
Trajectory Optimization for Autonomous Overtaking
with Visibility Maximization

Hans Andersen1, Wilko Schwarting2, Felix Naser3, You Hong Eng3,
Marcelo H. Ang Jr.1, Daniela Rus2, and Javier Alonso-Mora4

Abstract— In this paper we present a trajectory generation
method for autonomous overtaking of static obstacles in a
dynamic urban environment. In these settings, blind spots can
arise from perception limitations. For example, the autonomous
car may have to move slightly into the opposite lane in order to
cleanly see in front of a car ahead. Once it has gathered enough
information about the road ahead, then the autonomous car
can safely overtake. We generate safe trajectories by solving,
in real-time, a non-linear constrained optimization, formulated
as a Receding Horizon planner. The planner is guided by a
high-level state machine, which determines when the overtake
maneuver should begin. Our main contribution is a method
that can maximize visibility, prioritizes safety and respects
the boundaries of the road while executing the maneuver. We
present experimental results in simulation with data collected
during real driving.

I. INTRODUCTION

Autonomous vehicles are anticipated to ease road con-
gestion and reduce the number of traffic accidents, by
eliminating human error. However, autonomous driving in
urban environments poses different challenges compared to
highway driving, as the environment is less structured and
predictable, and there are different traffic rules and human
driving characteristics that are unique in each urban area.
Therefore, decision making for autonomous driving in urban
areas is a particularly interesting research area that has seen a
lot of interest in recent years. Recent surveys by Katrakazas
et al. [1], Paden et al. [2] and Pendleton et al. [3] describe
different approaches with their strengths and limitations.

Reacting to potentially hazardous situations is one of the
key issues in autonomous driving in urban environment.
Occluded objects may come out of the autonomous vehicles’
blind spot unpredictably, and therefore, the vehicle may not
have enough time to plan for appropriate action in due time.

A few example cases have been available in the literature
such as the study by Althoff et al. [4] considers uncertainties
from measurement of other traffic participants stochastically
in order to assess the safety of planned trajectories. Hayashi
et al. [5] proposed a method to evade obstacles that suddenly

1Hans Andersen and Marcelo H. Ang Jr. are with the National Uni-
versity of Singapore, Singapore hans.andersen@u.nus.edu,
mpeangh@nus.edu.sg

2Wilko Schwarting and Daniela Rus are with the Massachusetts
Institute of Technology, Cambridge, MA, USA {wilkos,
rus}@csail.mit.edu

3You Hong Eng and Felix Naser are with the Singapore-MIT
Alliance for Research of Technology, Singapore {youhong,
felix.naser}@smart.mit.edu

4Javier Alonso Mora is with the Delft University of Technology, the
Netherlands J.AlonsoMora@tudelft.nl

Fig. 1. Unexpected static obstacle in the form of an illegally parked truck
on a two-way street

appear from the side of the road by computing a geometri-
cally optimized path, and executing the maneuver by steering
and brake actuation.

One particular scenario that we encounter very frequently
during our autonomous vehicle deployment at the One-North
area in Singapore is depicted in Figure 1. In this scenario,
a truck is illegally parked on the vehicle’s ego lane, and
therefore has to be overtaken. However, as this is a two-way
traffic, the overtaking implies that the vehicle invades to the
opposite lane, and therefore will take the traffic head-on,
causing a safety hazard.

Guo et al. [6] proposed a solution to circumventing the
illegally parked vehicle by finding a lead vehicle in the
ego lane and follow its behavior to generate a trajectory
that is based on a cubic spline model with mass-spring
damper system. However, this approach may fail if there
are no leading vehicles in the ego lane or if the intention
of the vehicle is unknown, as the urban traffic rules can be
complicated and very dynamic.

We have observed the following behavior of human drivers
facing the described scenario: they will first decelerate the
vehicle, and move closer to the center of the lane and asses
the traffic on the opposite lane as well as the distance that the
driver has to overtake, before finally overtaking the obstacle
and merging back to the ego lane.

In this paper, we consider the problem of autonomous
overtaking of unexpected obstacles on a two-way street in
an urban environment. The main contributions of this paper
are threefold.
• A Receding Horizon (or Model Predictive Control)

formulation that maximizes the amount of information

Fig. 2. Blind spot caused by an occluding obstacle in the vehicle’s ego
lane. The green shaded region shows the area visible by the sensor and the
area that is not covered by the sensor is shown in white.

that the autonomous vehicle gains along its trajectory.
This allows the vehicle to make a more informed and
therefore safer decision before overtaking the obstacle.

• A higher-level decision making system for behavior
planning that performs safety checks, and ensures that
the vehicle is able to safely overtake the obstacles of
unknown length, and safely return to its lane, whenever
necessary.

• Simulation results that demonstrate the capabilities of
the algorithm in generating safe and optimal trajectories
for autonomous overtaking in urban environment.

Our method can be briefly summarized as follows. As-
suming that the lane boundaries are known a priori, the per-
ception system will detect obstacles in both the ego lane and
the opposite lane. The perception system also estimates the
amount of blind spot caused by the occluding obstacle in the
ego lane (Fig. 2). The state machine then makes a decision
based on inputs from the perception system, that determines
the behavior of the system. Different system behaviors - such
as overtaking or remaining on the lane - modify the tunable
weights, but not the formulation of the Receding Horizon
planner. The autonomous vehicle then generates a safe tra-
jectory by solving a non-linear constrained optimization in a
MPC style. The cost and reward terms of the problem consist
of: path following errors, progress along the desired path,
velocity error, size of blind spot (visible area), and inputs.
The constraints of the problem are the motion model of the
vehicle, the state and input bounds, collision avoidance with
respect to obstacles, maximum yaw rate, angular deviation
from the path, and maintenance within the road boundaries.
An off-the-shelve non-linear optimizer is then periodically
called to solve the optimization problem, and the optimal
input is given to the system.

The remaining of this paper is organized as follows.
Related works are reviewed in Section II. Preliminaries are
introduced in Section III. The trajectory planner method is
then described in Section IV, followed by the high-level state
machine in Section V. The simulation set up and results,
including supporting perception modules are discussed in
Section VI. Section VII concludes this paper.

II. RELATED WORKS

A practical application of motion planning is autonomous
overtaking, which has also been widely researched in the
literature. Trajectory generation for static overtaking [7], first
real road applications [8] and the use of fuzzy controllers
that mimic human behavior and reactions during overtaking
maneuvers are examples of ongoing research. Other recent
examples include the work by Cunningham et al. [9] that
considers multiple policies and a user defined cost function
to determine when to overtake or stay in the ego lane.
Schlechtriemen et al. [10] proposed a method to abstract
dynamic objects and static obstacles as time dependent
geometric bodies, and plan the trajectory based on the
abstraction.

Sampling-based methods, such as RRT and its variants
[11], are popular for trajectory planning. Their strength is
probabilistic completeness. However, probabilistic motion
planning suffers from inherent accuracy due to discretiza-
tion limits, and the computational complexity that rises
exponentially as the dimensionality of the planning state
space increases. Autonomous driving in urban environment
often requires smoothness and accurate modeling the car
dynamics. These requirements render Receding Horizon op-
timization schemes, such as MPC, well suited for solving
these problems.

MPC has seen many applications in autonomous driving,
specially in trajectory tracking applications. Wang et al. [12]
proposed a conflict-probability-estimation-based overtaking
for intelligent vehicles using MPC. A recent example from
Cairano et al. [13] guarantees that the controller tracks
piecewise-clothoidal trajectories within a preassigned lateral
error bound. It has also been applied to collision avoidance
at intersections [14], overtaking [15], obstacle avoidance for
critical maneuvers [16], and as a parallel autonomy planner,
in which the autonomous system works hand in hand with a
human driver [17]. Ziegler et al. [18] have proposed an MPC
based trajectory planner for autonomous driving along the
Bertha- Benz Memorial Route. Static and dynamic obstacles
are represented as polygons, and road boundaries are used
as heuristics on which side of the obstacle to overtake from.

In this paper, we also employ a MPC-based local motion
planner, which captures the dynamics of the car and avoids
obstacles. In contrast to previous works, we also consider
visibility maximization, to generate overtaking trajectories
that take into account the perception limitations of the ego
vehicle.

III. PRELIMINARIES

A. Vehicle Model

Denote by t0 the initial planning time and by ∆ti the i-th
timestep of the planner. We consider a discrete time system
with time tk = to+

∑k
i=1 ∆ti. The configuration of the ego

vehicle at time k is denoted as zk = [pk, φk, δk, vk] ∈ Z ,
where pk = [xk, yk] is the position, φk is the orientation,
vk is the linear velocity, and δk is the steering angle of the
vehicle in the global frame. The control input to the system

Fig. 3. Kinematic bicycle model of an Ackermann-steered vehicle.

at time k is denoted as uk = [uδk, u
a
k] ∈ U , where uδk is the

steering rate δ̇k and uak is the linear acceleration ak.
In this work we employ a bicycle kinematic model Fig.

3, which approximates a four wheeled Ackermann steered
car. This model is often used in literature to derive steering
control laws as it approximates the motion of the vehicle
reasonably well at low speeds and moderate steering angles,
which is the common driving condition in urban environ-
ment. The method is general and other vehicle models can
be considered.

The continuous state-space equation of the system can be
written as

ẋ
ẏ

φ̇

δ̇
v̇

︸︷︷︸

ż

=

v cos(φ)
v sin(φ)
(v tanδL)

0
0

 +

0 0
0 0
0 0
1 0
0 1

[
uδ

ua

]
︸ ︷︷ ︸

u

(1)

where L is the wheelbase of the vehicle. The discrete time
state space system

zk+1 = f(zk,uk) (2)

can be approximated with the integration model zk+1 =

f(zk,uk) = zk +
∫ k+∆t

k
ż dt. The fourth order Runge-Kutta

integration method is used in the optimizer for sufficient
accuracy.

The states of the system (steering angle ‖δ‖ ≤ δmax,
longitudinal speed v ≤ vmax yaw rate ‖φ̇‖ ≤ φ̇max), as
well as the control inputs (steering rate ‖uδ‖ ≤ δ̇max and
acceleration amin ≤ ua ≤ amax) are limited to our vehicle’s
specifications. These constraints are added in the Receding
Horizon planner.

B. Path Representation and Tracking

In nominal conditions the autonomous car follows centre
line of the driving lane. To track the centre line while
avoiding obstacles we follow [17] and formulate a Model
Predictive Contouring Control (MPCC) [19] problem. MPCC
optimizes the progress along the path, while considering
nonlinear projection of the vehicle’s position onto the desired
path. The desired path contour is the centre line of the lane,
and is parametrized as piecewise continuous, continuously

Fig. 4. Approximation of lag and contouring cost along the path.

differentiable cubic splines with multiple knots along the
path.

At a given time k, the vehicle’s anchor point posi-
tion pk tracks a continuously differentiable reference path
(xp(θ), yp(θ)) with path parameter θ. The tangential and
normal vectors to the path are given by

t(θ) =

[
∂xp(θ)
∂θ

∂yp(θ)
∂θ

]
, n(θ) =

[
−∂yp(θ)
∂θ

∂xp(θ)
∂θ

]
, (3)

and the heading of the path is given by

φp(θ) = arctan

(
∂xp(θ)
∂θ

∂yp(θ)
∂θ

)
. (4)

The vehicle’s progress along the path is parametrized by
arc length s with (∂θ/∂s = 1), and can be approximated
for a small step by integrating the velocity of the vehicle
over time s =

∫
v dt. Assuming that the vehicle tracks the

given path with sufficient accuracy, we can approximate the
change in path parameter θ by

∆θ ≈ ∆s = v∆t, (5)

and therefore for one timestep, the evolution of parameter
can be approximated by

θk+1 = θk + vk∆tk, (6)

where vk∆tk is the approximated progress along the path at
time state k. In the ideal case, the path parameter θp(xk, yk)
should be computed in closed form inside the optimizer
as the projection of (xk, yk) to the path. However, this
process involves computing the computationally expensive
optimization routine

θp(xk, yk) = argmin
θ′k

(xk−xp(θ′k))2 + (yk− yp(θ′k))2. (7)

For computational efficiency, θp(xk, yk) is approximated by
the evolution over time during the optimization process.

Approximating θp(xk, yk) with θk introduces two errors
if the vehicle’s position deviates from the desired reference

path, namely the longitudinal (lag) error elk along the path
and the lateral (contouring) error ecknormal to the path as
shown in Fig. 4.

The lag error can be approximated by projecting the
position error of the vehicle’s position to θk along the path’s
tangent vector t(θk), formally

ẽl(zk, , θk) =
t(θk)T

‖t(θk)‖

[
xk − xp(θk)
yk − yp(θk)

]
= − cosφp(θk)(xk − xp(θk))

− sinφp(θk)(yk − yp(θk))

(8)

The contouring error, which measures how far the vehicle
deviates from the reference path, can be approximated by
projecting the position error of the vehicle’s position to θk
along the path’s normal vector n(θk), formally

ẽc(zk, , θk) =
n(θk)T

‖n(θk)‖

[
xk − xp(θk)
yk − yp(θk)

]
= sinφp(θk)(xk − xp(θk))

− cosφp(θk)(yk − yp(θk))

(9)

The errors are formulated into a Receding Horizon planner
(described in the forthcoming Section IV) as additional cost
terms, while the progress along the path is formulated as
reward,

JMPCC(zk, θk) = eTkQek−γvk∆tk cos(φk−φp(θk)), (10)

where Q ∈ S2
+ and γ ∈ R+ are predefined weights and the

path error vector ek is given by the approximated lag and
contouring errors,

ek =

[
ẽl(zk, θk)
ẽc(zk, θk).

]
(11)

IV. TRAJECTORY GENERATION

A. Road Boundaries and Obstacle Representation

We follow the description of road boundaries and obstacles
by [17] and modify it to account for rectangular obstacles.
The ego vehicle is represented as a union of a set of 4 circles
Rj(zk, j ∈ {1, · · · , 4}) of radius rdisc, which is chosen in
a conservative manner, as shown in Fig. 5 to enclose the
vehicle’s footprint.

The lateral distance d(zk, θk) of the ego vehicle’s position
to the reference path is given by the normal projection vector
at θP . Since we approximate θP ≈ θk, we can approximate
the lateral distance by the contouring error d(zk, θk) ≈
ẽc(zk, θk) .

The drivable region at θk is limited by the road boundaries.
The left road boundary is at distance bl and the right road
boundary is at distance br. To ensure that the ego vehicle
drives within the limits of the road, we enforce the constraint

bl(θk) + wmax ≤ d(zk, θk) ≤ br(θk)− wmax, (12)

where wmax is an upper bound of the vehicle’s outline
projected onto the reference path’s normal. For practical
purposes, it can be set as an additional padding to rdisc.
To ensure that the vehicle can follow the desired path well

in situations where road boundaries are tight, we introduce
an additional constraint on the path heading difference,

‖φk − φp(θk)‖ ≤ ∆φmax. (13)

Each unexpected obstacle i, such as the wrongly parked
truck, is modeled by a rectangle of length aiobs and width
biobs, such that aiobs ≥ biobs, whose centroid is located at
(xiobs, y

i
obs) in the global reference frame and which has

orientation φiobs.
A coordinate frame is attached to each obstacle, originat-

ing at its centroid, with the x axis parallel to its length and
the y axis parallel to its width. Consider the origin of the j-th
circle that describes the footprint of the vehicle, its position
in the i-th obstacle’s coordinate frame is xobs(i)disc(j), y

obs(i)
disc(j).

The collision constraint between the obstacle and the circle
at time k can be formulated as

∆x
obs(i)
k,disc(j) = max(

−aiobs
2

,min(x
obs(i)
k,disc(j),

aiobs
2

)) (14a)

∆y
obs(i)
k,disc(j) = max(

−biobs
2

,min(y
obs(i)
k,disc(j),

biobs
2

)) (14b)

c
obs(i)
k,disc(j)(zk) =

(∆x
obs(i)
k,disc(j))

2 + (∆y
obs(i)
k,disc(j))

2

(rdisc + rovertake)2
≥ 1,

(14c)

where rovertake is the additional safe overtaking distance.
We also employ a dynamic virtual bumper (DVB) [20] to

generate a safe advisory speed vref for the vehicle. The DVB
is a tube-shaped zone with its centerline as the vehicle’s local
path, and its width and height given by quadratic functions
dependent on the vehicle’s speed vk, and the obstacles in the
region.

The speed deviation is incorporated into the optimization
as an additional cost term

Jv(zk, θk) = ζ(vref − vk)2, (15)

where ζ ∈ R+.

B. Visibility Maximization

Consider an autonomous vehicle equipped with a sensor
(we use a LIDAR, but the method can be applied to other
sensor types) with a limited sensing range and field of view.
Now consider a scenario, when the vehicle is approaching
an obstacle in a straight line section, such as the case shown
in Fig. 6. We assume that the car is driving on the left side
of the road and therefore has to overtake on the right side of
the obstacle. Our goal is generate a motion for the vehicle
such that the visibility ahead of the obstacle is maximized.
For this, we first provide a definition of blind spot and then
describe the cost term to be added in the Receding Horizon
planner.

In the top image of Fig. 6 we show a case where an
obstacle in the ego lane generates a complete occlusion
along the left road boundary. For obstacle 1, we consider
a frontier point (blue dot) located to the right of the cen-
treline of the sensor located at (xsensor, ysensor) and with
orientation (φsensor). We define the frontier point of a set of

Fig. 5. Figure illustrating a maneuver to increase the visibility, i.e. the area seeing by the autonomous car that was previously occluded. Road boundaries,
obstacle, and blind spot representation of an overtaking vehicle. Solid black lines represent road boundaries, a dashed black line represents the centre line
of the ego lane, dashed red lines represent the road boundary of the ego lane. The green shaded region shows the area visible by the sensor and the area
that is not covered by the sensor is shown in white.

Fig. 6. Complete occlusion (top) and blind spot (bottom) of a vehicle
approaching an obstacle.

measurement points as the point, at position (x1
f , y

1
f), that has

the smallest field-of-view angle φFoV , measured from the
centreline of the sensor. When complete occlusion happens,
φFoV has negative value. The yellow point in the figure is
the exact opposite of the frontier point, i.e. it has the largest
field-of-view angle in the set.

As the vehicle moves towards the right boundary of the
ego lane, as shown in Fig. 5 (bottom), (φFoV) increases.
When the angle (φFoV) is positive, a blind spot appears,
i.e. a section along the left road boundary is not covered by
the sensor. This event causes a loss of information, which is
necessary to determine if the overtake maneuver is safe and
the autonomous vehicle can safely return to its ego lane. As

seen in Fig. 5, the autonomous vehicle may need to move into
the opposite lane to minimize the blind spot, and therefore
maximize visibility, until it is able to make a safe decision
to overtake.

Therefore, to minimize the blind spot along a trajectory
we have to maximize the visibility, i.e. the field-of-view. The
angle φFoV can be encoded into the optimization problem
as a reward term

JFoV (zk, θk) = −λφFoV , (16)

where λ ∈ R+.

C. MPC Formulation

We formulate a Receding Horizon planner that includes all
of the aforementioned cost terms and constraints. We write
the following non-linear constrained optimization,

minimize
u0:N−1

Jt(zN , θN) +

N−1∑
k=0

J(zk,uk, θk)∆tk (17a)

subject to zk+1 = f(zk,uk) (17b)
θk+1 = θk + vk∆tk (17c)
zmin ≤ zk ≤ zmax (17d)
umin ≤ uk ≤ umax (17e)

‖φ̇‖ ≤ φ̇max (17f)
‖φk − φp(θk)‖ ≤ ∆φmax (17g)
bl(θk) + wmax ≤ d(zk, θk) ≤ br(θk)− wmax

(17h)

c
obs(i)
k,disc(j)(zk) > 1, i = {1, · · · ,m},

j = {1, · · · , 4} (17i)
∀k ∈ {0, · · · , N},

where N is the prediction horizon and m is the number of
detected obstacles.

Fig. 7. Behaviour planning conditional flowchart.

Recalling the previous sections, the cost term is given by

J(zk,uk, θk) = JMPCC(zk, θk) + Jv(zk, θk)

+ JFoV (zk, θk) + uTkRuk, (18)

where R ∈ S2
+ is the control input cost.

The terminal cost is defined as

Jt(zN , θN) = eTNQteN , (19)

where Qt ∈ S2
+ is a design parameter. This additional

terminal cost is added when the vehicle is about to finish
its overtaking sequence and merge back into the ego lane, as
we discuss in the next section.

V. BEHAVIOR PLANNING

A conditional state machine, shown in Fig. 7, has been
designed for higher-level behavior planning. The behavior
layer outputs the value for the design parameters of the
trajectory planner. Every decision made by the behavior
planner is fed into the same MPC formulation described
in Section IV, i.e. it only modifies the parameters of the
optimization problem. We assume that the perception system
is able to give a Boolean signal on the clearance of the
opposite lane, including the prediction of incoming traffic.

The first case is nominal driving. When there are no
obstacles detected on the ego lane, the vehicle should follow

the centre of the ego lane as closely as possible, with high
penalty for lag error, contouring error, and speed deviation.

The second case is maximizing visibility without invading
the opposite lane. If there are obstacles detected on both the
ego lane and the opposite lane, the vehicle should move
towards the centre of the lane, without leaving the ego
lane, to both maximize visibility, as well as to anticipate
the instance when the opposite lane becomes available.
Furthermore, when the autonomous vehicle is in the opposite
lane, and an obstacle is detected for the first time, the vehicle
should return to its ego lane while still maximizing visibility.
This is enabled by giving large reward to the field of view
term, as well as reducing the lag and contouring cost, and
limiting the road boundaries to the ego lane.

The third case is maximizing visibility while invading
the opposite lane. If there are no obstacles detected in the
opposite lane, the vehicle is then able to cross to the opposite
lane to further maximize visibility. We further ensure that
the vehicle is able to safely return to its driving lane if an
incoming obstacle is detected in the opposite lane, i.e. the
vehicle should not use the width of the opposite lane in full
when it is still not sure that it will execute the overtake
maneuver. We guarantee this by checking the closest distance
to the obstacle. If this distance is above a conservative
number of 6× tan(δmax)

L , or six times the minimum turning
radius of the vehicle, it should only use half of the opposite
lane. When the vehicle is fully committed to the overtaking
maneuver, the road boundary can then be loosened further
to the full width of the opposite lane. A possible extension
to this heuristic is a full reachability analysis, such as [21].

The fourth case is overtaking. If there are multiple ob-
stacles detected on the ego lane, the vehicle should make
the decision whether it should a) overtake the first obstacle,
merge back to the ego lane, and the perform the same
routine again for the second obstacle, or b) just overtake
all obstacles at once. We ensure that the vehicle will not get
in a deadlock situation in which it can merge into the lane,
but not out of the lane to overtake the second obstacle. We
first compute the distance between the furthermost part of
the first obstacle and the nearest part of the second obstacle.
If this distance allows the in and out maneuver, the vehicle
computes a trajectory that overtakes the first obstacle, then
returns to its lane, before repeating the same routine. If the
gap is too small, then the vehicle overtakes both obstacles
at once, and determines the next action between the second
and third obstacles. In this work, we consider the minimum
distance between obstacles to be a conservative estimate of
6× tan(δmax)

L .

The fifth case is returning to the nominal driving lane.
Merging back to the ego lane is performed by imposing
a large amount of terminal cost to the optimizer when the
vehicle is close to the end of the obstacle. In this work, we
only impose the terminal cost when the furthermost part of
the obstacle in consideration is within the planning horizon,
i.e. vk ×N ×∆tk.

VI. RESULTS

We conduct simulations with Stage within the ROS frame-
work [22]. We use a previously mapped area of One North
in Singapore. The simulation set up mimics the single SICK
LMS-151 that has been installed on our autonomous vehicle
[20], with 180o the field-of-view, 0, 5o its precision, and 50m
the sensing range. The simulated vehicle has a maximum
cruising speed of 5m/s, a maximum approach speed 3m/s,
and a maximum overtaking speed of 2m/s. Laser scan points
in the ego lane are first clustered, a rectangle is then fitted,
and the blind spot frontier point extracted from the individual
clusters. The MPC optimization is solved at 10Hz, with 50
steps horizon, and 0.1s time step, with the code generated
by FORCES Pro [23], a commercial code generator for
optimization solvers.

A video that showcases the planner’s capabilities can
be accessed at https://youtu.be/INynNEw10OU. Snapshots
of the different scenarios are shown in Fig. (8-11). Every
scenario starts with the vehicle following an obstacle free
path. The window of the left displays the visualization of
the robot’s perception and planning intentions. Blue lines
indicate road boundaries, yellow lines indicate the centre
line of the path, green line indicates the MPC plan. The
dynamic virtual bumper is displayed as the polygon. Red
points indicate obstacles that lie in either the ego lane or
the opposing lane, while white points outline the rectangular
obstacle clusters. The window on the right is the simulator.
The red box is the ego vehicle and blue and yellow boxes are
the obstacles. The green area is the coverage of the simulated
LIDAR signal.

In the first scenario (Fig. 8), the vehicle must overtake
three vehicles parked in parallel, in this case the length of
the obstacle is first unknown to the vehicle. As described in
Section IV, the vehicle will first move towards the center
of the lane and assess the presence of an obstacle in the
opposite lane, before it cuts into the opposite lane. When it
gets enough information of the size of the obstacle it executes
the overtaking maneuver and safely merges back into its own
lane.

In the second scenario (Fig. 9), two obstacles are further
apart from each other, but not enough for the vehicle to
merge in and out of the lane. Similar to previous scenario,
the vehicle first moves towards the centre of the lane to get
more visibility of the opposite lane, to asses the presence of

Fig. 8. Snapshot of simulation scenario 1.

Fig. 9. Snapshot of simulation scenario 2.

obstacles in the opposite lane, and to get better information
of the length of the unknown obstacle. As soon as it detects
the rear end of the second obstacle, it computes the distance
between the obstacles to determine the course of action, but
still conservatively cuts to the other lane making sure that
it can come back to its lane. As soon as the vehicle does
not enough clearance to return to the original lane, and there
are no obstacles detected in the opposite lane, it executes the
overtaking maneuver and later merges back to the original
lane safely.

The third scenario (Fig. 10) is similar to the second
scenario. However, in this scenario, the obstacles are located
further apart. As soon as two vehicles are detected separately,
and the distance between the vehicles is verified to be enough
for the vehicle to merge into the lane and come back out,
the vehicle will find a plan to merge back into the lane. As
soon as the first obstacle disappears from the field of view
of the autonomous vehicle, the overtaking problem becomes
similar to scenario one, but with the vehicle starting slightly
out of the original lane. The vehicle is then able to perform
the overtaking maneuver safely.

The fourth scenario (Fig. 11) is the same as the third
scenario, but with an obstacle in the opposite lane. Similar to
the third scenario, as soon as the autonomous vehicle detects
that the two obstacles are far enough, i.e. that it has enough
clearance to merge in an out of the lane, it executes the
overtaking maneuver. When it detects the obstacle in the
opposite lane, it responds by merging back into the lane,
waiting behind the second obstacle. As soon as the opposite
lane is clear, the vehicle can execute an overtaking maneuver
similar to scenario one.

Fig. 10. Snapshot of simulation scenario 3.

Fig. 11. Snapshot of simulation scenario 4.

VII. CONCLUSION AND FUTURE WORKS

In this paper we have investigated the problem of over-
taking unexpected obstacles on a two-way street in an
urban environment. We have proposed a Receding Horizon
formulation that takes into account the blind spot caused by
occluding obstacles and maximizes visibility. We also have
designed a higher-level state machine, which ensures that the
autonomous vehicle can generate safe and optimal overtaking
trajectories. We have demonstrated the capabilities of the
method in a simulation environment.

In our simulation, we have taken a very conservative
approach in designing our behaviour planner, i.e. the system
will default to return to its ego lane when an obstacle is
detected in the opposite lane and wait until the obstacle
in the opposite lane has been cleared to proceed with the
overtaking maneuver. This may pose a problem when an
obstacle suddenly appear or disappear from the vehicle’s
sensing coverage. In this case, a significant change in the
cost and constraints may result in significant change in the
optimal inputs, or high slack term in the optimization routine.
We are also aware that we have are yet to consider the
possibility of the static obstacle in the ego lane starts moving
while the system is executing the overtaking maneuver, this
problem also extends to overtaking unusually slow vehicles
in the ego lane.

In the future, we plan to perform real world experiments
in the aforementioned one-north district in Singapore, by
integrating the planner into our overall architecture described
in [20]. We hope that by gaining real-world experimental data
and considering the risks associated with breaking the traffic
rules to overtake unexpected obstacles, we can further refine
and increase the sophistication of the current algorithm.

ACKNOWLEDGMENT

This research was supported by the Future Urban Mobility
project of the Singapore-MIT Alliance for Research and
Technology (SMART) Center, with funding from Singapore’s
National Research Foundation (NRF).

REFERENCES

[1] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka,
“Real-time motion planning methods for autonomous on-
road driving: State-of-the-art and future research direc-
tions,” Transportation Research Part C: Emerging Tech-
nologies, vol. 60, pp. 416–442, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X15003447

[2] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, March 2016.

[3] S. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H.
Eng, D. Rus, and M. H. Ang, “Perception, Planning, Control, and
Coordination for Autonomous Vehicles,” Machines, vol. 5, no. 1, p. 6,
2017. [Online]. Available: http://www.mdpi.com/2075-1702/5/1/6

[4] M. Althoff, O. Stursberg, and M. Buss, “Model-Based Probabilistic
Collision Detection in Autonomous Driving,” vol. 10, no. 2, pp. 299–
310, 2009.

[5] R. Hayashi, J. Isogai, P. Raksincharoensak, and M. Nagai, “Au-
tonomous Collision Avoidance System by Combined Control of Steer-
ing and Braking using Geometrically Optimised Vehicular Trajectory,”
Vehicle System Dynamics, vol. 50, no. Suplement, pp. 151–168, 2012.

[6] C. Guo, K. Kidono, and M. Ogawa, “Learning-based trajectory gener-
ation for intelligent vehicles in urban environment,” IEEE Intelligent
Vehicles Symposium, Proceedings, vol. 2016-Augus, no. Iv, pp. 1236–
1241, 2016.

[7] T. Shamir, “How should an autonomous vehicle overtake a slower
moving vehicle: Design and analysis of an optimal trajectory,” IEEE
Transactions on Automatic Control, vol. 49, no. 4, pp. 607–610, 2004.

[8] J. Baber, J. Kolodko, T. Noel, M. Parent, and L. Vlacic, “Cooperative
autonomous driving: intelligent vehicles sharing city roads,” IEEE
Robotics & Automation Magazine, vol. 12, no. 1, pp. 44–49, 2005.

[9] A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson, “Mpdm:
Multipolicy decision-making in dynamic, uncertain environments for
autonomous driving,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), May 2015, pp. 1670–1677.

[10] J. Schlechtriemen, K. P. Wabersich, and K. D. Kuhnert, “Wiggling
through complex traffic: Planning trajectories constrained by predic-
tions,” IEEE Intelligent Vehicles Symposium, Proceedings, vol. 2016-
Augus, no. Iv, pp. 1293–1300, 2016.

[11] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, Jun. 2011.

[12] F. Wang, M. Yang, and R. Yang, “Conflict-probability-estimation-
based overtaking for intelligent vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 10, no. 2, pp. 366–370, 2009.

[13] S. D. Cairano, U. V. Kalabi, and K. Berntorp, “Vehicle Tracking Con-
trol on Piecewise-Clothoidal Trajectories by MPC with Guaranteed
Error Bounds,” no. Cdc, 2016.

[14] G. Schildbach, M. Soppert, and F. Borrelli, “A Collision Avoidance
System at Intersections using Robust Model Predictive Control,” IEEE
Intelligent Vehicles Symposium (IV), no. Iv, pp. 1–6, 2016.

[15] M. Obayashi, K. Uto, and G. Takano, “Appropriate Overtaking Mo-
tion Generating Method using Predictive Control with Suitable Car
Dynamics,” no. Cdc, 2016.

[16] B. Yi, S. Gottschling, J. Ferdinand, N. Simm, F. Bonarens, and
C. Stiller, “Real time integrated vehicle dynamics control and tra-
jectory planning with MPC for critical maneuvers,” IEEE Intelligent
Vehicles Symposium, no. Iv, pp. 584–589, 2016.

[17] W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus,
“Parallel Autonomy in Automated Vehicles: Safe Motion Generation
with Minimal Intervention,” in IEEE International Conference on
Robotics and Automation, 2017.

[18] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
Bertha - A local, continuous method,” 2014 IEEE Intelligent Vehicles
Symposium (IV), vol. 35, no. April, pp. 450–457, 2014.

[19] D. Lam, C. Manzie, and M. Good, “Model predictive contouring
control,” in 49th IEEE Conference on Decision and Control (CDC),
Dec 2010, pp. 6137–6142.

[20] S. D. Pendleton, H. Andersen, X. Shen, Y. H. Eng, C. Zhang, H. X.
Kong, W. K. Leong, M. H. Ang, and D. Rus, “Multi-class autonomous
vehicles for mobility-on-demand service,” in 2016 IEEE/SICE Interna-
tional Symposium on System Integration (SII), Dec 2016, pp. 204–211.

[21] S. D. Pendleton, W. Liu, H. Andersen, Y. H. Eng, E. Frazzoli, D. Rus,
and M. H. Ang, “Numerical approach to reachability-guided sampling-
based motion planning under differential constraints,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1232–1239, July 2017.

[22] M. Quigley, K. Conley, B. Gerkey, J. FAust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Mg, “ROS: an open-source Robot
Operating System,” in ICRA workshop on open source software, 2009.

[23] embotech. (2017, April) FORCES Pro. [Online]. Available:
https://www.embotech.com/FORCES-Pro

