Presentation of Master's Thesis at Prover Technology

Stålmarck's Method versus Resolution:

A Comparative
Theoretical Study

Jakob Nordström

November 7, 2001

Outline of Presentation

- Basic concepts in proof theory
- Dilemma
- Resolution
- Some results on dilemma and resolution
- Some open questions

Propositional Proof Systems

A propositional logic formula F is a **tautology** if all truth value assignments satisfy F.

TAUT: The set of all tautologies.

Propositional proof system: Predicate \mathcal{P} computable in polynomial time such that for all F it holds that $F \in TAUT$ iff there exists a **proof** π of F such that $\mathcal{P}(F,\pi)$ is true.

 \mathcal{P}_1 p-simulates \mathcal{P}_2 if there exists a polynomial-time computable function f mapping proofs in \mathcal{P}_2 into proofs in \mathcal{P}_1 .

 \mathcal{P}_1 and \mathcal{P}_2 are p-equivalent if they p-simulate each other.

Connection to Complexity Theory

- S(F) Size (# symbols) of formula F
- $S_{\mathcal{P}}(\vdash F)$ Size of a smallest proof of tautology F in proof system \mathcal{P}

The **complexity** of \mathcal{P} is the smallest bounding function $g: \mathbb{N} \mapsto \mathbb{N}$ for which

$$S_{\mathcal{P}}(\vdash F) \leq g(S(F))$$

for all $F \in TAUT$.

A proof system of polynomial complexity is p-bounded.

No p-bounded proof system has been found. If none exist, it would follow that $P \neq NP$.

Theorem (Cook and Reckhow 1979)

The equality NP = co-NP holds iff there exists a p-bounded propositional proof system.

Proof Methods

Proof method $A_{\mathcal{P}}$ for proof system \mathcal{P} :

- Deterministic algorithm
- ullet Input: Propositional logic formula F
- Output: Proof π of F in \mathcal{P} if F tautology, otherwise example that F is falsifiable.

Efficiency of proof method $A_{\mathcal{P}}$ measured as running time on input F relative to $S_{\mathcal{P}}(\vdash F)$.

Automatizability

Two importance properties of proof system \mathcal{P} :

- 1. What is the size of a smallest \mathcal{P} -proof of F (complexity)?
- 2. Is there an efficient way of *finding* as small as possible \mathcal{P} -proofs (automatizability)?

"Efficient" = polynomial.

A proof system \mathcal{P} is **automatizable** if there is a proof method $A_{\mathcal{P}}$ that produces a \mathcal{P} -proof of F in time polynomial in $S_{\mathcal{P}}(\vdash F)$, i.e. if

Time
$$(A_{\mathcal{P}}(F)) \leq S_{\mathcal{P}}(\vdash F)^{O(1)}$$
.

 \mathcal{P} is **quasi-automatizable** if the running time of $A_{\mathcal{P}}$ is quasi-polynomial in $S_{\mathcal{P}}(\vdash F)$, i.e. if

$$Time (A_{\mathcal{P}}(F)) \leq \exp ((\log S_{\mathcal{P}}(\vdash F))^{O(1)}).$$

Formula Relations in Dilemma

Stålmarck's method is based on the **dilemma proof system**.

Derivations are built of formula relations.

A formula relation R is an equivalence relation over the subformulas Sub(F) of F, i.e.

- reflexive $(P \equiv P)$,
- symmetric $(P \equiv Q \Rightarrow Q \equiv P)$,
- transitive $(P \equiv Q \text{ and } Q \equiv S \Rightarrow P \equiv S)$,

which in addition

• respects the semantical meaning of logical negation $(P \equiv Q \Rightarrow \neg P \equiv \neg Q)$.

Formula Relation Notation

$${\bf R} igl[P \equiv Q igr]$$
 Formula relation R with equivalence classes of P and Q merged

$$R_1 \sqcap R_2$$
 Intersection of R_1 and R_2 containing all equivalences found in both relations.

$$F^+$$
 Identity relation on $Sub(F)$

To prove that F is a tautology, start with $F^+ \big[F \equiv \bot \big]$ and derive a contradiction.

A contradiction is reached when P and $\neg P$ are placed in the same equivalence class for some subformula $P \in Sub(F)$.

The Dilemma Proof System

Propagation rules: If the formula relation R is such that some equivalence between P, Q and $P \circ Q$ ($\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$) follows from the truth table of the connective \circ , then there is a rule to derive this equivalence.

Composition: If $\pi_1 : R_1 \Rightarrow R_2$ and $\pi_2 : R_2 \Rightarrow R_3$ are dilemma derivations, then π_1 followed by π_2 is a derivation $\pi_1 \bullet \pi_2 : R_1 \Rightarrow R_3$.

Dilemma rule: If π_1 and π_2 are derivations $\pi_1 : R[P \equiv Q] \Rightarrow R_1$, $\pi_2 : R[P \equiv \neg Q] \Rightarrow R_2$, then

$$\begin{array}{c|c} & \mathsf{R} \\ \hline \mathsf{R}\big[P \equiv Q\big] & \mathsf{R}\big[P \equiv \neg Q\big] \\ \hline \pi_1 & \pi_2 \\ \mathsf{R}_1 & \mathsf{R}_2 \\ \hline & \mathsf{R}_1 \sqcap \mathsf{R}_2 \end{array}$$

is a dilemma rule derivation of $R_1 \sqcap R_2$ from R.

Dilemma Proof Hardness

Depth $D(\pi)$ of a derivation π : max # of nested dilemma rule applications.

A formula relation R is κ -easy if there is a derivation $\pi: R \Rightarrow \bot$ with $D(\pi) \leq \kappa$.

R is κ -hard if there is no derivation $\pi: R \Rightarrow \bot$ with $D(\pi) < \kappa$.

If R is both κ -easy and κ -hard, it is **exactly** κ -hard and has hardness degree $H(R) = \kappa$.

The hardness degree of a tautology F is

$$H(F) := H(F^+[F \equiv \bot]).$$

Proof Hardness and Proof Length

Easy formulas have short dilemma proofs.

Hard formulas (and only hard formulas) require long dilemma proofs.

More precisely:

Theorem

Let F be a tautology with hardness H(F). Then for the minimum proof length $L_{\mathcal{D}}(\vdash F)$ in dilemma it holds that

$$2^{H(F)/2} \le L_{\mathcal{D}}(\vdash F) \le S(F)^{H(F)+1}$$
.

Dilemma Subsystems

- **Atomic dilemma** \mathcal{D}_A : Dilemma rule assumptions on the form $x \equiv \bot$ or $x \equiv \top$ for atomic variables $x \in Vars(R)$.
- **Bivalent dilemma** \mathcal{D}_B : Dilemma rule assumptions on the form $P \equiv \bot$ or $P \equiv \top$ for subformulas $P \in Sub$ (R).
- **General dilemma** \mathcal{D} : Any dilemma rule assumptions $P \equiv Q$ for $P, Q \in Sub$ (R).
- Reductio proof systems: Allow merging of branches only when contradiction is derived.

Corresponds to reduction ad absurdum rule.

Proof systems \mathcal{RAA}_A , \mathcal{RAA}_B and \mathcal{RAA} .

Conjunctive Normal Form

A **literal** over x is either x itself or its negation \overline{x} . (In some contexts the notation x^1 for x and x^0 for \overline{x} is convenient.)

A clause is a disjunction of literals.

A CNF formula is a conjunction of clauses.

A clause containing exactly k literals is called a k-clause.

A k-CNF formula is a CNF formula consisting of k-clauses.

For a k-CNF formula F with m clauses over n variables, $\Delta = m/n$ is the **density** of F.

Resolution

A **resolution derivation** of a clause A from a CNF formula F is a sequence $\pi = \{D_1, \ldots, D_s\}$ such that $D_s = A$ and each D_i , $1 \le i \le s$, is either in F or is derived from D_j, D_k in π (with j, k < i) by the **resolution rule**

$$\frac{B\vee x \quad C\vee \overline{x}}{B\vee C}$$

or the weakening rule

$$\frac{B}{B \vee C}$$

(the weakening rule can be omitted).

A **resolution refutation** of F is a resolution derivation of the empty clause 0 from F.

A resolution derivation is **tree-like** if any clause in the derivation is used at most once as a premise in the resolution rule (i.e. if the DAG corresponding to the derivation is a tree).

DLL procedures

Simple scheme for a family of algorithms for refuting a contradictory CNF formula F on n variables:

If the empty clause 0 is in F, report that F in unsatisfiable and halt.

Otherwise, pick a variable $x \in F$ and recursively try to refute $F|_{x=0}$ and $F|_{x=1}$.

Introduced by Davis, Logemann and Loveland (1962); therefore called **DLL procedures**.

Width-Length Relations

If a minimum-length resolution refutation π of a formula F is long, it seems probable that π contains clauses with many literals.

Conversely, short proofs can be expected to be narrow as well.

Making this intuition precise, Ben-Sasson and Wigderson (1999) have proved:

- If a contradictory CNF formula F has a tree-like refutation of length L_T , then it has a refutation of max width $\log_2 L_T$.
- ullet If a contradictory CNF formula F has a general resolution refutation of length L, then it has a refutation of max width

$$O\left(\sqrt{n\log L}\right)$$

(where n is the number of variables in F).

Width

The width W(C) of a clause C is the number of literals in it.

The width of a formula (or derivation) is the max clause width in the formula (derivation).

The width of deriving a clause ${\cal C}$ from ${\cal F}$ by resolution is

$$W(F \vdash C) := \min_{\pi} \{W(\pi)\},\$$

where the minimum is taken over all resolution derivation π of C from F.

 $W(F \vdash \bot)$ is the min width of refuting F by resolution.

Technical Lemmas about Width

 $F \vdash_w A$ denotes that A can be derived from F in width $\leq w$.

Technical lemma 1

For $\nu \in \{0,1\}$, if it holds that $F|_{x=\nu} \vdash_w A$ then $F \vdash_{w+1} A \vee x^{1-\nu}$ (possibly by use of the weakening rule).

Technical lemma 2

For $\nu \in \{0, 1\}$, if

$$F|_{x=\nu} \vdash_{w-1} 0$$

and

$$F|_{x=1-\nu} \vdash_w 0$$

then

$$W(F \vdash \bot) \leq \max\{w, W(F)\}.$$

Width-Length for Tree Resolution

Theorem (Ben-Sasson, Wigderson 1999)

For tree-like resolution, the width of refuting a CNF formula F is bounded from above by

$$W(F \vdash \bot) \leq W(F) + \log_2 L_{\mathcal{T}}(F \vdash \bot).$$

Corollary

For tree-like resolution, the length of refuting a CNF formula F is bounded from below by

$$L_{\mathcal{T}}(F \vdash \bot) \ge 2^{(W(F \vdash \bot) - W(F))}.$$

Width-Length for Resolution

Theorem (Ben-Sasson, Wigderson 1999)

For general resolution, the width of refuting a CNF formula F is bounded from above by

$$W(F \vdash \bot) \le W(F) + O\left(\sqrt{n \log L_{\mathcal{R}}(F \vdash \bot)}\right)$$

(where n is the number of variables in F).

Corollary

For general resolution, the length of refuting a CNF formula F is bounded from below by

$$L_{\mathcal{R}}(F \vdash \bot) \ge \exp\left(\Omega\left(\frac{(W(F \vdash \bot) - W(F))^2}{n}\right)\right).$$

Proof Strategy for Length Bounds

Prove lower bounds on refutation *length* by showing lower bounds on refutation *width*. The strategy:

1. Define a complexity measure

$$\mu: \{ \text{Clauses} \} \mapsto \mathbb{N}^+$$
 such that $\mu \bigl(C \bigr) = 1$ for all $C \in F$.

- 2. Prove that $\mu(0)$ must be large.
- 3. Infer that in every refutation π of F there is a clause D with medium-sized complexity measure $\mu(D)$.
- 4. Prove that if the measure $\mu(D)$ of a clause $D \in \pi$ is medium then the width W(D) is large.

Lower Bound on Refutations of Random 3-CNF Formulas

 $F \sim \mathcal{F}_k^{n,\Delta}$ denotes that F is a k-CNF formula on n variables and $m = \Delta n$ independently and identically distributed random clauses from the set of all $2^k \binom{n}{k}$ k-clauses with repetitions.

Lemma (Ben-Sasson, Wigderson 1999)

For $F \sim \mathcal{F}_3^{n,\Delta}$ and any $\epsilon > 0$, with probability 1 - o(1) in n it holds that

$$W(F \vdash \bot) = \exp(\Omega(n/\Delta^{2+\epsilon})).$$

Theorem (Beame et al. 1998)

For $F \sim \mathcal{F}_3^{n,\Delta}$ and any $\epsilon > 0$, with probability 1 - o(1) in n it holds that

$$L_{\mathcal{R}}(F \vdash \bot) = \exp(\Omega(n/\Delta^{4+\epsilon})).$$

Results

The results in the Master's thesis can be divided into two categories:

- 1. Comparison of different dilemma and RAA proof systems.
- 2. Comparison of dilemma and resolution.

In this presentation, we concentrate on (2).

Dilemma and Tree Resolution

Atomic dilemma is exponentially stronger than tree-like resolution with respect to proof length.

That is, there exists a polynomial-size family of formulas F_n such that

$$L_{\mathcal{D}_A}(F_n \vdash \bot) = n^{\mathcal{O}(1)}$$

but

$$L_{\mathcal{T}}(F_n \vdash \bot) = \exp(\Omega(n)).$$

This shows that there are formula families for which Stålmarck's proof method beats any DLL procedure exponentially.

Depth-Width Relation of Dilemma and Resolution

Suppose that F is an unsatisfiable CNF formula in width W(F)=k.

Then any dilemma refutation π_D of F in depth $D\left(\pi_D\right)=d$ and length $L\left(\pi_D\right)=L$ can be translated to a resolution refutation π_R of F in width

$$W(\pi_R) \leq O(kd)$$

and length

$$L\left(\pi_R\right) \le \left(Lk^d\right)^{\mathcal{O}(1)}.$$

Intuition for Depth-Width Relation

Given a dilemma derivation π .

1. Suppose that $S_1 \equiv S_2$ is derived in π under assumptions $P_1 \equiv Q_1, \ldots, P_i \equiv Q_i$.

Denote this

$$P_1 \equiv Q_1 \Rightarrow \ldots \Rightarrow P_i \equiv Q_i \Rightarrow S_1 \equiv S_2.$$

2. Rewrite the above to an equivalent set of CNF clauses

$$CNF (P_1 \equiv Q_1 \Rightarrow \ldots \Rightarrow P_i \equiv Q_i \Rightarrow S_1 \equiv S_2)$$
.

3. Do this for each step in π .

Show that the resulting sets of clauses form the "backbone" of a resolution derivation, the gaps of which can be completed in width and length as stated.

Stålmarck's Method and Minimum-Width Proof Search

1. Let F be a contradictory CNF formula in width $W(F) \leq k$ (for some fixed k).

Then the minimum-width proof search algorithm in resolution refutes the formula F in time polynomial in the running time of Stålmarck's method.

2. Suppose that G is a tautological formula in propositional logic.

Then minimum-width proof search proves G valid by refuting the Tseitin transformation to CNF G_t of G in time polynomial in the running time of Stålmarck's method on G.

Bounds on Dilemma Hardness of Random 3-CNF Formulas

Suppose that $F \sim \mathcal{F}_3^{n,\Delta}$.

Suppose also that the density Δ is sufficiently large so that F is unsatisfiable with probability 1 - o(1) in n.

Then with probability 1 - o(1) in n

$$\Omega\left(n/\Delta^{2+\epsilon}\right) \leq H_{\mathcal{D}}(F) \leq O\left(n/\Delta\right)$$

where $\epsilon > 0$ is arbitrary.

Two Open Questions

 Bounds on depth in dilemma translates into bounds on width in resolution.

Is this true in the opposite direction as well? That is, can resolution in width w be transformed to dilemma in depth O(w)?

• Minimum-width proof search in resolution is polynomial in Stålmarck's method.

This is a purely theoretical result. How would efficient implementations of the two algorithms compare in practice?