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Outline of Presentation

• Basic concepts in proof theory

• Dilemma

• Resolution

• Some results on dilemma and resolution

• Some open questions
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Propositional Proof Systems

A propositional logic formula F is a tautology

if all truth value assignments satisfy F .

TAUT : The set of all tautologies.

Propositional proof system: Predicate P
computable in polynomial time such that for

all F it holds that F ∈ TAUT iff there exists a

proof π of F such that P
(
F, π

)
is true.

P1 p-simulates P2 if there exists a polynomial-

time computable function f mapping proofs in

P2 into proofs in P1.

P1 and P2 are p-equivalent if they p-simulate

each other.
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Connection to Complexity Theory

S (F ) Size (# symbols) of formula F

SP(` F ) Size of a smallest proof of
tautology F in proof system P

The complexity of P is the smallest bounding
function g : N 7→ N for which

SP(` F ) ≤ g
(
S (F )

)
for all F ∈ TAUT .

A proof system of polynomial complexity is
p-bounded.

No p-bounded proof system has been found. If
none exist, it would follow that P 6= NP.

Theorem (Cook and Reckhow 1979)

The equality NP = co-NP holds iff there exists
a p-bounded propositional proof system.
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Proof Methods

Proof method AP for proof system P:

• Deterministic algorithm

• Input: Propositional logic formula F

• Output: Proof π of F in P if F tautology,

otherwise example that F is falsifiable.

Efficiency of proof method AP measured as

running time on input F relative to SP(` F ).
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Automatizability

Two importance properties of proof system P:

1. What is the size of a smallest P-proof
of F (complexity)?

2. Is there an efficient way of finding as small
as possible P-proofs (automatizability)?

“Efficient” = polynomial.

A proof system P is automatizable if there is
a proof method AP that produces a P-proof
of F in time polynomial in SP(` F ), i.e. if

Time (AP(F )) ≤ SP(` F )O(1).

P is quasi-automatizable if the running time
of AP is quasi-polynomial in SP(` F ), i.e. if

Time (AP(F )) ≤ exp
(
(logSP(` F ))O(1)

)
.
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Formula Relations in Dilemma

St̊almarck’s method is based on the dilemma
proof system.

Derivations are built of formula relations.

A formula relation R is an equivalence relation
over the subformulas Sub (F ) of F , i.e.

• reflexive (P ≡ P ),

• symmetric (P ≡ Q⇒ Q ≡ P ),

• transitive (P ≡ Q and Q ≡ S ⇒ P ≡ S),

which in addition

• respects the semantical meaning of logical
negation (P ≡ Q⇒ ¬P ≡ ¬Q).
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Formula Relation Notation

R
[
P ≡ Q

]
Formula relation R with

equivalence classes of P
and Q merged

R1uR2 Intersection of R1 and R2
containing all equivalences
found in both relations.

F+ Identity relation on Sub (F )

To prove that F is a tautology, start with

F+
[
F ≡ ⊥

]
and derive a contradiction.

A contradiction is reached when P and ¬P are

placed in the same equivalence class for some

subformula P ∈ Sub (F ).
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The Dilemma Proof System

Propagation rules: If the formula relation R

is such that some equivalence between P , Q

and P ◦ Q (◦ ∈ {∧,∨,→,↔}) follows from the

truth table of the connective ◦, then there is a

rule to derive this equivalence.

Composition: If π1 : R1 ⇒ R2 and π2 : R2 ⇒ R3

are dilemma derivations, then π1 followed by π2

is a derivation π1•π2 : R1 ⇒ R3.

Dilemma rule: If π1 and π2 are derivations

π1 : R
[
P ≡ Q

]
⇒ R1, π2 : R

[
P ≡ ¬Q

]
⇒ R2, then

R

R
[
P ≡ Q

]
R
[
P ≡ ¬Q

]
π1 π2
R1 R2

R1uR2

is a dilemma rule derivation of R1uR2 from R.
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Dilemma Proof Hardness

Depth D (π) of a derivation π: max # of

nested dilemma rule applications.

A formula relation R is κ-easy if there is a

derivation π : R⇒ ⊥ with D (π) ≤ κ.

R is κ-hard if there is no derivation π : R⇒ ⊥
with D (π) < κ.

If R is both κ-easy and κ-hard, it is exactly

κ-hard and has hardness degree H (R) = κ.

The hardness degree of a tautology F is

H (F ) := H
(
F+

[
F ≡ ⊥

])
.
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Proof Hardness and Proof Length

Easy formulas have short dilemma proofs.

Hard formulas (and only hard formulas) require

long dilemma proofs.

More precisely:

Theorem

Let F be a tautology with hardness H (F ).

Then for the minimum proof length LD(` F )

in dilemma it holds that

2H(F )/2 ≤ LD(` F ) ≤ S (F )H(F )+1.
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Dilemma Subsystems

Atomic dilemma DA: Dilemma rule assump-

tions on the form x ≡ ⊥ or x ≡ > for atomic

variables x ∈ Vars(R).

Bivalent dilemma DB: Dilemma rule assump-

tions on the form P ≡ ⊥ or P ≡ > for sub-

formulas P ∈ Sub (R).

General dilemma D: Any dilemma rule assump-

tions P ≡ Q for P,Q ∈ Sub (R).

Reductio proof systems: Allow merging of

branches only when contradiction is derived.

Corresponds to reduction ad absurdum rule.

Proof systems RAAA, RAAB and RAA.
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Conjunctive Normal Form

A literal over x is either x itself or its negation

x. (In some contexts the notation x1 for x and

x0 for x is convenient.)

A clause is a disjunction of literals.

A CNF formula is a conjunction of clauses.

A clause containing exactly k literals is called

a k-clause.

A k-CNF formula is a CNF formula consisting

of k-clauses.

For a k-CNF formula F with m clauses over

n variables, ∆ = m/n is the density of F .
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Resolution

A resolution derivation of a clause A from a
CNF formula F is a sequence π = {D1, . . . , Ds}
such that Ds = A and each Di, 1 ≤ i ≤ s, is
either in F or is derived from Dj, Dk in π (with
j, k < i) by the resolution rule

B ∨ x C ∨ x
B ∨ C

or the weakening rule

B

B ∨ C
(the weakening rule can be omitted).

A resolution refutation of F is a resolution
derivation of the empty clause 0 from F .

A resolution derivation is tree-like if any clause
in the derivation is used at most once as a
premise in the resolution rule (i.e. if the DAG
corresponding to the derivation is a tree).
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DLL procedures

Simple scheme for a family of algorithms for

refuting a contradictory CNF formula F on

n variables:

If the empty clause 0 is in F , report that F in

unsatisfiable and halt.

Otherwise, pick a variable x ∈ F and recursively

try to refute F |x=0 and F |x=1.

Introduced by Davis, Logemann and Loveland

(1962); therefore called DLL procedures.
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Width-Length Relations

If a minimum-length resolution refutation π of
a formula F is long, it seems probable that π
contains clauses with many literals.

Conversely, short proofs can be expected to be
narrow as well.

Making this intuition precise, Ben-Sasson and
Wigderson (1999) have proved:

• If a contradictory CNF formula F has a
tree-like refutation of length LT , then it
has a refutation of max width log2LT .

• If a contradictory CNF formula F has a
general resolution refutation of length L,
then it has a refutation of max width

O
(√
n logL

)
(where n is the number of variables in F ).
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Width

The width W (C) of a clause C is the number

of literals in it.

The width of a formula (or derivation) is the

max clause width in the formula (derivation).

The width of deriving a clause C from F by

resolution is

W(F ` C) := min
π
{W (π)},

where the minimum is taken over all resolution

derivation π of C from F .

W(F ` ⊥) is the min width of refuting F by

resolution.
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Technical Lemmas about Width

F `w A denotes that A can be derived from F

in width ≤ w.

Technical lemma 1

For ν ∈ {0,1}, if it holds that F |x=ν `w A then
F `w+1 A ∨ x1−ν (possibly by use of the weak-
ening rule).

Technical lemma 2

For ν ∈ {0,1}, if

F |x=ν `w−1 0

and

F |x=1−ν `w 0

then

W(F ` ⊥) ≤ max {w,W (F )}.
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Width-Length for Tree Resolution

Theorem (Ben-Sasson, Wigderson 1999)

For tree-like resolution, the width of refuting

a CNF formula F is bounded from above by

W(F ` ⊥) ≤W (F ) + log2LT (F ` ⊥).

Corollary

For tree-like resolution, the length of refuting

a CNF formula F is bounded from below by

LT (F ` ⊥) ≥ 2(W(F`⊥)−W (F )).
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Width-Length for Resolution

Theorem (Ben-Sasson, Wigderson 1999)

For general resolution, the width of refuting a

CNF formula F is bounded from above by

W(F ` ⊥) ≤W (F ) + O
(√

n logLR(F ` ⊥)
)

(where n is the number of variables in F ).

Corollary

For general resolution, the length of refuting a

CNF formula F is bounded from below by

LR(F ` ⊥) ≥ exp

(
Ω

(
(W(F ` ⊥)−W (F ))2

n

))
.
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Proof Strategy for Length Bounds

Prove lower bounds on refutation length by
showing lower bounds on refutation width. The
strategy:

1. Define a complexity measure

µ : {Clauses} 7→ N
+

such that µ
(
C
)

= 1 for all C ∈ F .

2. Prove that µ
(
0
)

must be large.

3. Infer that in every refutation π of F there is
a clause D with medium-sized complexity
measure µ

(
D
)
.

4. Prove that if the measure µ
(
D
)

of a clause
D ∈ π is medium then the width W (D) is
large.
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Lower Bound on Refutations

of Random 3-CNF Formulas

F ∼ Fn,∆k denotes that F is a k-CNF formula
on n variables and m = ∆n independently and
identically distributed random clauses from the
set of all 2k

(
n
k

)
k-clauses with repetitions.

Lemma (Ben-Sasson, Wigderson 1999)

For F ∼ Fn,∆3 and any ε > 0, with probability
1− o (1) in n it holds that

W(F ` ⊥) = exp
(
Ω
(
n/∆2+ε

))
.

Theorem (Beame et al. 1998)

For F ∼ Fn,∆3 and any ε > 0, with probability
1− o (1) in n it holds that

LR(F ` ⊥) = exp
(
Ω
(
n/∆4+ε

))
.
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Results

The results in the Master’s thesis can be di-

vided into two categories:

1. Comparison of different dilemma and RAA

proof systems.

2. Comparison of dilemma and resolution.

In this presentation, we concentrate on (2).
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Dilemma and Tree Resolution

Atomic dilemma is exponentially stronger than

tree-like resolution with respect to proof length.

That is, there exists a polynomial-size family

of formulas Fn such that

LDA(Fn ` ⊥) = nO(1)

but

LT (Fn ` ⊥) = exp
(
Ω (n)

)
.

This shows that there are formula families for

which St̊almarck’s proof method beats any DLL

procedure exponentially.
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Depth-Width Relation of

Dilemma and Resolution

Suppose that F is an unsatisfiable CNF formu-

la in width W (F ) = k.

Then any dilemma refutation πD of F in depth

D (πD) = d and length L (πD) = L can be

translated to a resolution refutation πR of F

in width

W (πR) ≤ O (kd)

and length

L (πR) ≤
(
Lkd

)O(1)
.
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Intuition for Depth-Width Relation

Given a dilemma derivation π.

1. Suppose that S1 ≡ S2 is derived in π under
assumptions P1 ≡ Q1, . . . , Pi ≡ Qi.

Denote this

P1 ≡ Q1 ⇒ . . .⇒ Pi ≡ Qi ⇒ S1 ≡ S2.

2. Rewrite the above to an equivalent set of
CNF clauses

CNF (P1 ≡ Q1 ⇒ . . .⇒ Pi ≡ Qi ⇒ S1 ≡ S2) .

3. Do this for each step in π.

Show that the resulting sets of clauses form
the “backbone” of a resolution derivation,
the gaps of which can be completed in
width and length as stated.
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St̊almarck’s Method and

Minimum-Width Proof Search

1. Let F be a contradictory CNF formula in

width W (F ) ≤ k (for some fixed k).

Then the minimum-width proof search

algorithm in resolution refutes the formula

F in time polynomial in the running time

of St̊almarck’s method.

2. Suppose that G is a tautological formula in

propositional logic.

Then minimum-width proof search proves

G valid by refuting the Tseitin transforma-

tion to CNF Gt of G in time polynomial

in the running time of St̊almarck’s method

on G.
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Bounds on Dilemma Hardness

of Random 3-CNF Formulas

Suppose that F ∼ Fn,∆3 .

Suppose also that the density ∆ is sufficiently

large so that F is unsatisfiable with probability

1− o (1) in n.

Then with probability 1− o (1) in n

Ω
(
n/∆2+ε

)
≤ HD (F ) ≤ O (n/∆)

where ε > 0 is arbitrary.
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Two Open Questions

• Bounds on depth in dilemma translates into

bounds on width in resolution.

Is this true in the opposite direction as

well? That is, can resolution in width w be

transformed to dilemma in depth O (w)?

• Minimum-width proof search in resolution

is polynomial in St̊almarck’s method.

This is a purely theoretical result. How

would efficient implementations of the two

algorithms compare in practice?
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