res(11, 12)
7.	$\bar{u} \vee w$	Axiom	15.	0	$\operatorname{Res}(13,14)$
8.	$\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom			
	$\begin{aligned} & x \\ & \bar{x} \vee \bar{u} \\ & \bar{x} \end{aligned}$		Erase	clause	$\vee \bar{u}$

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \\ \bar{x} \end{array}\right.$		Infer 0 from x and \bar{x}	

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	$\operatorname{Res}(3,4)$
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l} x \\ \bar{x} \\ 0 \end{array}\right.$		Infer 0 from x and \bar{x}	

Example (Our Favourite Resolution Refutation Again)

1. $x \vee z$	Axiom	9. $x \vee y$	$\operatorname{Res}(1,2)$
2. $\bar{z} \vee y$	Axiom	10. $x \vee \bar{y}$	Res(3,4)
3. $x \vee \bar{y} \vee u$	Axiom	11. $\bar{x} \vee u$	$\operatorname{Res}(5,6)$
4. $\bar{y} \vee \bar{u}$	Axiom	12. $\bar{x} \vee \bar{u}$	$\operatorname{Res}(7,8)$
5. $u \vee v$	Axiom	13. x	$\operatorname{Res}(9,10)$
6. $\bar{x} \vee \bar{v}$	Axiom	14. \bar{x}	Res(11, 12)
7. $\bar{u} \vee w$	Axiom	15. 0	$\operatorname{Res}(13,14)$
8. $\bar{x} \vee \bar{u} \vee \bar{w}$	Axiom		
$\left[\begin{array}{l}x \\ \bar{x} \\ 0\end{array}\right.$			
0	Erase clause x		

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

Example (Our Favourite Resolution Refutation Again)

Space

- Space of resolution derivation $\pi=\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ is max \# clauses in any configuration

$$
\operatorname{Sp}(\pi)=\max _{t \in[\tau]}\left\{\left|\mathbb{C}_{t}\right|\right\}
$$

- Space of deriving D from F is

$$
S p(F \vdash D)=\min _{\pi: F \vdash D}\{S p(\pi)\}
$$

As for length, the space measures in general and tree-like resolution differ.

We concentrate on the interesting case: general resolution.

Space

- Space of resolution derivation $\pi=\left\{\mathbb{C}_{0}, \ldots, \mathbb{C}_{\tau}\right\}$ is max \# clauses in any configuration

$$
\operatorname{Sp}(\pi)=\max _{t \in[\tau]}\left\{\left|\mathbb{C}_{t}\right|\right\}
$$

- Space of deriving D from F is

$$
S p(F \vdash D)=\min _{\pi: F \vdash D}\{\operatorname{Sp}(\pi)\}
$$

As for length, the space measures in general and tree-like resolution differ.

We concentrate on the interesting case: general resolution.

Space \gtrsim variables

Consider decision tree for F
 n variables \Rightarrow height of decision tree at most n

By induction:
Clause at root of subtree of height h derivable in space $h+2$

- Derive left child clause in space $h+1$ and keep in memory
- Derive right child clause in space $1+(h+1)$
- Resolve the two children clauses to get root clause

Theorem
$\operatorname{Sp}(F \vdash 0) \leq|\operatorname{Vars}(F)|+2$

Space §\# variables

Consider decision tree for F

n variables \Rightarrow height of decision tree at most n
By induction:
Clause at root of subtree of height h derivable in space $h+2$

- Derive left child clause in space $h+1$ and keep in memory
- Derive right child clause in space $1+(h+1)$
- Resolve the two children clauses to get root clause

Space §\# variables

Consider decision tree for F

n variables \Rightarrow height of decision tree at most n
By induction:
Clause at root of subtree of height h derivable in space $h+2$

- Derive left child clause in space $h+1$ and keep in memory
- Derive right child clause in space $1+(h+1)$
- Resolve the two children clauses to get root clause

Theorem
$S p(F \vdash 0) \leq|\operatorname{Vars}(F)|+2$

Minimally Unsatisfiable CNF formula

Definition

An unsatisfiable CNF formula F is minimally unsatisfiable if removing any clause from F makes it satisfiable.

Example

is minimally unsatisfiable (but tedious to verify)

is not minimally unsatisfiable

Minimally Unsatisfiable CNF formula

Definition

An unsatisfiable CNF formula F is minimally unsatisfiable if removing any clause from F makes it satisfiable.

Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(\bar{z} \vee y) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

is minimally unsatisfiable (but tedious to verify)

is not minimally unsatisfiable

Minimally Unsatisfiable CNF formula

Definition

An unsatisfiable CNF formula F is minimally unsatisfiable if removing any clause from F makes it satisfiable.

Example

$$
\begin{aligned}
F= & (x \vee z) \wedge(\bar{z} \vee y) \wedge(x \vee \bar{y} \vee u) \wedge(\bar{y} \vee \bar{u}) \\
& \wedge(u \vee v) \wedge(\bar{x} \vee \bar{v}) \wedge(\bar{u} \vee w) \wedge(\bar{x} \vee \bar{u} \vee \bar{w})
\end{aligned}
$$

is minimally unsatisfiable (but tedious to verify)

$$
\begin{aligned}
\left.F\right|_{x}= & (\bar{z} \vee y) \wedge(\bar{y} \vee \bar{u}) \wedge(u \vee v) \\
& \wedge \bar{v} \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee \bar{w})
\end{aligned}
$$

is not minimally unsatisfiable

Min Unsat CNFs Have More Clauses than Variables

Lemma
Any minimally unsatisfiable CNF formula must have more clauses than variables.

Proof.

- Consider bipartite graph on $F \times \operatorname{Vars}(F)$ with edges from clauses to variables occurring in the clauses
- No matching, so by Hall's theorem $\exists G \subseteq F$ such that $|G|>|N(G)|$ (where $N(\cdot)$ is the set of neighbours)
- Pick G of max size Sunnose $G \neq F$ Then G is satisfiable.
- Use Hall's theorem again: must exist a matching between $F \backslash G$ and $\operatorname{Vars}(F) \backslash N(G)$.
- But then $F=(F \backslash G) \cup G$ is satisfiable! Contradiction.

Min Unsat CNFs Have More Clauses than Variables

Lemma
Any minimally unsatisfiable CNF formula must have more clauses than variables.

Proof.

- Consider bipartite graph on $F \times \operatorname{Vars}(F)$ with edges from clauses to variables occurring in the clauses

Min Unsat CNFs Have More Clauses than Variables

Lemma
Any minimally unsatisfiable CNF formula must have more clauses than variables.

Proof.

- Consider bipartite graph on $F \times \operatorname{Vars}(F)$ with edges from clauses to variables occurring in the clauses
- No matching, so by Hall's theorem $\exists G \subseteq F$ such that $|G|>|N(G)|$ (where $N(\cdot)$ is the set of neighbours)
- Pick G of max size. Suppose $G \neq F$. Then G is satisfiable.
- Use Hall's theorem again: must exist a matching between $F \backslash G$ and $\operatorname{Vars}(F) \backslash N(G)$
- But then $F=(F \backslash G) \cup G$ is satisfiable! Contradiction.

Min Unsat CNFs Have More Clauses than Variables

Lemma
Any minimally unsatisfiable CNF formula must have more clauses than variables.

Proof.

- Consider bipartite graph on $F \times \operatorname{Vars}(F)$ with edges from clauses to variables occurring in the clauses
- No matching, so by Hall's theorem $\exists G \subseteq F$ such that $|G|>|N(G)|$ (where $N(\cdot)$ is the set of neighbours)
- Pick G of max size. Suppose $G \neq F$. Then G is satisfiable.
- Use Hall's theorem again: must exist a matching between
\square $G) \cup G$ is satisfiable! Contradiction.

Min Unsat CNFs Have More Clauses than Variables

Lemma
Any minimally unsatisfiable CNF formula must have more clauses than variables.

Proof.

- Consider bipartite graph on $F \times \operatorname{Vars}(F)$ with edges from clauses to variables occurring in the clauses
- No matching, so by Hall's theorem $\exists G \subseteq F$ such that $|G|>|N(G)|$ (where $N(\cdot)$ is the set of neighbours)
- Pick G of max size. Suppose $G \neq F$. Then G is satisfiable.
- Use Hall's theorem again: must exist a matching between $F \backslash G$ and $\operatorname{Vars}(F) \backslash N(G)$.
\Rightarrow But then $F=(F \backslash G) \cup G$ is satisfiable! Contradiction.

Min Unsat CNFs Have More Clauses than Variables

Lemma
Any minimally unsatisfiable CNF formula must have more clauses than variables.

Proof.

- Consider bipartite graph on $F \times \operatorname{Vars}(F)$ with edges from clauses to variables occurring in the clauses
- No matching, so by Hall's theorem $\exists G \subseteq F$ such that $|G|>|N(G)|$ (where $N(\cdot)$ is the set of neighbours)
- Pick G of max size. Suppose $G \neq F$. Then G is satisfiable.
- Use Hall's theorem again: must exist a matching between $F \backslash G$ and $\operatorname{Vars}(F) \backslash N(G)$.
- But then $F=(F \backslash G) \cup G$ is satisfiable! Contradiction.

Space § \# clauses

Theorem

$$
S p(F \vdash 0) \leq L(F)+1
$$

Proof.

- Pick minimally unsatisfiable $F^{\prime} \subseteq F$
- We know $L\left(F^{\prime}\right)>\left|\operatorname{Vars}\left(F^{\prime}\right)\right|$
- Use bound in terms of \# variables to get refutation in space $\leq\left|\operatorname{Vars}\left(F^{\prime}\right)\right|+2 \leq L\left(F^{\prime}\right)+1 \leq L(F)+1$

Space \gtrsim \# clauses

Theorem
$S p(F \vdash 0) \leq L(F)+1$

Proof.

- Pick minimally unsatisfiable $F^{\prime} \subseteq F$
- We know $L\left(F^{\prime}\right)>\left|\operatorname{Vars}\left(F^{\prime}\right)\right|$
- Use bound in terms of \# variables to get refutation in space $\leq\left|\operatorname{Vars}\left(F^{\prime}\right)\right|+2 \leq L\left(F^{\prime}\right)+1 \leq L(F)+1$

Space \gtrsim clauses

Theorem
$S p(F \vdash 0) \leq L(F)+1$

Proof.

- Pick minimally unsatisfiable $F^{\prime} \subseteq F$
- We know $L\left(F^{\prime}\right)>\left|\operatorname{Vars}\left(F^{\prime}\right)\right|$
- Use bound in terms of \# variables to get refutation in space $\leq\left|\operatorname{Vars}\left(F^{\prime}\right)\right|+2 \leq L\left(F^{\prime}\right)+1 \leq L(F)+1$

Space § \# clauses

Theorem
$S p(F \vdash 0) \leq L(F)+1$

Proof.

- Pick minimally unsatisfiable $F^{\prime} \subseteq F$
- We know $L\left(F^{\prime}\right)>\left|\operatorname{Vars}\left(F^{\prime}\right)\right|$
- Use bound in terms of \# variables to get refutation in space

$$
\leq\left|\operatorname{Vars}\left(F^{\prime}\right)\right|+2 \leq L\left(F^{\prime}\right)+1 \leq L(F)+1
$$

Upper Bounds in \# Clauses and \# Variables Tight

We just showed

$$
S p(F \vdash 0) \leq \min \{L(F)+1,|\operatorname{Vars}(F)|+2\}
$$

Thus the interesting question is which formulas demand this much space, and which formulas can be refuted in e.g. logarithmic or even constant space.

Upper Bounds in \# Clauses and \# Variables Tight

We just showed

$$
S p(F \vdash 0) \leq \min \{L(F)+1,|\operatorname{Vars}(F)|+2\}
$$

Thus the interesting question is which formulas demand this much space, and which formulas can be refuted in e.g. logarithmic or even constant space.

Theorem (Alekhnovich et al. 2000, Torán 1999)
There is a polynomial-size family $\left\{F_{n}\right\}_{n=1}^{\infty}$ of unsatisfiable 3-CNF formulas such that $S p(F \vdash 0)=\Omega(L(F))=\Omega(|\operatorname{Vars}(F)|)$.

Informal Description of Existential Pebble Game

 Game between Spoiler and Duplicator over CNF formula F Duplicator claims formula is satisfiable Spoiler wants to disprove this, but suffers from light senility (can only keep p variable assignments in memory)In each round, Spoiler

- picks a variable to which Duplicator must assign a value, or
- forgets a variable (can choose which)

In each round, Duplicator

- assigns value to chosen variable to get a non-falsifying partial assignment to variables in Spoiler's memory, or - deletes value assigned to forgotten variable (knows which)

Informal Description of Existential Pebble Game

 Game between Spoiler and Duplicator over CNF formula F Duplicator claims formula is satisfiable Spoiler wants to disprove this, but suffers from light senility (can only keep p variable assignments in memory)In each round, Spoiler

- picks a variable to which Duplicator must assign a value, or
- forgets a variable (can choose which)

In each round, Duplicator

- ascigns value to chosen variable to get a non-falsifying partial assignment to variables in Spoiler's memory, or
> deletes value assigned to forgotten variable (knows which)

Informal Description of Existential Pebble Game

 Game between Spoiler and Duplicator over CNF formula F Duplicator claims formula is satisfiable Spoiler wants to disprove this, but suffers from light senility (can only keep p variable assignments in memory)In each round, Spoiler

- picks a variable to which Duplicator must assign a value, or
- forgets a variable (can choose which)

In each round, Duplicator

- assigns value to chosen variable to get a non-falsifying partial assignment to variables in Spoiler's memory, or
- deletes value assigned to forgotten variable (knows which)

Formal Definition

Duplicator wins the Boolean existential p-pebble game over the CNF formula F if there is a nonempty family \mathcal{H} of partial truth value assignments that do not falsify any clause in F and for which the following holds:

Formal Definition

Duplicator wins the Boolean existential p-pebble game over the CNF formula F if there is a nonempty family \mathcal{H} of partial truth value assignments that do not falsify any clause in F and for which the following holds:

1. If $\alpha \in \mathcal{H}$ then $|\alpha| \leq p$.
2. If $\alpha \in \mathcal{H}$ and $\beta \subseteq \alpha$ then $\beta \in \mathcal{H}$.
3. If $\alpha \in \mathcal{H},|\alpha|<p$ and $x \in \operatorname{Vars}(F)$ then there exists a $\beta \in \mathcal{H}$ such that $\alpha \subseteq \beta$ and x is in the domain of β.
\mathcal{H} is called a winning strategy for Duplicator.
If there is no winning strategy for Duplicator, Spoiler wins the game.

Formal Definition

Duplicator wins the Boolean existential p-pebble game over the CNF formula F if there is a nonempty family \mathcal{H} of partial truth value assignments that do not falsify any clause in F and for which the following holds:

1. If $\alpha \in \mathcal{H}$ then $|\alpha| \leq p$.
2. If $\alpha \in \mathcal{H}$ and $\beta \subseteq \alpha$ then $\beta \in \mathcal{H}$.
3. If $\alpha \in \mathcal{H},|\alpha|<p$ and $x \in \operatorname{Vars}(F)$ then there exists a $\beta \in \mathcal{H}$ such that $\alpha \subseteq \beta$ and x is in the domain of β.
\mathcal{H} is called a winning strategy for Duplicator.
If there is no winning strategy for Duplicator, Spoiler wins the game.

Formal Definition

Duplicator wins the Boolean existential p-pebble game over the CNF formula F if there is a nonempty family \mathcal{H} of partial truth value assignments that do not falsify any clause in F and for which the following holds:

1. If $\alpha \in \mathcal{H}$ then $|\alpha| \leq p$.
2. If $\alpha \in \mathcal{H}$ and $\beta \subseteq \alpha$ then $\beta \in \mathcal{H}$.
3. If $\alpha \in \mathcal{H},|\alpha|<p$ and $x \in \operatorname{Vars}(F)$ then there exists a $\beta \in \mathcal{H}$ such that $\alpha \subseteq \beta$ and x is in the domain of β.
\mathcal{H} is called a winning strategy for Duplicator.
If there is no winning strategy for Duplicator, Spoiler wins the game.

Formal Definition

Duplicator wins the Boolean existential p-pebble game over the CNF formula F if there is a nonempty family \mathcal{H} of partial truth value assignments that do not falsify any clause in F and for which the following holds:

1. If $\alpha \in \mathcal{H}$ then $|\alpha| \leq p$.
2. If $\alpha \in \mathcal{H}$ and $\beta \subseteq \alpha$ then $\beta \in \mathcal{H}$.
3. If $\alpha \in \mathcal{H},|\alpha|<p$ and $x \in \operatorname{Vars}(F)$ then there exists a $\beta \in \mathcal{H}$ such that $\alpha \subseteq \beta$ and x is in the domain of β.
\mathcal{H} is called a winning strategy for Duplicator.
If there is no winning strategy for Duplicator, Spoiler wins the game.

Constructive Strategies

If there is a winning strategy for Duplicator, then there is a deterministic winning strategy that for each $\alpha \in \mathcal{H}$ and each move of Spoiler defines a move β for Duplicator.

> Proposition
> If Duplicator has no winning strategy, then there is a winning strategy (in the form of a partial function from partial truth value assignments to variable queries/deletions) for Spoiler.

> Proof sketch.
> The number of possible deterministic strategies for Duplicator is finite, so Spoiler can build a strategy by evaluating all possible responses to sequences of queries and deletions.

Constructive Strategies

If there is a winning strategy for Duplicator, then there is a deterministic winning strategy that for each $\alpha \in \mathcal{H}$ and each move of Spoiler defines a move β for Duplicator.
Proposition
If Duplicator has no winning strategy, then there is a winning strategy (in the form of a partial function from partial truth value assignments to variable queries/deletions) for Spoiler.

Proof sketch.
The number of possible deterministic strategies for Duplicator is finite, so Spoiler can build a strategy by evaluating all possible responses to sequences of queries and deletions.

Constructive Strategies

If there is a winning strategy for Duplicator, then there is a deterministic winning strategy that for each $\alpha \in \mathcal{H}$ and each move of Spoiler defines a move β for Duplicator.
Proposition
If Duplicator has no winning strategy, then there is a winning strategy (in the form of a partial function from partial truth value assignments to variable queries/deletions) for Spoiler.

Proof sketch.

The number of possible deterministic strategies for Duplicator is finite, so Spoiler can build a strategy by evaluating all possible responses to sequences of queries and deletions.

Existential Pebble Game Characterizes Width

It turns out that the Boolean existential p-pebble game exactly characterizes resolution width.

Theorem (Atserias \& Dalmau 2003)
The CNF formula F has a resolution refutation of width $\leq p$
if and only if
Spoiler wins the existential ($p+1$)-pebble game on F.

Narrow Proof Yields Winning Strategy for Spoiler

- Given π : $F \vdash 0$ with DAG G_{π}.
- Spoiler starts at the vertex for 0 and inductively queries the variable resolved upon to to get there
- Spoiler moves to the assumption clause D falsified by Duplicator's answer and forgets all variables not in D
- Repeat for the new clause et cetera
- Sooner or later Spoiler reaches a falsified axiom, having used no more than $W(\pi)+1$ variables simultaneously (+1 is for the variable resolved on)

Narrow Proof Yields Winning Strategy for Spoiler

- Given π : $F \vdash 0$ with DAG G_{π}.
- Spoiler starts at the vertex for 0 and inductively queries the variable resolved upon to to get there
- Spoiler moves to the assumption clause D falsified by Duplicator's answer and forgets all variables not in D
- Repeat for the new clause et cetera
- Sooner or later Spoiler reaches a falsified axiom, having used no more than $W(\pi)+1$ variables simultaneously (+1 is for the variable resolved on)

Narrow Proof Yields Winning Strategy for Spoiler

- Given $\pi: F \vdash 0$ with DAG G_{π}.
- Spoiler starts at the vertex for 0 and inductively queries the variable resolved upon to to get there
- Spoiler moves to the assumption clause D falsified by Duplicator's answer and forgets all variables not in D
- Repeat for the new clause et cetera
- Sooner or later Spoiler reaches a falsified axiom, having used no more than $W(\pi)+1$ variables simultaneously (+1 is for the variable resolved on)

Narrow Proof Yields Winning Strategy for Spoiler

- Given $\pi: F \vdash 0$ with DAG G_{π}.
- Spoiler starts at the vertex for 0 and inductively queries the variable resolved upon to to get there
- Spoiler moves to the assumption clause D falsified by Duplicator's answer and forgets all variables not in D
- Repeat for the new clause et cetera
- Sooner or later Spoiler reaches a falsified axiom, having used no more than $W(\pi)+1$ variables simultaneously (+1 is for the variable resolved on)

Narrow Proof Yields Winning Strategy for Spoiler

- Given $\pi: F \vdash 0$ with DAG G_{π}.
- Spoiler starts at the vertex for 0 and inductively queries the variable resolved upon to to get there
- Spoiler moves to the assumption clause D falsified by Duplicator's answer and forgets all variables not in D
- Repeat for the new clause et cetera
- Sooner or later Spoiler reaches a falsified axiom, having used no more than $W(\pi)+1$ variables simultaneously (+1 is for the variable resolved on)

Winning Strategy for Spoiler Yields Narrow Proof

 Given strategy for Spoiler, build DAG G_{π} as follows:- Start with 0 vertex. For x the first variable queried, make vertices x, \bar{x} with edges to 0 .
- Inductively, let ρ_{V} be the unique minimal partial truth value assignment falsifying the clause D_{V} at v.
- If move on ρ_{v} is deletion of y, make new vertex $D_{v} \backslash\{y, \bar{y}\}$ with edge to D_{v}. Otherwise, if y is queried, make new vertices $D \vee y, D \vee \bar{y}$ with edges to D.
- In the (finite) DAG G constructed, all sources are (weakenings of) axioms of F, and by induction G describes a resolution derivation with weakening.
- If we eliminate the weakening we get a derivation in width at most p, since if $\left|\rho_{v}\right|=p+1$ the next move for Spoiler must be a deletion.

Winning Strategy for Spoiler Yields Narrow Proof

 Given strategy for Spoiler, build DAG G_{π} as follows:- Start with 0 vertex. For x the first variable queried, make vertices x, \bar{x} with edges to 0 .
$>$ Inductively, let ρ_{V} be the unique minimal partial truth value assignment falsifying the clause D_{v} at v.
- If move on ρ_{v} is deletion of y, make new vertex $D_{v} \backslash\{y, \bar{y}\}$ with edge to D_{V}. Otherwise, if y is queried, make new vertices $D \vee y, D \vee \bar{y}$ with edges to D.
- In the (finite) DAG G constructed, all sources are (weakenings of) axioms of F, and by induction G describes a resolution derivation with weakening.
- If we eliminate the weakening we get a derivation in width at most ρ, since if $\left|\rho_{v}\right|=\rho+1$ the next move for Spoiler must be a deletion.

Winning Strategy for Spoiler Yields Narrow Proof

 Given strategy for Spoiler, build DAG G_{π} as follows:- Start with 0 vertex. For x the first variable queried, make vertices x, \bar{x} with edges to 0 .
- Inductively, let ρ_{v} be the unique minimal partial truth value assignment falsifying the clause D_{v} at v.
- If move on ρ_{v} is deletion of y, make new vertex $D_{v} \backslash\{y, \bar{y}\}$ with edge to D_{v}. Otherwise, if y is queried, make new vertices $D \vee y, D \vee \bar{y}$ with edges to D.
- In the (finite) DAG G constructed, all sources are (weakenings of) axioms of F, and by induction G describes a resolution derivation with weakening.
- If we eliminate the weakening we get a derivation in width at most p, since if $\left|\rho_{v}\right|=p+1$ the next move for Spoiler must be a deletion.

Winning Strategy for Spoiler Yields Narrow Proof

 Given strategy for Spoiler, build DAG G_{π} as follows:- Start with 0 vertex. For x the first variable queried, make vertices x, \bar{x} with edges to 0 .
- Inductively, let ρ_{V} be the unique minimal partial truth value assignment falsifying the clause D_{v} at v.
- If move on ρ_{v} is deletion of y, make new vertex $D_{v} \backslash\{y, \bar{y}\}$ with edge to D_{v}. Otherwise, if y is queried, make new vertices $D \vee y, D \vee \bar{y}$ with edges to D.
- In the (finite) DAG G constructed, all sources are (weakenings of) axioms of F, and by induction G describes a resolution derivation with weakening.
- If we eliminate the weakening we get a derivation in width at most p, since if $\left|\rho_{v}\right|=p+1$ the next move for Spoiler must be a deletion.

Winning Strategy for Spoiler Yields Narrow Proof

 Given strategy for Spoiler, build DAG G_{π} as follows:- Start with 0 vertex. For x the first variable queried, make vertices x, \bar{x} with edges to 0 .
- Inductively, let ρ_{V} be the unique minimal partial truth value assignment falsifying the clause D_{v} at v.
- If move on ρ_{v} is deletion of y, make new vertex $D_{v} \backslash\{y, \bar{y}\}$ with edge to D_{v}. Otherwise, if y is queried, make new vertices $D \vee y, D \vee \bar{y}$ with edges to D.
- In the (finite) DAG G constructed, all sources are (weakenings of) axioms of F, and by induction G describes a resolution derivation with weakening.
- If we eliminate the weakening we get a derivation in width at most p, since if $\left|\rho_{v}\right|=p+1$ the next move for Spoiler must be a deletion.

Winning Strategy for Spoiler Yields Narrow Proof

Given strategy for Spoiler, build DAG G_{π} as follows:

- Start with 0 vertex. For x the first variable queried, make vertices x, \bar{x} with edges to 0 .
- Inductively, let ρ_{V} be the unique minimal partial truth value assignment falsifying the clause D_{v} at v.
- If move on ρ_{v} is deletion of y, make new vertex $D_{v} \backslash\{y, \bar{y}\}$ with edge to D_{v}. Otherwise, if y is queried, make new vertices $D \vee y, D \vee \bar{y}$ with edges to D.
- In the (finite) DAG G constructed, all sources are (weakenings of) axioms of F, and by induction G describes a resolution derivation with weakening.
- If we eliminate the weakening we get a derivation in width at most p, since if $\left|\rho_{v}\right|=p+1$ the next move for Spoiler must be a deletion.

Spoiler Strategy for Tight Proofs

The lower bound on space in terms of width follows from the fact that Spoiler can use proofs in small space to construct winning strategies with few pebbles.

Lemma
Let F be an unsatisfiable CNF formula with

- $W(F)=W$ and
- $\operatorname{Sp}(F \vdash 0)=s$.

Then
, Spoiler wins the existential $(s+w-2)$-pebble game on F.

Spoiler Strategy for Tight Proofs

The lower bound on space in terms of width follows from the fact that Spoiler can use proofs in small space to construct winning strategies with few pebbles.

Lemma
Let F be an unsatisfiable CNF formula with

- $W(F)=w$ and
- $\operatorname{Sp}(F \vdash 0)=s$.

Then

- Spoiler wins the existential ($s+w-2$)-pebble game on F.

Proof of Lemma (1/2)

Given: proof $\pi=\left\{\mathbb{C}_{0}=\emptyset, \mathbb{C}_{1}, \ldots, \mathbb{C}_{\tau}=\{0\}\right\}$ in space s
Spoiler constructs a strategy by inductively defining partial truth value assignments ρ_{t} such that ρ_{t} satisfies \mathbb{C}_{t} by setting (at most) one literal per clause to true.
W.I.o.g. axiom downloads occur only for \mathbb{C}_{t} of size $\left|\mathbb{C}_{t}\right| \leq s-2$.

One memory slot must be saved for the resolvent, otherwise
the next step will be an erasure and we can inverse the order of these two derivation steps.

Proof of Lemma (1/2)

Given: proof $\pi=\left\{\mathbb{C}_{0}=\emptyset, \mathbb{C}_{1}, \ldots, \mathbb{C}_{\tau}=\{0\}\right\}$ in space s
Spoiler constructs a strategy by inductively defining partial truth value assignments ρ_{t} such that ρ_{t} satisfies \mathbb{C}_{t} by setting (at most) one literal per clause to true.
W.I.o.g. axiom downloads occur only for \mathbb{C}_{t} of size $\left|\mathbb{C}_{t}\right| \leq s-2$.

One memory slot must be saved for the resolvent, otherwise the next step will be an erasure and we can inverse the order of these two derivation steps.

Proof of Lemma (2 / 2)

- At download of $C \in F$, Spoiler queries Duplicator about all variables in C and keep the literal satisfying it, using at most $(s-2)+w$ pebbles.
- When a clause is deleted, Spoiler deletes the corresponding literal satisfying the clause from ρ_{t} if necessary (i.e., if $\left|\rho_{t}\right|=\left|\mathbb{C}_{t}\right|$).
- For inference steps, Spoiler sets $\rho_{t}=\rho_{t-1}$ since by induction ρ_{t-1} must satisfy the resolvent.

Now ρ_{τ} cannot satisfy $\mathbb{C}_{\tau}=\{0\}$, so Duplicator must fail at some time prior to τ.

Thus Spoiler has a winning strategy with $\leq(s-2)+w$ pebbles.

Proof of Lemma (2 / 2)

- At download of $C \in F$, Spoiler queries Duplicator about all variables in C and keep the literal satisfying it, using at most $(s-2)+w$ pebbles.
- When a clause is deleted, Spoiler deletes the corresponding literal satisfying the clause from ρ_{t} if necessary (i.e., if $\left|\rho_{t}\right|=\left|\mathbb{C}_{t}\right|$).
\Rightarrow For inference steps, Spoiler sets $\rho_{t}=\rho_{t-1}$ since by
induction ρ_{t-1} must satisfy the resolvent.
Now ρ_{τ} cannot satisfy $\mathbb{C}_{\tau}=\{0\}$, so Duplicator must fail at
some time prior to τ.
Thus Spoiler has a winning strategy with $\leq(s-2)+w$ pebbles.

Proof of Lemma (2 / 2)

- At download of $C \in F$, Spoiler queries Duplicator about all variables in C and keep the literal satisfying it, using at most $(s-2)+w$ pebbles.
- When a clause is deleted, Spoiler deletes the corresponding literal satisfying the clause from ρ_{t} if necessary (i.e., if $\left|\rho_{t}\right|=\left|\mathbb{C}_{t}\right|$).
- For inference steps, Spoiler sets $\rho_{t}=\rho_{t-1}$ since by induction ρ_{t-1} must satisfy the resolvent.

Now ρ_{τ} cannot satisfy $\mathbb{C}_{\tau}=\{0\}$, so Duplicator must fail at
some time prior to τ.
Thus Spoiler has a winning strategy with $\leq(s-2)+w$ pebbles.

Proof of Lemma (2 / 2)

- At download of $C \in F$, Spoiler queries Duplicator about all variables in C and keep the literal satisfying it, using at most $(s-2)+w$ pebbles.
- When a clause is deleted, Spoiler deletes the corresponding literal satisfying the clause from ρ_{t} if necessary (i.e., if $\left|\rho_{t}\right|=\left|\mathbb{C}_{t}\right|$).
- For inference steps, Spoiler sets $\rho_{t}=\rho_{t-1}$ since by induction ρ_{t-1} must satisfy the resolvent.

Now ρ_{τ} cannot satisfy $\mathbb{C}_{\tau}=\{0\}$, so Duplicator must fail at some time prior to τ.

Thus Spoiler has a winning strategy with $\leq(s-2)+w$ pebbles.

Lower Bound on Space in Terms of Width

Theorem (Atserias \& Dalmau 2003)
For any unsatisfiable k-CNF formula F (k fixed) it holds that

$$
S p(F \vdash 0)-3 \geq W(F \vdash 0)-W(F) .
$$

Proof
Combine the facts that:

- If Spoiler wins the existential $(p+1)$-pebble game on F, then $W(F \vdash 0) \leq p$.
- If $W(F)=w$ and $S p(F-0)=s$, then Spoiler wins the existential ($s+w-2$)-pebble game on F. It follows that $W(F \vdash 0) \leq S p(F \vdash 0)+W(F)-3$.

Lower Bound on Space in Terms of Width

Theorem (Atserias \& Dalmau 2003)
For any unsatisfiable k-CNF formula F (k fixed) it holds that

$$
S p(F \vdash 0)-3 \geq W(F \vdash 0)-W(F) .
$$

Proof.

Combine the facts that:

- If Spoiler wins the existential ($p+1$)-pebble game on F, then $W(F \vdash 0) \leq p$.
- If $W(F)=w$ and $S p(F \vdash 0)=s$, then Spoiler wins the existential ($s+w-2$)-pebble game on F.
It follows that $W(F \vdash 0) \leq S p(F \vdash 0)+W(F)-3$.

Open Questions

Atserias \& Dalmau say that

$$
\begin{aligned}
& \text { Extra space }>\min 3 \\
& \text { needed for any } \\
& \text { resolution refutation }
\end{aligned} \quad \geq \begin{aligned}
& \text { Extra width }>\min W(F) \\
& \text { needed for any (minimally } \\
& \text { unsatisfiable) formula }
\end{aligned}
$$

Follow-up questions:
Do snace and width always coincide?
Or is there a k-CNF formula family $\left\{F_{n}\right\}_{n=1}^{\infty}$ (for k fixed) such that $\operatorname{Sp}\left(F_{n} \vdash 0\right)=\omega\left(W\left(F_{n} \vdash 0\right)\right)$?
2. Can short resolution proofs be arbitrarily complex w.r.t. space? Or is there a Ben-Sasson-Wigderson-style upper bound on space in terms of length?
2nd question still open, but 1st question solved in 2005
(Attend the seminar on May 15th!)

Open Questions

Atserias \& Dalmau say that

$$
\begin{aligned}
& \text { Extra space }>\min 3 \\
& \text { needed for any } \\
& \text { resolution refutation }
\end{aligned} \geq \quad \begin{aligned}
& \text { Extra width }>\min W(F) \\
& \text { needed for any (minimally } \\
& \text { unsatisfiable) formula }
\end{aligned}
$$

Follow-up questions:

1. Do space and width always coincide?

Or is there a k-CNF formula family $\left\{F_{n}\right\}_{n=1}^{\infty}$ (for k fixed) such that $S p\left(F_{n} \vdash 0\right)=\omega\left(W\left(F_{n} \vdash 0\right)\right)$?
space? Or is there a Ben-Sasson-Wigderson-style upper bound on space in terms of length?
2nd question still open, but 1st question solved in 2005

Open Questions

Atserias \& Dalmau say that
Extra space $>\min 3$ needed for any resolution refutation

Extra width $>\min W(F)$
\geq needed for any (minimally unsatisfiable) formula

Follow-up questions:

1. Do space and width always coincide?

Or is there a k-CNF formula family $\left\{F_{n}\right\}_{n=1}^{\infty}$ (for k fixed) such that $S p\left(F_{n} \vdash 0\right)=\omega\left(W\left(F_{n} \vdash 0\right)\right)$?
2. Can short resolution proofs be arbitrarily complex w.r.t. space? Or is there a Ben-Sasson-Wigderson-style upper bound on space in terms of length?
2nd question still open, but 1st question solved in 2005
(Attend the seminar on May

Open Questions

Atserias \& Dalmau say that

Extra space $>\min 3$ needed for any resolution refutation

Extra width $>\min W(F)$
\geq needed for any (minimally unsatisfiable) formula

Follow-up questions:

1. Do space and width always coincide?

Or is there a k-CNF formula family $\left\{F_{n}\right\}_{n=1}^{\infty}$ (for k fixed) such that $S p\left(F_{n} \vdash 0\right)=\omega\left(W\left(F_{n} \vdash 0\right)\right)$?
2. Can short resolution proofs be arbitrarily complex w.r.t. space? Or is there a Ben-Sasson-Wigderson-style upper bound on space in terms of length?
2nd question still open, but 1st question solved in 2005
(Attend the seminar on May 15th!)

Some References

䡒 Alekhnovich，Ben－Sasson，Razborov，and Wigderson．
Space complexity in propositional calculus．
SIAM J．Comp，31（4）：1184－1211， 2002.
周 Atserias and Dalmau．
A combinatorical characterization of resolution width．
In Proceedings CCC＇03，pages 239－247， 2003.
國 Ben－Sasson and Wigderson．
Short proofs are narrow－resolution made simple．
J．ACM，48（2）：149－169， 2001.
圊 Torán．
Lower bounds for space in resolution． In Proceedings CSL＇99，volume 1683 of LNCS，pages 362－373． 1999.

Thank you for your attention!

