
Presentation of

Master’s Thesis at

Prover Technology

St̊almarck’s Method

versus Resolution:

A Comparative

Theoretical Study

Jakob Nordström

November 7, 2001

1

Outline of Presentation

• Basic concepts in proof theory

• Dilemma

• Resolution

• Some results on dilemma and resolution

• Some open questions

2

Propositional Proof Systems

A propositional logic formula F is a tautology

if all truth value assignments satisfy F .

TAUT : The set of all tautologies.

Propositional proof system: Predicate P
computable in polynomial time such that for

all F it holds that F ∈ TAUT iff there exists a

proof π of F such that P
(
F, π

)
is true.

P1 p-simulates P2 if there exists a polynomial-

time computable function f mapping proofs in

P2 into proofs in P1.

P1 and P2 are p-equivalent if they p-simulate

each other.

3

Connection to Complexity Theory

S (F) Size (# symbols) of formula F

SP(` F) Size of a smallest proof of
tautology F in proof system P

The complexity of P is the smallest bounding
function g : N 7→ N for which

SP(` F) ≤ g
(
S (F)

)
for all F ∈ TAUT .

A proof system of polynomial complexity is
p-bounded.

No p-bounded proof system has been found. If
none exist, it would follow that P 6= NP.

Theorem (Cook and Reckhow 1979)

The equality NP = co-NP holds iff there exists
a p-bounded propositional proof system.

4

Proof Methods

Proof method AP for proof system P:

• Deterministic algorithm

• Input: Propositional logic formula F

• Output: Proof π of F in P if F tautology,

otherwise example that F is falsifiable.

Efficiency of proof method AP measured as

running time on input F relative to SP(` F).

5

Automatizability

Two importance properties of proof system P:

1. What is the size of a smallest P-proof
of F (complexity)?

2. Is there an efficient way of finding as small
as possible P-proofs (automatizability)?

“Efficient” = polynomial.

A proof system P is automatizable if there is
a proof method AP that produces a P-proof
of F in time polynomial in SP(` F), i.e. if

Time (AP(F)) ≤ SP(` F)O(1).

P is quasi-automatizable if the running time
of AP is quasi-polynomial in SP(` F), i.e. if

Time (AP(F)) ≤ exp
(
(logSP(` F))O(1)

)
.

6

Formula Relations in Dilemma

St̊almarck’s method is based on the dilemma
proof system.

Derivations are built of formula relations.

A formula relation R is an equivalence relation
over the subformulas Sub (F) of F , i.e.

• reflexive (P ≡ P),

• symmetric (P ≡ Q⇒ Q ≡ P),

• transitive (P ≡ Q and Q ≡ S ⇒ P ≡ S),

which in addition

• respects the semantical meaning of logical
negation (P ≡ Q⇒ ¬P ≡ ¬Q).

7

Formula Relation Notation

R
[
P ≡ Q

]
Formula relation R with

equivalence classes of P
and Q merged

R1uR2 Intersection of R1 and R2
containing all equivalences
found in both relations.

F+ Identity relation on Sub (F)

To prove that F is a tautology, start with

F+
[
F ≡ ⊥

]
and derive a contradiction.

A contradiction is reached when P and ¬P are

placed in the same equivalence class for some

subformula P ∈ Sub (F).

8

The Dilemma Proof System

Propagation rules: If the formula relation R

is such that some equivalence between P , Q

and P ◦ Q (◦ ∈ {∧,∨,→,↔}) follows from the

truth table of the connective ◦, then there is a

rule to derive this equivalence.

Composition: If π1 : R1 ⇒ R2 and π2 : R2 ⇒ R3

are dilemma derivations, then π1 followed by π2

is a derivation π1•π2 : R1 ⇒ R3.

Dilemma rule: If π1 and π2 are derivations

π1 : R
[
P ≡ Q

]
⇒ R1, π2 : R

[
P ≡ ¬Q

]
⇒ R2, then

R

R
[
P ≡ Q

]
R
[
P ≡ ¬Q

]
π1 π2
R1 R2

R1uR2

is a dilemma rule derivation of R1uR2 from R.

9

Dilemma Proof Hardness

Depth D (π) of a derivation π: max # of

nested dilemma rule applications.

A formula relation R is κ-easy if there is a

derivation π : R⇒ ⊥ with D (π) ≤ κ.

R is κ-hard if there is no derivation π : R⇒ ⊥
with D (π) < κ.

If R is both κ-easy and κ-hard, it is exactly

κ-hard and has hardness degree H (R) = κ.

The hardness degree of a tautology F is

H (F) := H
(
F+

[
F ≡ ⊥

])
.

10

Proof Hardness and Proof Length

Easy formulas have short dilemma proofs.

Hard formulas (and only hard formulas) require

long dilemma proofs.

More precisely:

Theorem

Let F be a tautology with hardness H (F).

Then for the minimum proof length LD(` F)

in dilemma it holds that

2H(F)/2 ≤ LD(` F) ≤ S (F)H(F)+1.

11

Dilemma Subsystems

Atomic dilemma DA: Dilemma rule assump-

tions on the form x ≡ ⊥ or x ≡ > for atomic

variables x ∈ Vars(R).

Bivalent dilemma DB: Dilemma rule assump-

tions on the form P ≡ ⊥ or P ≡ > for sub-

formulas P ∈ Sub (R).

General dilemma D: Any dilemma rule assump-

tions P ≡ Q for P,Q ∈ Sub (R).

Reductio proof systems: Allow merging of

branches only when contradiction is derived.

Corresponds to reduction ad absurdum rule.

Proof systems RAAA, RAAB and RAA.

12

Conjunctive Normal Form

A literal over x is either x itself or its negation

x. (In some contexts the notation x1 for x and

x0 for x is convenient.)

A clause is a disjunction of literals.

A CNF formula is a conjunction of clauses.

A clause containing exactly k literals is called

a k-clause.

A k-CNF formula is a CNF formula consisting

of k-clauses.

For a k-CNF formula F with m clauses over

n variables, ∆ = m/n is the density of F .

13

Resolution

A resolution derivation of a clause A from a
CNF formula F is a sequence π = {D1, . . . , Ds}
such that Ds = A and each Di, 1 ≤ i ≤ s, is
either in F or is derived from Dj, Dk in π (with
j, k < i) by the resolution rule

B ∨ x C ∨ x
B ∨ C

or the weakening rule

B

B ∨ C
(the weakening rule can be omitted).

A resolution refutation of F is a resolution
derivation of the empty clause 0 from F .

A resolution derivation is tree-like if any clause
in the derivation is used at most once as a
premise in the resolution rule (i.e. if the DAG
corresponding to the derivation is a tree).

14

DLL procedures

Simple scheme for a family of algorithms for

refuting a contradictory CNF formula F on

n variables:

If the empty clause 0 is in F , report that F in

unsatisfiable and halt.

Otherwise, pick a variable x ∈ F and recursively

try to refute F |x=0 and F |x=1.

Introduced by Davis, Logemann and Loveland

(1962); therefore called DLL procedures.

15

Width-Length Relations

If a minimum-length resolution refutation π of
a formula F is long, it seems probable that π
contains clauses with many literals.

Conversely, short proofs can be expected to be
narrow as well.

Making this intuition precise, Ben-Sasson and
Wigderson (1999) have proved:

• If a contradictory CNF formula F has a
tree-like refutation of length LT , then it
has a refutation of max width log2LT .

• If a contradictory CNF formula F has a
general resolution refutation of length L,
then it has a refutation of max width

O
(√
n logL

)
(where n is the number of variables in F).

16

Width

The width W (C) of a clause C is the number

of literals in it.

The width of a formula (or derivation) is the

max clause width in the formula (derivation).

The width of deriving a clause C from F by

resolution is

W(F ` C) := min
π
{W (π)},

where the minimum is taken over all resolution

derivation π of C from F .

W(F ` ⊥) is the min width of refuting F by

resolution.

17

Technical Lemmas about Width

F `w A denotes that A can be derived from F

in width ≤ w.

Technical lemma 1

For ν ∈ {0,1}, if it holds that F |x=ν `w A then
F `w+1 A ∨ x1−ν (possibly by use of the weak-
ening rule).

Technical lemma 2

For ν ∈ {0,1}, if

F |x=ν `w−1 0

and

F |x=1−ν `w 0

then

W(F ` ⊥) ≤ max {w,W (F)}.

18

Width-Length for Tree Resolution

Theorem (Ben-Sasson, Wigderson 1999)

For tree-like resolution, the width of refuting

a CNF formula F is bounded from above by

W(F ` ⊥) ≤W (F) + log2LT (F ` ⊥).

Corollary

For tree-like resolution, the length of refuting

a CNF formula F is bounded from below by

LT (F ` ⊥) ≥ 2(W(F`⊥)−W (F)).

19

Width-Length for Resolution

Theorem (Ben-Sasson, Wigderson 1999)

For general resolution, the width of refuting a

CNF formula F is bounded from above by

W(F ` ⊥) ≤W (F) + O
(√

n logLR(F ` ⊥)
)

(where n is the number of variables in F).

Corollary

For general resolution, the length of refuting a

CNF formula F is bounded from below by

LR(F ` ⊥) ≥ exp

(
Ω

(
(W(F ` ⊥)−W (F))2

n

))
.

20

Proof Strategy for Length Bounds

Prove lower bounds on refutation length by
showing lower bounds on refutation width. The
strategy:

1. Define a complexity measure

µ : {Clauses} 7→ N
+

such that µ
(
C
)

= 1 for all C ∈ F .

2. Prove that µ
(
0
)

must be large.

3. Infer that in every refutation π of F there is
a clause D with medium-sized complexity
measure µ

(
D
)
.

4. Prove that if the measure µ
(
D
)

of a clause
D ∈ π is medium then the width W (D) is
large.

21

Lower Bound on Refutations

of Random 3-CNF Formulas

F ∼ Fn,∆k denotes that F is a k-CNF formula
on n variables and m = ∆n independently and
identically distributed random clauses from the
set of all 2k

(
n
k

)
k-clauses with repetitions.

Lemma (Ben-Sasson, Wigderson 1999)

For F ∼ Fn,∆3 and any ε > 0, with probability
1− o (1) in n it holds that

W(F ` ⊥) = exp
(
Ω
(
n/∆2+ε

))
.

Theorem (Beame et al. 1998)

For F ∼ Fn,∆3 and any ε > 0, with probability
1− o (1) in n it holds that

LR(F ` ⊥) = exp
(
Ω
(
n/∆4+ε

))
.

22

Results

The results in the Master’s thesis can be di-

vided into two categories:

1. Comparison of different dilemma and RAA

proof systems.

2. Comparison of dilemma and resolution.

In this presentation, we concentrate on (2).

23

Dilemma and Tree Resolution

Atomic dilemma is exponentially stronger than

tree-like resolution with respect to proof length.

That is, there exists a polynomial-size family

of formulas Fn such that

LDA(Fn ` ⊥) = nO(1)

but

LT (Fn ` ⊥) = exp
(
Ω (n)

)
.

This shows that there are formula families for

which St̊almarck’s proof method beats any DLL

procedure exponentially.

24

Depth-Width Relation of

Dilemma and Resolution

Suppose that F is an unsatisfiable CNF formu-

la in width W (F) = k.

Then any dilemma refutation πD of F in depth

D (πD) = d and length L (πD) = L can be

translated to a resolution refutation πR of F

in width

W (πR) ≤ O (kd)

and length

L (πR) ≤
(
Lkd

)O(1)
.

25

Intuition for Depth-Width Relation

Given a dilemma derivation π.

1. Suppose that S1 ≡ S2 is derived in π under
assumptions P1 ≡ Q1, . . . , Pi ≡ Qi.

Denote this

P1 ≡ Q1 ⇒ . . .⇒ Pi ≡ Qi ⇒ S1 ≡ S2.

2. Rewrite the above to an equivalent set of
CNF clauses

CNF (P1 ≡ Q1 ⇒ . . .⇒ Pi ≡ Qi ⇒ S1 ≡ S2) .

3. Do this for each step in π.

Show that the resulting sets of clauses form
the “backbone” of a resolution derivation,
the gaps of which can be completed in
width and length as stated.

26

St̊almarck’s Method and

Minimum-Width Proof Search

1. Let F be a contradictory CNF formula in

width W (F) ≤ k (for some fixed k).

Then the minimum-width proof search

algorithm in resolution refutes the formula

F in time polynomial in the running time

of St̊almarck’s method.

2. Suppose that G is a tautological formula in

propositional logic.

Then minimum-width proof search proves

G valid by refuting the Tseitin transforma-

tion to CNF Gt of G in time polynomial

in the running time of St̊almarck’s method

on G.

27

Bounds on Dilemma Hardness

of Random 3-CNF Formulas

Suppose that F ∼ Fn,∆3 .

Suppose also that the density ∆ is sufficiently

large so that F is unsatisfiable with probability

1− o (1) in n.

Then with probability 1− o (1) in n

Ω
(
n/∆2+ε

)
≤ HD (F) ≤ O (n/∆)

where ε > 0 is arbitrary.

28

Two Open Questions

• Bounds on depth in dilemma translates into

bounds on width in resolution.

Is this true in the opposite direction as

well? That is, can resolution in width w be

transformed to dilemma in depth O (w)?

• Minimum-width proof search in resolution

is polynomial in St̊almarck’s method.

This is a purely theoretical result. How

would efficient implementations of the two

algorithms compare in practice?

29

