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Abstract

A distributed sensor network is many (100-10000) autonomous sensor nodes
spread out over a large area.  Each node is equipped with a processor, mission-specific
sensors, and short-range communications.  Local interactions between sensor nodes
allow them to reach global conclusions from their data.  This work develops algorithms
that allow:

• The group to establish robust spatial patterns of messages
• The group to develop a communications network by dividing tasks among

themselves
• Each mote to determine its position in physical space based on their location

in the network topology
• Each mote to determine if it is on the boundaries of the network by measuring

global constants through local interactions
• The group to project the path of a target moving through the network

To verify our algorithms, we have constructed two simulation environments. One
is based in software and allows for very rapid proof-of-concept development.  The other
is a hardware version that still allows rapid development, yet provides all the problems
of real hardware for a high fidelity simulation.
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1 Introduction
Distributed sensors networks are comprised of large number of simple

autonomous sensor nodes.  Each node contains a processor, sensors, short-range
communications, and a power source.  These nodes are distributed throughout the
target area, form a local communications network, and look for the desired targets.
This work describes distributed algorithms designed to produce global results from the
local interactions of thousands of sensor nodes.

The ability to accomplish your sensing task with large number of simple
elements has several advantages:

• The overall system can be more robust to the failure of any one, or any half
of the individual elements.

Relay Network Formation

Position Estimation

Message DiffusionBoundary Detection

Distributed Sensor Network

Target Path Projection

Figure 1: The distributed algorithms developed in this work.  Edge Detection allows individual
sensor nodes to determine if they are on the edge of the workspace.  Message diffusion provides
robust, stable, spatially correlated distributions of messages.  Relay Network formation allows
for heterogeneous task allocation.  Position estimation lets an individual sensor node compute
its position based on network topology.
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• The individual elements can be made very small.  This opens up new
possibilities for sensors inside small spaces.

• The individual elements can be made very cheaply.  1000 cheap things might
be cheaper than 1 expensive thing.

• The total coverage of the network can be spread out across areas much
larger that any individual’s sensory or communication range.

Programming a large number of computational elements requires different
techniques and algorithms.  This work describes several algorithms designed for sensor
networks:

Pheromone Message Diffusion
Pheromone messages are used to set up and maintain robust, spatially

correlated distributions of messages within the network.  These messages are initiated
from a source node and then relayed from node to node throughout the network.
Intelligent software agents with the ability to transfer themselves from sensor node to
sensor node can use the data contained in these messages to guide themselves around
the network.

Relay Network Formation
In some applications, it is useful to divide the sensor network into functional

groups.  By monitoring communications usage within the network, individual nodes
become communications hubs, leaving the other nodes free to spend all their time
sensing.  The distribution of tasks is robust to network topology changes.

Position Estimation
The user of the sensor network would often want to know where particular

events are occurring.  Each sensor node can analyze its connections in the network
topology relative to special nodes which know their position.  From this topology data,
every node can estimate its own position.

Edge Detection
Sensor nodes that are on the boundaries of the workspace are able to detect

targets that are new to the network and inform other nodes when old targets leave the
network.  Algorithms to determine whether a particular node is on the edge of the
network are presented.

Path Projection
Sensor nodes tracking targets moving throughout the network can send directed

communications to other nodes that lie in the linear projection of the target’s path.
This can be accomplished in a distributed fashion, without the use of previously
mentioned position information.

1.1 Algorithms for Sensor Networks
The mission for a distributed sensor network can be divided into three main

tasks: Sensing, Processing, and Acting.

1.1.1 Sensing
The sensory suite for a real-life sensor node would depend on the application it

was designed for.  Bio-chemical sniffer-nodes would need olfactory input, while rodent-
detectors could use thermal, motion, or acoustic cues.
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1.1.2 Processing
A system comprised of a large number of computational elements can process

information in two distinct ways, explicitly within each node or implicitly through inter-
node communication.  Traditional algorithms use the explicit computational model.
Each sensor node analyzes its sensory inputs and forms a conclusion independently of
its neighbors.  This approach uses standard algorithms, but does not take advantage of
the information sensed by the surrounding nodes or leverage their computational
resources.

In a distributed computational model, each node is still responsible for
performing the initial processing of its own sensory information, but the output of the
algorithm is formed as a result of each node communicating with its neighbors.  This
allows the group to draw conclusions from the data that a single sensor node could not
do.  For example, if the same target is detected by several nodes, it can be classified
from its sensory signature by each node independently, but by working together, they
can estimate its size and heading.

1.1.3 Act
When the processing of sensory data is complete, the network should act.  Our

network can act by communicating with the user or by reallocating its resources.
Efficiency and sensitivity can be tuned to optimize the overall performance of the
network.  As robotic research progresses, distributed sensor networks will eventually
turn into distributed robotic networks [1,2], in which case acting on a stimulus could
have many diverse responses.
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1.2 weC: A Software Simulation
Programming a large community of autonomous agents is a daunting task.  The

goal of weC (Pronounced We-See or Wee-C) is to provide a layer of abstraction and a
toolbox of algorithms for the software design of such a system.  The pinnacle of
evolution of weC would be a language that would allow the programmer to specify
abstract, high-level goals for the whole community, and then the compiler would spit
out low-level software for the individual agents.  Solving this problem appears to require
the solution to a related problem, artificial intelligence.  This is hard.

Falling somewhat short of that grand plan, the goal of this work is to identify
and test useful techniques for programming networks of distributed sensors.  Although
these techniques should apply to many distributed systems, our examples are all in the
context of a sensor network.

Figure 2: The weC simulation running in MATLAB.  The window on the right is displaying the
physical positions of the Smart Dust sensor nodes.  The different colors indicate what each node
is doing.  In this example, nodes that are colored red think they are at the perimeter of the
workspace  The chart in the middle shows a histogram of nodes, colored by job.  Some code can
be seen in the background.  I call this program “DemoSaguaroEdge”.
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1.3 Macromotes: A Hardware Simulation
While simulations are useful for illuminating specific aspects of a problem and

for exploring many different ideas rapidly, they are no substitute for physical hardware.
Macromotes are overgrown sensor nodes that let us test our algorithms on a real
system.  They are about one cubic inch in volume, which makes them useful in many
real-world applications in addition to thesis software development.

The macromote designed for this work is shown in Figure 3. It is based on the
many designs of our group [19].  Each one contains a light sensor, a temperature
sensor, two microcontrollers, a radio
transceiver, and a battery.  There are
three LEDs on top that let the user
determine which task that node is
performing.  The ability to reprogram
the entire network remotely is
important, so the second processor
was included to reset and reprogram
the main microcontroller.

Figure 3: A Macromote.  These devices were
designed to be a “hardware simulation” of a
more practical Smart Dust network.  As such,
their capabilities are rather limited.  This one is
equipped with two processors, a temperature
sensor, a light sensor, a radio transceiver and a
battery. The dual processor architecture allows
the user to reprogram the entire group
remotely.  This will shorten development cycles
considerably.
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2 Background
With current technology, it is easy to fit a processor, sensors, communications

hardware, and a power source into a cubic inch of volume.  Cubic centimeter packaging
goals are within sight, and cubic millimeter levels of integration will certainly follow.
Writing software for a computational system that could be sprinkled across the
countryside requires new models and assumptions.  This work explores algorithms for
forming a sensor network from these tiny pieces of hardware, affectionately known as
“Smart dust”.

2.1  “Smart Dust”
The goal of Kristofer Pister’s

Smart Dust Project at U.C. Berkeley is
to turn a cubic millimeter of silicon
into an autonomous sensor node.
Each particle, or mote, of Smart Dust
will have a processor, a sensor suite,
batteries, and communications as
depicted in Figure 4.  They may be
thought of as sessile robots with local
communications, or “insects with their
legs pulled off” [3].  Their principal
application will be surveillance and
other types of information gathering.
This application would require
distributed sensor arrays of hundreds,
or thousands of individual motes.
Distributed algorithms and design
paradigms for a network of this type is
a topic of open research, and the focus
of this work.

2.2 Applications
Smart Dust can do anything!

Here is what we have come up with so
far.  Feel free to make up your own applications as you read along.
Department of Defense:

Battlefield sensor networks
Sensor burrs, maple seeds and dandelion seeds
Enemy traffic pattern observation
Bunker mapping
Biological /Chemical weapons detection and marking

Civilian:
Security systems
Non-invasive surgery
Traffic management/traffic jam avoidance
Tracking professors
KPS: Kid Positioning System for hyper pre-teens and their overprotective parents
Vermin monitoring and extermination

Figure 4: A mote of Smart Dust*  This cubic
millimeter of silicon comes equipped with a
microprocessor, sensors, communications
devices and a power supply.  They would be
cheap enough to allow thousands of them to be
distributed throughout an area.  Although their
individual abilities might be limited, the
effectiveness of the group would be much
greater that the sum of its parts.

*Not yet available in all areas
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A tactical advantage for hard-core paintball players
Scientific

Wildlife conservation and monitoring
Underground/in nest/in burrow/in body real-time observation
Social insect community monitoring on an insect-by-insect basis

2.3 Smart dust Engineering Issues
The limitations of physical hardware can have a strong influence on algorithm

design.  Important issues to smart dust networks are communications, power
management, and the distribution technique employed.

2.3.1 Communications
Because the communication system is now an integral part of the computational

process, details of its implementation are of greater importance.  A network with a
communication model based on omnidirectional broadcast will spread, and
subsequently process, information differently from a network with directed
communications.  The correlation between communication effectiveness and spatial
relation can be very important.  For example, this work assumes short-range radio
links, which means that if two motes can communicate with each other, they are
physically close to each other.  This assumption might not be true with a laser-based
communication system due to constraints on aiming the emitter.

2.3.2 Power Management
Smart dust motes have a meager power budget.  Their energy comes from

sources such as solar cells, small batteries, and thermopiles.  These are not high power
sources, so conservation of energy is important.  Well-designed hardware will minimize
each individual mote’s energy consumption. Distributed algorithms might allow for even
more power conservation.  For example, by interacting with their neighbors and
allocating tasks heterogeneously,
individual motes can devote all their
energy to one particular task.

2.3.3 Distribution Techniques
The dust motes can be

distributed by hand, plane, unmanned
micro aerial vehicle (see Figure 5),
microrocket, or slingshot.  They can
range in form from simple cubes of
silicon to floating dandelion seeds or
autorotating maple seeds.

2.4 Biological Sensor
Networks

We cannot claim rights to the
idea of a network made up of
distributed sensors.  Nature beat us to
that by many millions of years.  Much
of the inspiration for the algorithms
presented here came from natural
examples.

Figure 5: A micro air vehicle (MAV) built by MLB
Co. [4].  This six-inch wondertoy comes with a
video camera and a dispenser for cubic-
centimeter sized sensor nodes.  At the time of
this writing, it can hit 60 m.p.h. and stay aloft
for 18 minutes!  Swarms of these tiny craft
could rain Smart Dust upon the target area.
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2.4.1 Ants
Ant navigation by scent trails is well explored in the literature. [5,6,7]

Differential reinforcement of competing scent trails will ensure that the colony as a
group will always exploit the closest source first.  The diffusion algorithm from section
4.3 was modeled after the scent trails worker ants follow.

2.4.2 Bees
Bumble bees and honey bees [8, 9] are more remarkable examples of natural

organization.  Bees actively monitor resources in their environment, spread information
throughout their colonies in distributed fashions, and divide labor between their
workers.

2.4.3 Coral
Jellyfish, Corals, and Sea Anemone all have simple nervous systems called nerve

nets.  The relay network formation algorithm in section 4.5.1 came about from
wondering if I could get a set of sensor nodes to differentiate into a nervous system.

2.4.4 Sponges
Sponges are surprisingly complex to be referred to as “simple animals” [10]

Among their many different cell types, they have amoebocytes, which roam around the
body of the animal sharing food and information.  These cells inspired the software
agents that roam our distributed sensor network.

Nature is filled with examples of distributed systems, indeed, it seems to be a
primary design principle.  Examples of local interactions forming global patterns are
found everywhere.
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3 weC: A Software Simulation

3.1 Introduction
The weC Simulator was designed for rapid development of distributed

algorithms.  A sample screen shot is shown in Figure 2.  MATLAB [11] was chosen as
our development environment for two main reasons.  It is “the language of technical
computing” and as such has many built-in functions and features that ease algorithm
design and data analysis.  It is also a very popular language among engineers, so the
source code is accessible to a wide audience.

The goal of this software was not to make a high fidelity simulation of the
complete smart dust environment, but rather to have way to investigate distributed
algorithms.  Our high fidelity simulation is comprised of a network of macromotes like
the one shown in Figure 3.  “The world is its own best model” [12] and should be used
as such whenever possible.

3.2 Definition of Conventions
The graphical output of the simulator is somewhat meager, consisting of little

circles and big circles, just like the ones shown in Figure 6.  We compensate for this
somewhat by drawing these circles in beautiful 32-bit color, but all that effort was not
appreciated by the 1-bit photocopier that probably produced the document that you are
now reading.  If you want to see the pretty pictures in all their glory, visit
http://www.eecs.berkeley.edu/ and download this document.  The smart dust motes
are represented by the small circles.  Their color depends on the job they are
performing.  The communications range is depicted by a larger circle surrounding each
mote.  Any other dust motes who lie within the bounds of their neighbor’s
communications circles will be able to talk to each other.  The brightness and color of
the communications circles depends of the level and type of pheromone message
currently displayed.  Some simulations show very small red dots inside the motes.
These are agent messages.  The impatient reader can skip ahead to section 4 for a
description of these terms.

r
Communications

2

DustMote #1

DustMote #2Communications
area of DustMote #1

1 Communications
area of DustMote #2

Figure 6: weC Pictorial conventions.  The blue circle (Mote #1) is a dust mote that is broadcasting
a message.  The black circle (Mote #2) is receiving the message.  The number in each mote is the
unique Mote ID.  Assume that each mote has a unique ID, even if they are not drawn.  The
larger circles around each mote represent its communications range. The color and brightness
of each communications circle represent a Pheromone Message name and level, respectively.
For example, the mote #1 might be transmitting: “Message Name=Blue Level=50”.  The next
section describes pheromone messages in more detail.
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3.3 Assumptions
All good scientific work must begin by simplifying the initially-interesting-but-

hopelessly-intractable problem into one that can actually be solved in finite time.  As
such, an impressive list of assumptions immediately follows:
1. The world is flat.  No, Magellan, I’m not asserting this in general, just on the scale of

a single dust mote.  For example, imagine thousands of motes distributed on 100
m2 of rugged terrain.  As long as the dimension of the ruggedness is small compared
to 100 m, the smart dust network will be essentially two-dimensional.  Two
examples of a truly three-dimensional system where this assumption would not hold
is a bunch of dandelion-motes dropped from an airplane, or a school of plankton-
motes living in the water.

2. Homogeneous hardware.  This allows for any mote to act like any other mote if they
like.  Phrased differently, the only differences between the motes are position,
sensory input, and software state.

3. A communications systems that does not fail all of the time, or have systematic
failures.  As long as errors are random and packets can get through eventually, the
distributed algorithms will still work.  The dust motes could use TDMA, CDMA, or
random retries.  Collisions are allowed, as long as neighbors can hear each other
every now and then.  A 50% communication error rate should make a well-designed
distributed algorithm take about twice as long, not crash and burn.

4. The communication system broadcasts omnidirectionally.  This leads to a
correlation between receiving a communication signal and your physical location
relative to the sender. Furthermore, I assume that there is an average radius of
effective communications that is relatively constant among all the motes

5. There is no range or directional information received with any communications
signal.  This constraint is based on the assumption (and personal experience) that
the hardware that works will be very simple.

6. Each mote has a globally unique ID code.  There are many algorithms that will work
fine without unique IDs but there are some that require them, such as the network
formation software from section 4.5.  At this time it is not clear what classes of
algorithms do not require IDs, but we can be sure that they form a proper subset of
the algorithms that do need them.  We assume that we have IDs so as not to limit
ourselves.

7. For some of the algorithms presented, a uniform spatial distribution of motes is
assumed.  This is the most unrealistic assumption of the bunch, but it allows for a
simplification of some of the mathematics involved. (read: doable vs. non-doable).
Ideas for generalization to non-uniform distributions are suggested, but not
rigorously considered.

8. The dust motes are stationary, or move slowly relative to the algorithm update time.
The constraint “slowly” will require more careful treatment.  Section 4.3.3 discusses
algorithm execution time and real world events.
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4 Distributed Algorithms

4.1 The Smart Dust Lexicon
Dust Motes talk to each other using two different types of communications

packets, pheromone messages and agent messages.  These are just exciting names
given to rather boring streams of bits flowing from mote to mote, so of you prefer to
think of them simply as communications packets, go right ahead.

4.1.1 Pheromone Message
Pheromone messages are used to set up and maintain spatially correlated

distributions of messages within the network.  These messages are initiated from a
source mote and then relayed from mote to mote throughout the network as shown in
Figure 7.  These gradients can be used for computation or to guide agent messages
around the network.  Pheromone messages keep track of how many times they have
been relayed from mote to mote.  This allows messages to propagate and “flood” the
entire network, or create local “puddles” around the source mote.   For example, if one
mote detects an interesting sensory stimulus, it could alert its neighbors by
transmitting a pheromone that would decay to zero and no longer be relayed after two
communication hops.  Or, if one mote wants to determine how many hops it is away
from another one, it could transmit pheromone messages and wait for an “echo” from
the targeted mote.  Any mote that broadcasts a pheromone message can then be
targeted by the recipients to receive replies.  This is useful when a user is
communicating with only one mote but wants data from the entire network.

Each dust mote keeps a list of all the pheromone messages it has received,
indexed by name.  If a message with a duplicate name is received, then the
ReplacementOperation parameter of the new message is used to determine which one
is kept.  If the level field of any pheromone falls below zero, that message is purged from
the mote.  The complete message format follows:

4.1.1.1 Pheromone Message Data Fields:
Name: The name for this message.  This is a text string, i.e.

“Funk” from Figure 7.  Each dust mote can only have one message with the
same name.  If it receives a second one, the ReplacementOperation parameter
is used to determine which one the mote will keep.

OriginatorID: The unique identifier code for the dust mote that was the source
for the pheromone message.

SenderID: The ID of the dust mote that most recently relayed the message.  If the
message has only been relayed once (one hop), then this will be the same as the
OriginatorID.

Hops: The number of communication hops from the source mote this message has
traveled.

Level: The level of this message.  Valid levels are positive integers.
ReplacementOperation: What to do if the receiver mote already has a pheromone

of the same name.  The choices are:
• KeepMaxLevel - Keep the pheromone with the highest level (Default)
• KeepMinLevel - Keep the pheromone with lowest level
• AddLevels - Add the two message’s levels into one message
• KeepNewer - Keep the newer pheromone
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DiffusionDecayRate: The value by which Level is decremented each time the
message is relayed from one mote to another.

TemporalDecayRate: The amount by which Level is decremented during each
decay cycle.  Each mote periodically decays all the pheromones it is storing.
This eliminates old state and allows the network to be robust to communication
and topology changes.

Data: Extra Data.  Just in case you actually want to say something to your
neighbors.

4.1.2 Agent Message
Agent messages, or simply agents, are designed to transport data throughout

the network.  In the simulation, they are modeled as independent processes that are
able to hop between neighboring motes at will.  Agents are able to query the state of
their current mote and its neighbors. This ability lets them navigate the network’s
pheromone landscape and head towards their goals.

4.1.2.1 Agent Message Data Fields:
Name: The name for this message.  This is a text string, like the pheromone name.  It

is allowed for a mote to have multiple agents with the same name, because
agents can be further discriminated by their ID.

SenderID: The unique identifier code for source dust mote.
AgentID: The unique identifier code for the agent.  This is equal to the number of

agents the source dust mote has sent.  This number combined with the sender
ID create a unique ID for every agent message.

Hops: The number of communication hops from the source this message has
traveled.

Data: Data.

Error-prone communications affect how agents hop from mote to mote.  To
ensure that there is always only one copy of a particular agent, both the sender mote
and the receiver mote would have to know that the communication took place correctly.
The sender could then delete its agent and the receiver could execute its copy.  Error-
prone communications makes it impossible for both parties to know if a communication
has been successful. [17]  We are left with two alternatives:

• The sender transmits and then immediately deletes its copy.  Drawback,
agents could vanish.  This is not as bad as it sounds, because that
particular agent might be coming from a periodic source, or it might have
been carrying redundant information.

• The sender transmits, but waits for one handshake from the receiver before
it erases its copy.  If it gets no handshake, it retransmits the agent.
Drawback, the retransmission process could create multiple copies of the
agent.  Because the network topology is affected by communications errors,
even a completely deterministic agent might not end up in the same mote
that its duplicate traveled through.  The solution is that agents, or the
software that collects their data, will have to know what to do with multiple
copies of the same agent.

4.2 Smart Dust Memory Requirements
The amount of information that needs to be stored in each mote is an important

consideration.  Careful selection of what to store must be made to ensure that the
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algorithms will scale with increasing network size.  In this work each mote needs to
know:

• Their pheromones:  These messages scale with algorithm complexity, not
number of motes.  For example, to perform position estimation (see section
4.6) with four BasisMotes, each mote will have to store four pheromone
messages, regardless of the total number of motes there are in the network.

• Their agents: These programs reside in motes.  In this work we assume that
each mote can store an arbitrary number of agents.  This is fine for
simulation, but real systems with finite memory would need to be designed o
limit the simultaneous number of agents per mote to a reasonable number.
For example, the path projection algorithm in section 4.8 uses a constant
number of agents.  In contrast, the number of agents that are present in the
relay network formation algorithm from section 4.5.1 depends on the total
number of motes in the network.  This problem is accentuated by the fact tat
all these agents are trying to get to the same ChairMote.

• Their neighbors ID’s:  For certain algorithms, a program executing inside a
dust mote must query all of that motes neighbors.  That implies that each
mote needs to have enough memory to at least remember its neighbors ID’s.
This does scale with network density, but not with network size.  During the
algorithm design phase, an optimal density can be decided upon and
individual memory sized accordingly.

• More of their neighbor’s state:  This can increase the efficiency of
calculations, but it would need to be synchronized somehow.

4.3 Pheromone Message Diffusion
Once a source mote initiates a pheromone message, it is relayed from mote to

mote in a process we call message diffusion.  Each mote periodically broadcasts all of
its messages to its neighbors.  Periodic retransmission helps to minimize the effects of
random communications failures between motes.

Displayed Pheromone=Funk
Displayed Agent=None
NumberOfMotes=8 Hops=0

Level=100

Hops=1
Level =90

Hops=2
Level =80

Hops=3
Level =70

Hops=4
Level =60

Hops=2
Level =80

Hops=3
Level =70

Hops=4
Level =60

Figure 7: Pheromone message diffusion.  The pheromone message named  “Funk” starts at the
dark green mote in the upper left with a Level of 100 and a DiffusionDecayRate of 10.  Every
mote periodically retransmits all the pheromones it is storing, which causes “Funk” to propagate
from mote to mote. Every time the message is relayed, its level is decreased by 10.  If a mote
receives multiple copies of the same message, it keeps the one with the highest level.  The net
global result is a pheromone gradient with increasing levels directed towards the source mote.
The numbers in the white boxes indicate how many hops each mote is from the message source
and the corresponding level of “Funk”.
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To prepare for transmission, each mote makes temporary copies of all its
pheromone messages.  The hop count of the temporary copies is incremented, and the
level is decremented by the DiffusionDecayRate.  Pheromones with a level that falls
below zero are culled from this temporary list.  This list is then sent to the
communication system for transmission.

It can be seen that a pheromone with a DiffusionDecayRate of zero will not
decay with each retransmission step.  Instead, it will diffuse throughout the entire
network in a process we will refer to as “flooding”.  If the message decays after a small
number of hops, then it will affect only the motes in the vicinity of the source mote.
This process is called “puddling”.

When a set of pheromone messages is received from a neighboring mote, their
names are compared with the list of pheromones that the mote already has.  Duplicate
messages are resolved by using the ReplacementOperation parameter from the new
message.  This parameter has the biggest impact on the resulting global distribution of
pheromones throughout the network.

4.3.1 Graph Theory of Systems of Pheromone Messages
Assume a particular mote transmits a pheromone message to its neighbors with

a replacement operation of KeepMaxLevel a nonzero DiffusionDecayRate and a zero
TemporalDecayRate.  We will refer to this mote as the source mote.  As the message is
relayed from mote to mote throughout the network, some dust motes will receive
multiple copies from their neighbors.  Since the motes will only keep the copy with the
highest level, i.e. the message that had to make the fewest number of communications
hops to reach it, each mote will keep message that came from a neighbor that is closer
to the source mote.  Figure 7 shows a dark green source mote in the upper left and a
green pheromone message.

You can convert this diffusion into a tree by using the motes as vertices and the
pheromone messages as edges.  Each edge points from the mote that has the
pheromone message towards the mote that sent it.  This tree is not unique because of
the situation where a mote receives more that one message with the same maximal
level.  Randomness in the timing of the asynchronous communications between motes
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Figure 8: The pheromone diffusion algorithm generates a tree of motes if the
KeepMaxPheromoneLevel replacement operation is used.  The blue mote generates the source
pheromone message with an initial level.   It then transmits copies of this message to its
neighbors with a reduced level. The motes within communications range (one hop) receive the
transmission, reduce the level again, and then relay it to their neighbors.  This receive-
decrement-retransmit process is repeated by all the motes simultaneously and asynchronously.
Since the KeepMaxPheromoneLevel operation discards all the messages except for the one with
the highest level, this ensures each mote will have a route back to the sender along a path with
minimal hop count.  See text for details.
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will influence which one of these edges (pheromone messages) will be kept.  The graph
shown in Figure 8 shows the edges that are deterministic in black and the edges that
are probabilistic in gray.  Even though each mote only keeps one pheromone message
from the source, it still has the ability to query its neighbors about their pheromone
messages.  That allows the network to operate on the directed acyclic graph with all of
the probabilistic edges.  This is used in section 4.5 to pick the best mote from the set of
neighbors to communicate with.

The important property of this tree is that every mote that is able to receive a
relayed message has at least one neighbor that is one hop closer to the source.
Because of the way the algorithm works, no mote can have a neighbor that is more that
one hop closer.  Essentially, this algorithm is a distributed implementation of a breadth
first search [13].

4.3.2 Robustness of Systems of Pheromone Messages
Under the correct conditions, a network of dust motes communicating with

pheromone messages can produce a very robust distribution of levels.  More
specifically, every system of network connectivity, source motes, and pheromone
message type has a unique stable state.  A network that is disturbed from this state will
return to this stable configuration over time, as explained below.

We define the source dust mote as the one that initiates the pheromone
message.  This message must have a nonzero DiffusionDecayRate and use
KeepMaxLevel as the ReplacementOperation.  These conditions ensure that our
diffusion algorithm will not produce any self-excitatory loops of pheromone levels.  A
self-excitatory loop occurs when a pheromone message can bounce from mote to mote
and eventually return to the source mote with a level greater that or equal to the

weC Stats:
         NumberOfMotes= 100
 Communications Radius= 1
        WorkSpace Area= 16
Average Neighbor Count= 15.54

Figure 9: Pheromone message diffusion  in action.  The source mote is colored white.  This
message uses the KeepMaxPheromoneLevel replacement operation.  The different values of
pheromone level can be observed by the shades of green in the circles.
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original level.  A message such as this will never terminate and will bounce around the
network forever.

These conditions will produce a unique distribution of pheromone message
levels.  The level of pheromone P in mote M will be given by:

PPPM HopsecayRateDiffusionD - lSourceLeve  Level ⋅= (1)

However, this distribution is not robust to pheromone level perturbations or
network changes.  For example, if the source mote stops transmitting, all the other
motes will be left with a pheromone message forever.  A solution is to add a nonzero
value to the TemporalDecayRate field of each transmitted pheromone.  This will ensure
that the level of each message will eventually reach zero if the source stops
transmitting.  Therefore, an undisturbed Smart Dust network with no sources will
eventually settle onto a stable, zero pheromone level state.

A combination of DiffusionDecayRate and TemporalDecayRate will produce a
composite level distribution.  The steady-state level of pheromone P in a given mote M
(LevelPMSS) will be a function of:

SourceLevel = Initial level of pheromone P from the source Mote
HopsM = The number of communications hops mote M is from the source mote
TimePerHop = Average amount of time it takes for one message to be

transmitted and received.  Communications errors and collisions should
be included in the computation or measurement of this value.  This
makes it dependent on low-level communications system
implementations, random errors, communication collisions, etc.  The
average number of collisions will be a strong function of the average
neighbor count of the network.

DiffusionDecayRateP, TemporalDecayRateP = Pheromone Parameters

( ) MPPPMSS HopsTimePerHopcayRateTemporalDecayRateDiffuionDelSourceLeveLevel ⋅⋅+−=
(2)

This steady-state value will only be approximate since there exists some
randomness in the TimePerHop parameter.

Since the diffusion algorithm keeps the message with the highest level, a mote
with an initial level lower that the stable value will immediately increase to the steady-
state level defined above when it received the first message transmission.  A mote that
starts higher will lose pheromone level at the TemporalDecayRate until it gets to the
steady-state level.  At that point, the message it is receiving will have a higher level that
the message it currently has, and will replace it.

Since the only topographical input to this equation is HopsM, adding or removing
motes will change the steady-state level of mote M only if their presence or absence
affect mote M’s hop count.  For a sufficiently dense smart dust network the redundancy
of network communications path should render individual hop counts insensitive to
small disturbances in mote population.  However, under severe network topology
changes, the hop counts of some or most of the dust motes could be affected.  The time
an entire network takes to settle into the steady-state level distribution for a given
topology can be determined by searching all the pheromone messages in all the motes
to find the one with the maximum settling time:

PMInitialLevel =The initial level of pheromone P in mote M

PMSSLevel =The steady-state level of pheromone P in mote M

PMcayRateTemporalDe =The TemporalDecayRate of pheromone P in mote M
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PM

PMSSPMInitial
SS cayRateTemporalDe

LevelLevel
T

−
= (3)

This time quantity is only valid if the initial level of pheromone in this mote is
greater that the steady-state level.  If the initial level is lower, then that pheromone level
is less than the steady state value and will be updated as the messages from the source
mote re-flood the rearranged network.  If all the Tss values are less than zero, the then
the maximum time for the network to converge would be the time for the pheromone
message from the source mote to propagate through the entire network.  This time is a
characteristic of the network and will examined more carefully in the next section

4.3.3 Algorithm Execution Time
With the assumption that a communication between any two motes will, on

average, take a certain (finite) amount of time, the total time for a n-hop puddle can be
estimated with the equation:

TimePerHoppsNumberOfHoTimepuddle ×= (4)

For an entire network of dust motes, the largest amount of time for a pheromone
message to flood the entire network can be used as an upper bound for algorithm
execution time.  First, we need to know the maximum number of hops possible in any
given network.  The longest distance can be measured with a ruler and some knowledge
of the obstacles and network boundaries.  In most cases, an estimate of the diameter
should suffice.

ionsRadiusCommunicat

tanceLongestDis
fHopsMaxNumberO = (5)

The equation for maximum flooding time is similar to the puddling equation:

TimePerHopfHopsMaxNumberOTimeFlood ×= (6)
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The last step is to determine how many dependent floods your algorithm needs
to terminate.  A dependent flood is caused by a pheromone message that initiates a new
pheromone flood when it is received by a dust mote.

( ) TimePerHopfHopsMaxNumberOodspendentFloNumberOfDeTimemax Execution ××=  (7)

Knowing the time it takes for pheromone floods to propagate through our
network allow us to define our “moving slowly” assumption from section 3.3.  The
motion of the motes only affects our software if it changes the network topology, so we
can immediately rule out small spatial perturbations or anything else that would be
equivalent to random communications errors.  We can divide the remaining spatial
disturbances into three classes, based on how they affect the network topology:

• The topology does not change for all time.
• The topology changes, but does so much slower than pheromone floods

distribute throughout the network.  Algorithms that depend on pheromone
message floods will be unaffected, as each motes pheromone information will
stay updated.  There will be intermittent errors if the topology changes in the
middle of a flood, but the next flood will correct them.

• The topology changes as fast or faster than your communications.  If your
network topology changes while pheromones are diffusing through the
network, they will not be able to reach the correct steady-stade values
determined by the topological positions.

Algorithms using agents are more difficult to characterize because an agent
message can remain active in the network for an indeterminate amount of time.  Some
algorithms, like relay network formation from section 4.5 use messages that hop from
one mote and then terminate at another following a minimal hop length path and

weC Stats:
         NumberOfMotes= 400
 Communications Radius= 0.5
        WorkSpace Area= 12
Average Neighbor Count= 20.615

Figure 10: The upper bound on the time it takes for a distributed algorithm to execute can be
estimated as follows:  The yellow line in the above figure is the shortest network path between
the two motes that are the farthest apart in physical space.  This is the longest physical distance
a pheromone message could travel, assuming it propagates through the network in a relatively
straight line.  The number of communication hops this actually takes is a function of distance
and density (see section 4.6.1.2 for more details).  Knowing the number of hops, the average
time per hop, and the number of sequential global floods your algorithm requires enables you to
estimate the algorithm execution time.
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without stopping.  These agents will take as long to propagate through the network as
one flood, which let us use the above scenarios to analyze their behavior.

Knowing the physical environment’s effects on the algorithms is important factor
for the communications system design.  For example, motes scattered on a field of
daisies could use slower communications than motes spread on the leaves of a tree,
and all could be downright lethargic compared to motes attached to working honey
bees!

4.4 Directed Communication
Message diffusion makes it possible for any mote to talk to any other mote.

Assuming the ID of the receiver mote is known, diffusion can be used to establish
communications to that mote.  The sender broadcasts a pheromone throughout the
network that has the ID of the receiver mote stored in the data field.  When the receiver
mote receives the pheromone, it can then transmit an agent message that hops towards
higher levels of pheromone, which will lead it back to the sender.  Our diffusion
algorithm ensures that every mote will have a pheromone message that came from a
mote that is one hop closer to the sender.  This allows our agent to propagate back to
the sender along a path of minimal hop count.

If there is a need for continuous communication, the agent can build a routing
table of the mote ID’s it encounters as it heads back to the sender.  Once the sender
receives the reply, it stops transmitting the initial message.  The next time the sender
needs to talk to that particular receiver, it can send an agent message that follows this
routing table back to the receiver.  This eliminates the need for a second pheromone
flood from the sender, but makes the communications link sensitive to network
topology changes.  If the initial pheromone broadcast has a non-zero
TemporalDecayRate parameter, it will eventually decay, which conserves memory for
the rest of the network.

For most of the algorithms in this work, there is no need for any two specific
motes that are not neighbors to ever talk to each other.  A more common use of directed
communications would be to talk to a human user of the sensor network.  The user
would approach a convenient mote and query it for information from the rest of the
network.  This anointed mote, called the ChairMote, would then broadcast
ChairMotePheromone throughout the network.  This forms our tree from section 4.3.1
and gives all the other motes the ability to direct their information back to the
ChairMote and subsequently out to the user.  Section 4.5.1 presents a method to
optimize the resulting routing network.

4.5 Heterogeneous Task Allocation
In the preceding chapters, all of the motes except for the one transmitting

pheromone were doing the same “job”, or running the same program.  In some
applications, it is useful to divide the sensor network into functional as well as spatial
groups.  The motivation for our example grouping is power savings and network
efficiency, but this list is not exhaustive by any means.  Each different application will
have its own set of constraints to work with.
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4.5.1 Relay Network Task Allocation
In section 4.3.1 we produced a tree by relaying pheromone messages throughout

the network using pheromone diffusion.  This enabled agents to direct themselves to the
mote that was the source of the pheromone message, but required all if the motes to
participate in the agent relaying process.  We can improve the performance of this
solution by dividing tasks among motes, making some motes exclusively responsible for
relaying agent messages on their way to the source mote, and others responsible for
receiving sensory data.  In this example, we will imagine that the source mote, also
called the ChairMote, was selected by the user to report information collected by the
network.

This functional split is motivated by power constraints.  Each mote has a finite
amount of energy and time that it is able to use for its activities.  If some motes focus
their available resources for relaying agent messages to the ChairMote, that would allow
nearby motes to maximize their expenditure on sensing.  However, directing an
arbitrary number of agent messages towards the ChairMote could overrun the
communications abilities of that mote and its neighbors.  This problm is compunded by
the fact that the expect4d numebr of packets We will ignore this problem in the
development of this algorithm, but a real system (or better simulation) would need to
address this issue.

We will refer to the motes that relay messages as RelayMotes.  We will define a
mote to be “upstream” of another mote if it is fewer hops from the ChairMote.  Motes
that can communicate with an upstream RelayMote and thus spend all their time
sensing are called normal motes.  Figure 11 shows simulation output using the
following color conventions:

• ChairMote -Dark Blue
• RelayMotes - Light Blue
• Normal Motes - Black
• Normal motes that cannot communicate to a RelayMote – Brown
• Motes that cannot communicate with the ChairMote (No pheromone=no

weC Stats:
                 NumberOfMotes= 500
         Communications Radius= 1
                WorkSpace Area= 64
        Average Neighbor Count= 23.1
 
weC Stats - Network :
                     RelayMotes= 64
         RelayMotes/Total Ratio= 0.128
                RelayMotes/Area= 1
Average UpstreamRelayMotes/Mote= 1.322
              NotInNetworkMotes= 0
                NIN/Total Ratio= 0
         Connectivity (1-Above)= 1
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Figure 11: Relay network task allocation.  The goal is to ensure that every mote is within
communications range of a light blue RelayMote.  The blue lines graphically depict the relay
network formed from mote to mote.  The dark blue mote in the center is the ChairMote.  This is
the mote that the user is interacting with.  The RelayMotes are responsible for transferring
information around the network.  The black motes are normal motes, who devote all their time
to sensing.  The brown motes are also normal motes, but that cannot see an upstream relay
mote and are not part of the relay network.
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route back) – Gray

4.5.2 Finding an Optimal Distribution of RelayMotes
In order for any mote to send an agent message to the ChairMote, it first has to

transmit this message to an upstream RelayMote, which then relays all of the agents it
receives to another upstream RelayMote and so on.  We will assume that each mote is
able to relay a message to the ChairMote, i.e. we have a fully connected spatial
distribution of motes.

In an optimal configuration, each RelayMote would be positioned to
communicate exclusively with a maximal number of normal motes.  This implies that
the physical distance between any two neighboring RelayMotes, including neighbors
upstream and downstream, should be as large as possible to maximize their net total
area covered and minimize their communications range overlap.  In other words, we are
looking for the lowest density of RelayMotes that can cover the entire distribution.
Since the total area to be covered is set by the network distribution, the lowest density
will occur when we have the smallest number of RelayMotes. The number of RelayMotes
does not always specify which ones need to be selected, i.e. the set of RelayMotes that
provides total coverage with the smallest number of elements is not unique.

4.5.2.1 Finding an Optimal Distribution Using a Centralized Algorithm
The graph produced from this optimal arrangement is the tree shown in Figure

13, which is the tree from Figure 8 with the probabilistic edges converted into
deterministic edges.  The edges are picked to minimize the number of RelayMotes.
Since this is a tree, removing any RelayMote, and its associated edges, would break the
connectivity to the ChairMote through the RelayMotes until the network can re-
configure itself to accommodate.

We start by letting the ChairMote pheromone message diffuse through the
network.  We can now group the motes based on how many hops they are from the
ChairMote.  We define HopLevel as the number of hops a mote is from the ChairMote.
We then search all the combinations of RelayMotes at each HopLevel for the smallest
number that allows the motes at HopLevel+1 to be connected.

for HopLevel=1 to MaximumNumberOfHopsInNetwork-1
R=The Set of Motes at level HopLevel
N=The set of Motes at level HopLevel+1
for NumOfRelayMotes=1 to length(R)

Is there a combination Q, of size NumOfRelayMotes, made from the
elements of R that has a set of downstream neighbors equal to N?

Yes:
stop searching at this HopLevel
make all the motes in Q RelayMotes
break out of the for loop

No:
Increment NumOfRelayMotes and try again

endfor
endfor
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At each level of the tree, this algorithm finds the smallest set of RelayMotes to
connect to the next level.  The sum of the RelayMotes picked at each hop level is the
global minimum number of RelayMotes.  Figure 12 shows the output of the centralized
algorithm and a comparison with the distributed algorithm presented next.

4.5.2.2 Distributed Relay Network Formation Algorithm
In order to achieve the same results with a distributed algorithm we will take

advantage of the fact that an optimal solution has the lowest density of RelayMotes.  We
will attempt to achieve this by selecting RelayMotes that can communicate with large
numbers of downstream motes.

The procedure begins with the ChairMote being selected by the user and
flooding the entire network with ChairMotePheromone.  Once each mote knows how
many hops it is from the ChairMote, it can query its neighbors to produce a set of
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Figure 12: Centralized algorithm selection of relay motes compared to the output of the
distributed algorithm.
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Figure 13: With careful selection of the edges in the diffusion graph from Figure 8, a network
communications tree can be formed.  Our diffusion results show that any mote can already
communicate with the sender with the shortest possible number of hops.  Now, we place the
responsibility of relaying communications on only a few motes and leave the rest free for other
tasks.
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upstream motes, thus converting our diffusion tree into a directed acyclic graph from
which the down stream motes can choose their upstream RelayMote.

Our approach is to have each mote keep track of how many messages it has
relayed recently.  It stores this count in the level parameter of a pheromone message
called RelayPheromone. This kind of differential trail reinforcement is very similar to the
way ants reinforce scent rails to select the best routes to and from their food sources.
The more individual workers use a particular scent trail, the stronger it gets.
Essentially, the group as a whole makes a collective decision to use one particular trail,
but the individual work ants are not aware of this level of reasoning, they are simply
heading towards the biggest stink.

We use agent messages as our worker ants.  They move from mote to mote using
the following algorithm:

if UpstreamMotes==ChairMote
RecipientMote=ChairMote

else
MaxLevel=0
RecipientMote=nil
for CheckMote=1 length(UpstreamMotes)

if the level of RelayPheromone in CheckMote > MaxLevel
RecipientMote = CheckMote

endif
endfor

endif
HopToMote(RecipientMote)
AddPheromone(ReceipentMote,RelayPheromone)

In the above pseudocode, UpstreamMotes is the set of motes upstream of the
current mote, RelayMotes is the set of all RelayMotes, and ChairMote is the set of
ChairMotes (there is usually only one).  HopToMote is a function that transfers the
agent from one mote to another.  AddPheromone sends a RelayPheromone message to
the current mote.  This message has a ReplacementOperation of AddLevels, so it
increases the level of the current RelayPheromone message, or creates one if absent.
When the level of this pheromone gets above a constant, then that mote is selected as a
RelayMote.  The level of this pheromone in each mote decays over time, which provides
the same kind of robustness afforded to the diffusion network from section 4.3.2.  In
particular, if there are changes, no matter how drastic, to the network topology, the
system will eventually reorganize to accommodate the new network.

In the simulation, agent messages are produced at random intervals by any
mote that is not in communication with a RelayMote.  In an actual application,
messages would only be produced when a mote or group of motes has pertinent
information for the ChairMote, but for the sake of temporally efficient simulation runs,
we will assume that everyone has something important to say.  Output from simulation
runs using this algorithm are shown in Figure 11, Figure 15, and Figure 16.  The dark
blue mote is the ChairMote, the light blue motes are RelayMotes, the black motes are
sensor motes, and the brown motes are sensor motes that cannot see a RelayMote.  The
level of RelayMotePheromone for each mote is indicated by the purple circles, with a
higher level corresponding to a purpler circle.  The little red dots in some of the motes
are agent messages moving towards the ChairMote.

One-dimensional arrangements of motes always converge to the global minimal
number of RelayMotes as shown in Figure 15.  The number of RelayMotes required is
given by:



24

C

drd l

1
r

d
ceiln

Comm

r
r −








= (8)

1
r

d
ceiln

Comm

l
l −








= (9)

lrtotal nnn += (10)

The function ceil returns its argument rounded towards infinity.
A carefully constructed two-dimensional arrangement will also converge to the

optimum, but this is not true in general, as shown in Figure 14.  In this situation, the
algorithm still performs well, as shown by the histograms in Figure 16.

It is interesting to watch the network of motes evolve over time.  As stated
previously, the lowest number of RelayMotes occurs when they are at the maximum
extent of each other’s range.  However, as relay motes are selected, the most optimal
selections are not always made right away.  Eventually, the RelayMotes spread out to
the optimal positions.  A good way to think about this is to imagine what happens close
to the ChairMote.  Assume that the first RelayMote selected is located a distance of ½
the communications range from the ChairMote, but there is another mote that is at the
maximum extent of the ChairMote’s range.  On average, this second mote has a higher
probability of receiving a transmission from a mote with a higher hop count, because of
the fact that more of its communications range overlaps those of motes with higher hop
counts.  As a result, it will conduct more network traffic than the mote that was picked
first, and it will eventually be selected to be a relay mote too.  Eventually, the level of
RelayMotePheromone in the first mote will decay below the threshold, and it will turn
back into a normal mote.  This process can be likened to “smoothing out the wrinkles”
in our network, because it happens in much the same way as you would smooth out
the puckers in a bed sheet while making a bed.i

In our assumptions section, we gave
ourselves globally unique IDs and a uniform
distribution of motes.  Both of these constraints
can be relaxed for this algorithm.  Each mote only
needs to know how to target its neighbors
individually, one of which will be its upstream
relay mote.  Therefore we could use a system of
locally unique IDs [14] instead of our global IDs.
In addition, our distribution does not need to be
uniformly random as long as every mote is
connected in some way to the ChairMote.

                                             
i Contrary to popular belief, I DO know how to make a bed!
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Figure 14: In a two-dimensional
network it is not always possible to
find a solution where there is only
one upstream RelayMote for each
mote.  In this example, mote #1
needs RelayMote #R1 and mote #3
needs RelayMote #R2.  Mote #2 will
always be able to see two upstream
RelayMotes.
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Random Distribution

weC Stats:
                 NumberOfMotes= 61
         Communications Radius= 1
                WorkSpace Area= 0
        Average Neighbor Count= 8.67
 
weC Stats - Network :
                     RelayMotes= 14
         RelayMotes/Total Ratio= 0.23
                RelayMotes/Area= Inf
Average UpstreamRelayMotes/Mote= 3
              NotInNetworkMotes= 0
                NIN/Total Ratio= 0
         Connectivity (1-Above)= 1

Uniform Distribution

weC Stats:
                 NumberOfMotes= 100
         Communications Radius= 1
                WorkSpace Area= 0.015
        Average Neighbor Count= 14.68
 
weC Stats - Network :
                    RelayMotes= 14
        RelayMotes/Total Ratio= 0.14
               RelayMotes/Area= 933.333
   Average RelayMote Neighbors= 0.99
             NotInNetworkMotes= 0
               NIN/Total Ratio= 0
        Connectivity (1-Above)= 1
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Figure 15: One-dimensional relay network task allocation.  The top figure displays motes that are
uniformly positioned, while the bottom figure shows motes that are randomly positioned.  When
the motes are in a one-dimensional network, the algorithm in section 4.5.2.2 always produces
the minimal number of RelayMotes.
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4.5.2.3 Failure Modes
As agents move through the network, they reinforce whichever path they travel.

Since the optimal choices of relay motes are not made initially, suboptimal selections
can be initially reinforced and become permanent, forcing the global solution to become
stuck in a local minima.  This problem can be rectified some what by having the agents
make their movement decisions at random until they move to a mote that can
communicate with an upstream RelayMote.  This allows the network to collect more
information about which motes are the best RelayMotes before making a decision.  The
price to pay for this extra information is longer convergence time.

4.5.2.4 Robustness of Relay Networks
The structure of the network is based on the underlying diffusion of ChairMote

Pheromone.  If there are topology changes, this underlying structure will change as
well.  Since agent motes only look upstream for RelayMotes, each agent will still move
towards the ChairMote in the shortest number of hops.  However, as in the section
above, RelayMotes that have been reinforced might still remain active, forcing the global
solution into a global minima.
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weC Stats:
                 NumberOfMotes= 600
         Communications Radius= 1
                WorkSpace Area= 100
 
weC Stats - Network :
                     RelayMotes= 87
         RelayMotes/Total Ratio= 0.15
                RelayMotes/Area= 0.87
              NotInNetworkMotes= 0
                NIN/Total Ratio= 0
         Connectivity (1-Above)= 1

weC Stats:
                 NumberOfMotes= 2500
         Communications Radius= 1
                WorkSpace Area= 400
        Average Neighbor Count= 19.82
 
weC Stats - Network :
                     RelayMotes= 371
         RelayMotes/Total Ratio= 0.15
                RelayMotes/Area= 0.93
              NotInNetworkMotes= 0
                NIN/Total Ratio= 0
         Connectivity (1-Above)= 1
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Figure 16: Two-dimensional relay network formation with large groups of dust motes.  Our trail
reinforcement algorithm cannot always converge to the optimal solution, but it still performs
well, with most motes only having one upstream RelayMote. (See the bottom histograms for each
data set)  Sometimes the algorithm fails by getting stuck in local minima and by physical
constraints as shown in Figure 14.



27

4.5.2.5 Multiple ChairMotes
In the preceding section, we have assumed that there was only one ChairMote in

the network.  However, since pheromones that are superimposed keep the maximum
value, we could have several ChairMotes spread throughout the network.  The diffusion
algorithm will still guarantee that the agent messages will head upstream.  Additionally,
they will automatically head towards the closest ChairMote.  The basins of attraction
between multiple ChairMotes approximate the Voronoi diagram created from their
positions.

Green ChairMote

Blue ChairMote

Red ChairMote

Figure 17: Basins of attraction for multiple ChairMotes.  The different colors show to which
ChairMote a agent will head based on its starting location.  Since pheromone diffusion always
finds the shortest path back to the source, the entire region is divided into Voronoi polygons,
one for each ChairMote.  In these simulations, we have given each ChairMote a different
pheromones for illustrative purposes only.  The basins will still form if  the same pheromone is
used for all the ChairMotes.
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4.6 Determining Physical
Position from Network
Topology

The dust motes themselves
could care less where they are
physically, but the humans using the
sensor network might want to know
where all the interesting things are
happening.  To ease human-mote
interactions, it would be nice if an
arbitrary individual mote could
determine where it is.  To facilitate
this, a few of the motes could be told
exactly where they were.  In an
outdoor environment, these motes
would have GPS receivers.  In an
indoor situation, they would be given
their coordinates on a floor plan of the
building.  We will call these special
motes BasisMotes, borrowing a bit of
linear algebra nomenclature.  In the
diagrams these motes and their
pheromones will be colored gray.  The
mote whose position we are trying to
estimate will be referred to as the
“MeasureMote”  and will be colored
white in the pictures.

Each of these BasisMotes
would then diffuse their position
information throughout the network
with their own individual pheromone
message, i.e. “BasisMote1”,
“BasisMote2”, etc.  Since multiple
pheromones can flow through the
network at once, this information will
propagate through the network in the
time it takes for one communications
flood.

The time required for multiple
pheromone transmission does not
scale with network size.  It is a
function of neighbor count and the
number of different pheromone
messages that need to be propagated
through the network.  The number of
pheromone messages that each mote
needs to retransmit during each
periodic transmission cycle is equal to
the number of BasisMotes.  With a
simple time division multiplexing
scheme, the pheromone message

Transmiter Receiver

Maximum Range - Straight Line

Intermediate Range - Non-Straight Line

Minimum Range - Straight Line

Range Of Straight Line
Receiver Positions

Range Of Un-Straight Line
Receiver Positions

Physical Distance

Minimum Range  - Non-Straight Line

Figure 18: Even with a constant number of
communications hops between any two motes,
their relative physical positions can vary greatly.
These four pictures depict the upper and lower
bounds of the distance between two motes that
lie in a straight line and are seven hops apart.
The top figure shows the maximum possible
seperation.  The second figure shows a more
normal path through a fairly dense network.
The third picture shows the minimum distance
possible if all the intermediate motes are
constrained to lie in a straight line.  The bottom
picture shows the minimum possible distance,
which is always equal to one communications
range, regardless of the number of hops..
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periodic transmission cycle would need to be larger that the time it takes to transmit
each set of pheromone messages times the maximum number of neighbors that any
mote is expected to have.

Once all the pheromones have settled, each mote will know how many hops it is
away from each of the BasisMotes.  The next step is to convert these lists of hops, or
“Mote Coordinates”, into something more useful, like Cartesian coordinates.

4.6.1.1 Maximum Distance Position Estimation
Given the number of communications hops and the average communications

radius, an upper bound on the physical distance between motes can be determined by
counting the number of hops a pheromone message takes to get from one to the other.
The set of diagrams in Figure 18 shows the maximum and minimum physical distance
between two motes that are seven hops from each other.  These maximum distance
bounds define circles of acceptable positions around each BasisMote, as shown in
Figure 19.  The intersection of these circles defines a region where the MeasureMote
must lie.  More formally:

1

2

3

weC Stats:
                 NumberOfMotes= 200
         Communications Radius= 1
                WorkSpace Area= 25
        Average Neighbor Count= 21.8
 
Ph Position Stats:
                    BasisMotes= 3

Figure 19: Maximum distance position estimation.  The circled motes in the left hand picture are
called BasisMotes because they know their physical position.  The white mote in the middle is
the MeasureMote and would like to determine where it is.  It can measure the number of hops
between it and the BasisMotes.  With the number of hops and the communications range, it can
compute the maximum possible distance from each BasisMote.  The overlaping of these
maximum positions produces the white area in the right hand picture.  The MeasureMote can
conclude that it it somewhere within this area.  For comparison, the black dot in the right hand
figure is its actual position.
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Let Rcomm be the average communication radius
Let Hopsi be the measured number of hops from the MeasureMote to the ith

BasisMote

The maximum distance from the MeasureMote to the ith BasisMote is given by:

icommi HopsRmaxd ×= (11)

4.6.1.2 Average Distance Position Estimation
While the above technique is simple, the resulting region can be very large and

difficult to define.  A stronger relation between the number of hops and physical
distance would give us a more precise estimate of position.  However, this distance will
be a function of the number of hops and the density of dust motes in the surrounding
area.  A greater density of motes will lead to a higher probability that the motes that
relay the message will be arranged in a straight line.  The two non-straight paths in
Figure 18 demonstrate how this “line straightness” parameter can have a profound
effect on distance measurements.  We will define a “line straightness” constant, C, as
the percentage of the maximum distance a communication with a given number of hops
will travel.[15]  In other words:

( )hopseMaxDistancCanceActualDist ⋅= (12)

One approach would be to measure C for many different mote densities.  A
slightly more elegant solution (involving, of course, more assumptions) is to assume
that C is a global constant for a given network of motes.  This assumption allows us to
make a more formal development of position estimation.

Let n=the number of BasisMotes.  Assume 3n ≥ .

weC Stats
         NumberOfMotes= 1500
 Communications Radius= 1
        WorkSpace Area= 225
Average Neighbor Count= 20.828

Ph Position Stats:
  Number of BasisMotes= 8

Figure 20: More maximum distance position estimation plots.  The eight BasisMotes are circled in
the upper left hand picture.  The actual and estimated positon of the MeasureMote are shown by
the white region and black dot in the other three diagrams.
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Let iB  be the two dimensional position vector of the ith BasisMote.  Assume we

can measure position to infinite precision. (we have very good GPS receivers)
Let Hopsi be the measured number of hops from the MeasureMote to the ith

BasisMote
Let X  be the two dimensional position vector of the MeasureMote.
Let C be the straightness constant as defined above
Let Rcomm be the average communication radius

The actual distance from the MeasureMote to the ith BasisMote is given by:

ii BXd −= (13)

As before, the maximum distance from the MeasureMote to the ith BasisMote is
given by:

icommi HopsRdmax ⋅= (14)

We can define an error between this distance and our measured distance,
shortened by our line straightness constant:

iii dmaxCde ⋅−= (15)

We would like to minimize this error for all n BasisMotes.  This total error is
given by:

( ) ( )∑∑
==

⋅−−==
n

1i

2

ii

n

1i

2
i dmaxCBXeTotalError (16)

Our problem has now been reduced to minimizing a function of two variables: X,
the vector (x,y) position of the MeasureMote, and C, our global line straightness
constant.  There are many ways to do this, but our desire to optimize algorithm
development efficiency coupled with an abundance of computational resources
encouraged us to implement a brute-force search of this entire three-dimensional
space.  The results were then plotted using MATLAB’s exhilarating “hot” color scheme to
produce the pictures shown in Figure 21.  The estimate is often quite good.  The errors
that occur might be due to the fact that C is not globally constant.  Most likely this
“constant” varies with local density and the number of hops the MeasureMote is from
each BasisMote.

4.6.1.3 Position Estimation Errors
There are a multitude of ways both of these algorithms can fail.  Any obstruction

in between a BasisMote and the MeasureMote will cause an increase in hop count
because the pheromones will have to diffuse around the obstacle instead of in a straight
line.  This will make that BasisMote seem further away than it actually is.  In addition,
the positions of the BasisMotes relative to the MeasureMote will affect the accuracy of
the output.

In the average positioning algorithm, the line straightness constant C might not
be the same for all BasisMotes.  Indeed, it might not even be constant over the path
between the MeasureMote and one BasisMote.  If the errors are random, they would
cancel out.  Systematic errors, like a network where the right hand side is denser than
the left hand side, would cause errors in the reported position.  One solution for future
work would be to measure C directly by computing the distances and hops between
BasisMotes.   Each BasisMote pair could then broadcast its value for C.  An individual
mote could take the average of these values, of use the value from the pair that it is the
fewest hops away.
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4.7 Physical Distributions and Network Topology

4.7.1 Neighbor Counts
Our algorithms depend on a network formed by local communications between

motes.  The topology of resulting network is affected by many factors, including the
workspace area, the communications range, the total number of dust motes in this
area, and how big they are.  An individual dust mote cannot measure any of these
quantities independently.  The only information that can be sensed about the state of
the network is the number of neighbors within communications range.  We will refer to
this parameter as the neighbor count and use it help parameterize the network.

ityGlobalDensionRadiusCommunicatuntNeighborCo 2 ⋅⋅π= (17)

weC Stats:
         NumberOfMotes= 1000
 Communications Radius= 1
        WorkSpace Area= 225
Average Neighbor Count= 14.3
 
Ph Position Stats:
  Number of BasisMotes= 9

Figure 21: Average distance position estimation.  As before, the MeasureMote counts the number
of hops it is from each BasisMote, which gives it the maximum spacing between the two.  Then
it computes an error term given by:

error=ActualDistanceToBasisMote-C·MaximumDistance

 from each BasisMote.  The ActualDistanceToBasisMote term and C are unknowns.  The last step
is to find the best combination of X-Y position and C that produce the smallest total error
between the MeasureMote and all the BasisMotes.  The results are shown above.  The eight
BasisMotes are circled in the upper left hand picture.  The actual and estimated position of the
MeasureMote are shown as white and orange dots in the other three pictures.  If you cannot see
two dots, thst’s because they are very close together!



33

Since GlobalDensity cannot be measured directly, a more pragmatic approach is
to simply count your neighbors.

4.7.2 Edge effects
Edge effects occur at the boundaries of the dust mote network. Figure 22 shows

a uniform distribution of dust motes spread out over an area that is much larger than
the communications range.  On average, the motes in the middle will be within
communications range with more motes than the motes on the edges, because of the
fact that a mote on the edge has no neighbors in a particular direction.  You would
expect for motes on a flat edge to see half of the average neighbor count and motes on a
90 degree corner to only see one quarter of the global average, assuming the global
average is large enough to allow an individual mote to discern fractions of it reliably.

The perimeter/area ratio of the distribution determines how “edgy” a network is.
The smallest possible value for edginess occurs in a uniform circular distribution and is
given by:

r

2

r

r2
Edgyness

2
=

⋅π
⋅π⋅

=
(18)

Where r is the radius of the distribution.

4.7.3 Edge Detection
While edge effects ruin the uniformity of local neighbor counts, they can be used

to allow individual motes to determine whether they are on the boundary of a
distribution.  Knowing that you are on the perimeter can be useful. For example, if a
mote on the edge, called an EdgeMote, detects a new sensory stimulus that it has not
been informed about through pheromone messages, then this stimulus must be a new
target.  This mote could alert nearby motes to the presence of a new target and update
the “distributed database” of targets in the network.  The opposite sequence of events
would occur if the EdgeMote loses track of a target that its neighbors can also no longer
detect.  This can let the network keep track of when targets enter and leave.

1 2

3

Network Boundary

Figure 22: Edges affect the local neighbor count measured by individual motes.  Although this is
a uniform distribution, because of the network boundaries Mote #2 can communicate with only
about 1/2 the number of neighbors as Mote #1.  Mote #3 in the corner has only 1/4 of the
neighbors as the interior mote.  This effect ruins the uniformity of our neighbor count
measurements, but can be used to detect motes on the edge of a network.  See section 0 for this
application.
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Because of concavities on a real distribution, the edge of the network cannot be
defined using a convex hull algorithm. [16]  For a uniform distribution with a
sufficiently high global average neighbor count, having a low local neighbor count is
correlated to being on the boundary of a distribution.  We developed two algorithms for
finding EdgeMotes in a distributed fashion.

4.7.3.1 “Charge” Conservation Algorithm
In order to use the edge effect to deduce your position in the network, you have

to know what the average neighbor count is for the rest of the group.  One way to do
this is to set a variable to be initially equal to your own neighbor count, then average
this quantity among your neighbors.  An analogy to a physical system would be to
charge up a capacitor to a level equivalent to that mote’s neighbor count.  One terminal
of each capacitor is then tied to ground.  Next, connect all the positive terminals of the
capacitors together.  After the charge redistributes, all the caps will have the same
amount.  This value will be the global average amount of charge.  In our analogy, charge
was initially equivalent to neighbor count, so this quantity will be equal to the global
average of neighbor count.  An algorithm that does this in a distributed fashion follows:

if t=0
Charge=NeighborCount

else
DidSomething=1
While DidSomething==1

DidSomething=0
for count=1 to NeighborCount

( )( )
2

countsCharge'MyNeighborMyCharge
eMyNewCharg

+
=

( ) eMyNewChargcountsNewCharge'MyNeighbor =
if MyNewCharge ≠ MyCharge

MyCharge=MyNewCharge
DidSomething=1

end
end

end
end
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Each mote queries each of its neighbors in succession and equalizes both of
their values of charge.  The algorithm terminates when each mote has the same amount
of charge as each of its neighbors. The net result is that eventually all the motes have
the same value in their charge register.  This value is the average charge of the entire
network.  Since the initial charge was set to local neighbor count, the average charge is
the global average of neighbor count.   To assure this we must impose the additional
constraint that we only average charge with one neighbor at a time.

∑
=

=
NumOfMotes

1M
M eargTotalCheargCh (19)

NumOfMotes

eargTotalCh
ageGlobalAver = (20)

If each inter-neighbor averaging step uses the function:

2

eargCheargCh
eargCheargCh 2Mote1Mote

2Mote1Mote

+
== (21)

Then total charge is conserved locally.  Since each mote can only share charge
with one other mote at a time, global charge must also be conserved.  The algorithm
terminates when all the motes have the same charge.  This gives us:

MteNeargChtesNumberOfMoeargTotalCh ⋅= (22)

weC Stats:
                 NumberOfMotes= 2000
         Communications Radius= 1
                WorkSpace Area= 44
        Average Neighbor Count= 123.077

weC Stats - Edge:
      CEdge (Neighbor Count Ratio) = 0.5
                         EdgeMotes= 607
             EdgeMotes/Total Ratio= 0.30 
   Average EdgeMote Neighbor Count= 87.0972
 Average NormalMote Neighbor Count= 140.191

weC Stats:  
                 NumberOfMotes= 1600
         Communications Radius= 1
                WorkSpace Area= 25
        Average Neighbor Count= 172.1

weC Stats - Edge:
  CEdge (Neighbor Count Ratio)= 0.5
                     EdgeMotes= 383
         EdgeMotes/Total Ratio= 0.28
   Average EdgeMote Neighbor Count= 113.9
 Average NormalMote Neighbor Count= 191.7

Figure 23: A example of edge detection.  First, the global average or the global maximum and
minimum values of neighbor count are computed in a distributed fashion.  Then the motes with
a local neighbor count that is less than a constant times this average turn red.  These motes are
called EdgeMotes.  The success of this algorithm depends heavily on the average neighbor count
of the network.  Networks with low neighbor counts do not perform well, as shown in Figure 24.
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MoteN
MoteN eargCh

NumOfMotes

eargChNumOfMotes

NumOfMotes

eargTotalCh
geGobalAvera =

⋅
== (23)

There are three drawbacks to this approach.  The first is the need for some type
of synchronization.  The motes need to know when it is time to count their neighbors
and when it is time to share charge.  Knowing when to stop sharing is comparatively
easy – you look at how much your charge changes from step to step and stop when this
change is small.

The second problem is more difficult to fix.  In order for the algorithm to work,
the total amount of charge in the entire network needs to be conserved.  This means
that for each communication from mote to mote, neither of them should modify their
charge until they are sure that the other has received the message and will modify their
charge.  This is the classic Byzantine consensus problem and is provably intractable.
[17]  The best we can do is handshake back and forth until the probability of multiple
message errors are smaller than we are concerned about.

The final concern is robustness to network topology changes.  If the network is
drastically altered, new edges could be created and global averages could change. The
motes would need to be able to detect this and then reset their charge and start sharing
again.  It would be difficult for an individual mote to be able to sense when such a
drastic alteration has occurred.

4.7.3.2 Min/Max Pheromone Messages Algorithm
A second approach to edge detection involves using pheromone messages to

propagate maximum and minimum neighbor counts throughout the network.  Once
each mote knows the global maximum and minimum values of neighbor count it can
then compare its own neighbor count to these values.

 Section 4.1.1 described the effects of different values of the
ReplacementOperation field in the pheromone message.  These different operations
can be used to propagate minimum and maximum values throughout the network.   A
MaxNeighborPheromone message would use the KeepMaxLevel replacement
operation, while a MinMeighborPheromone would use the KeepMinLevel operation.
Both messages would need a DiffusionDecayRate equal to zero to ensure that they
spread throughout the entire network.  A non-zero TemporalDecayRate value would
ensure that old messages eventually fade to allow for network changes
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In contrast to the charge conservation algorithm, there is no need for any
synchronization or communications handshaking.  Each mote becomes a source for the
two pheromone messages described above, MaxNeighborPheromone and
MinNeighborPheromone.  The levels of both of these messages are set to that mote’s
own neighbor count.  As messages arrive from neighboring motes, the respective
ReplacementOperations of the different messages will replace the source mote’s own
message.  For example, if our mote has a neighbor count of 10 and receives a
MinNeighborPheromone message from its neighbor who has a neighbor count of 5, it
would keep its neighbor’s message and discard its own.  When it transmits its
pheromone messages, it would send a MinNeighborPheromone message with a level of
5.

Since this mote is a source for a MinNeighborPheromone message with a level of
10,  it will transmit this message whenever it is not receiving a message with the same
name and lower value.  Essentially, whichever mote has the lowest value of neighbor
count acts like a global source for the MinNeighborPheromone.  The same situation
happens in reverse for the highest value if neighbor count and

weC Stats:
         NumberOfMotes= 50
 Communications Radius= 1
        WorkSpace Area= 25
Average Neighbor Count= 5.92

weC Stats - Edge:
             EdgeMotes= 13
 EdgeMotes/Total Ratio= 0.26

weC Stats:
         NumberOfMotes= 100
 Communications Radius= 1
        WorkSpace Area= 25
Average Neighbor Count= 12.28
 
weC Stats - Edge:
             EdgeMotes= 62
 EdgeMotes/Total Ratio= 0.62

weC Stats:
         NumberOfMotes= 200
 Communications Radius= 1
        WorkSpace Area= 25
Average Neighbor Count= 25.X
 
weC Stats - Edge:
             EdgeMotes= XX
 EdgeMotes/Total Ratio= 0.XX

weC Stats:
         NumberOfMotes= 400
 Communications Radius= 1
        WorkSpace Area= 25
Average Neighbor Count= 42.62

weC Stats - Edge:
             EdgeMotes= 170
 EdgeMotes/Total Ratio= 0.43

weC Stats:
         NumberOfMotes= 800
 Communications Radius= 1
        WorkSpace Area= 25
Average Neighbor Count= 84.97

weC Stats - Edge:
             EdgeMotes= 230
 EdgeMotes/Total Ratio= 0.29

weC Stats:
         NumberOfMotes= 1600
 Communications Radius= 1
        WorkSpace Area= 25
Average Neighbor Count= 172.09

weC Stats - Edge:
             EdgeMotes= 383
 EdgeMotes/Total Ratio= 0.24

Figure 24: Effects of Neighbor Count on Edge Detection.  The ability of the network to find edges
varies with neighbor count if a constant local neighbor count edge threshold is used.
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MaxNeighborPheromone.
In order to make an edge decision, all the motes compare their own personal

neighbor count with the minimum and maximum pheromone messages they are
storing.  If their personal count is less than…

 
2

rCountMaxNeighborCountMinNeighbo
ThresholdCalculated

+
= (24)

…then they become an EdgeMote.  This quantity was not determined by any
rigorous  technique.  The actual threshold varies as a function of neighbor count.

4.7.3.3 Effects of Neighbor Count of Edge Detection
The threshold value from the above equation is not independent of the global

average neighbor count.  Figure 24 shows how edge detection varied with neighbor
count.  One solution is to make our threshold value a function of neighbor count.  Our
threshold equation becomes:

( )
2

rCountMaxNeighborCountMinNeighbo
hborCountGlobalNeigCThreshold Edge

+
= (25)

We conducted several simulation runs where we defined which mote was an
EdgeMote based on their X-Y positions, not their average neighbor count.  From a
histogram of the output, the neighbor count value where half of the motes were
EdgeMotes and the other half were normal motes was used as our threshold neighbor
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weC Stats:
                 NumberOfMotes= 3200
         Communications Radius= 1
                WorkSpace Area= 100
        Average Neighbor Count= 92.9281
 
Position Stats:
           Edge Calculation Method= Zone
                        Zone Ratio= 0.05
                         EdgeMotes= 603
             EdgeMotes/Total Ratio= 0.19 
   Average EdgeMote Neighbor Count= 65.53
 Average NormalMote Neighbor Count= 100.53

Figure 25: The graph on the top shows how Cedge varies as a function of global average neighbor
count.  The figures on the bottom are an example of the trials use to produce the graph.  The two
histograms on the right hand side show the number of motes (Y-Axis) that can communicate with
a given number of neighbors (X axis).  The graph at the bottom right shows the ratio of
EdgeMotes to normal motes at all values of neighbor count.  The black line is at the 50% mark,
meaning that there are more EdgeMotes than normal motes to the left, and vise versa to the
right.  This critical neighbor count is where the threshold should be for this particular network.
We can then compute CEdge as the ratio of the calculated value and the measured value.
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count.  Knowing this threshold neighbor count and the min and max of the neighbor
count distribution we can calculate Cedge for that global neighbor count.

lduntThreshoNeighborCoCalculated

hresholdhborCountTActualNeig
CEdge = (26)

However, this relation is of dubious utility for two reasons.  First, measuring the
average global neighbor count cannot be done effectively in a distributed fashion.
Secondly, we only tested square networks with a constant edginess as defined at the
beginning of this section, and threshold is probably also a function of the edginess of
network.

4.8 Path Projection
Our previous algorithms allow our smart dust network to determine when

targets are entering and leaving its coverage area, locate these targets in physical space,
and communicate all this information to the user in a efficient manner.  The next ability
to add to our repertoire is to be able to predict where detected targets are heading.

Knowing what direction targets are heading it can be used to provide distant
motes with warning, so that they can be start looking for the new target.  This
information can also be relayed to the user, although the more accurate position

The first mote to detect a
target alerts its neighbors

The second mote to detect the same
target releases a path projection agent

The path projection agent hops
in the same direction that the
target is headed

weC Stats:
         NumberOfMotes= 800
 Communications Radius= 1
        WorkSpace Area= 25
Average Neighbor Count= 83.8225

Figure 26: Path Projection.  First, the left hand red mote detects a new target and floods the
network with pheromone.  As the target moves from left to right, the red mote on the right
detects it.  This mote starts transmitting its own pheromone flood and then releases a path
projection agent.  This agent queries the motes around it to find the one with the smallest sum
of the two pheromone levels.  It then hops to this mote and repeats the query-hop process.
Each mote the agent visits is approximately on the same path that our original target was
headed.  In our simulation, these motes turn yellow.  The yellow dotted line was added for
comparison.
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estimation data taken over time would probably be preferred.
The technique for path projection is essentially the same as the one described by

Coore [18] for ray generation.  The first mote to detect a new target floods the network
with a PathPheromone message with its unique ID.  We will assume that messages
propagate through our network faster than the target is moving.  The second mote to
detect the same target floods the network with its own unique PathPheromone message,
then releases a path agent.  The agent movement algorithm samples all the neighboring
motes and sums all of their PathPheromone levels.  It then picks the mote with the
lowest level and hops to that one.  It repeats this Query-Hop process for as long at the
path needs to be projected, as shown in Figure 26.

The pheromone diffusion from the first mote sets up a radially divergent “vector
field” throughout the network, which can be seen in Figure 27.  This straightness of the
lines in this field is a strong function of average neighbor count.  Denser networks will
have straighter lines.  Since the Path Agent will always hop towards lower levels of
PathPheromone, it will move away from the first mote in approximately a straight line.
Since the mote that actually releases the agent sits on one of these flow lines, once the
agent starts hopping, it will continue to follow that line.

4.8.1 Failure Modes
The distance between the two motes is important, as it the neighbor count of the

network.  Also, we need to have two motes that can identify and classify a target well
enough to realize that it is the same target.  In addition, if this target excites multiple
motes, how will they nominate one to do the diffusion and another to release the path
agent?

pister

         NumberOfMotes= 1000
 Communications Radius= 1
        WorkSpace Area= 144
Average Neighbor Count= 21.41

         NumberOfMotes= 3000
 Communications Radius= 1
        WorkSpace Area= 225
Average Neighbor Count= 40.566

Figure 27: The left-hand figure is the path projection “vector field”.  The blue lines show which
mote an agent message will hop to from any other mote.  All the hops will be away from the red
motes in the lower left that received the sensory data.  The field is similar to that of a point
charge, except squashed” in the direction of the projected line.  The fact hat all the lines head
away from the source makes the choice of mote where the agent is released important.  The
figure on the right is another path projection run with a large number of motes.
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4.9 Algorithm Summary
In this chapter, we have presented several distributed algorithms that would be

of use to a sensor network.  Each technique places different constraints and
assumptions on the distribution of the sensor node.  To summarize:

Algorithm Need Uniform
Distribution?

Average
Neighbor Count

Needed
Message Diffusion No Doesn’t Matter

Directed
Communication

No Doesn’t Matter

Relay Network
Division of Labor

No Doesn’t Matter

Position
Estimation

Yes Medium-High

Edge Detection Yes High
Path Projection Yes High

Table 1: Summary of spatial distribution constraints of different algorithms.

All the algorithms that make spatial inferences need a relatively high neighbor
count to smooth out the randomness of individual positions.  The robustness of
pheromone diffusion coupled with messages that decay over time provides output that
is insensitive to disturbances.

4.10 Simulation Operation
The simulation can run in two different modes.  In one mode, it functions with a

command line interface, with commands being sent to and processed by all the motes
in a sequential fashion.  This centralized interface is useful for setting up pheromone
distributions and specifying initial conditions for simulation runs.  For example, here is
the code for the maximum position estimation demo:

weCInit
MakeWorkspace(0,5,5,0)
MakeMotes(200,1);

disp('Pick some Basis motes, then press return');
SetClickMoteMode('Select BasisMotes');

pause
SetClickMoteMode('Display Mote Info');

disp('Diffusing All pheromones');
DiffuseUntilStable('All');

SetClickMoteMode('Compute Ph Position');
disp('Pick the mote who''s position you want to measure, then press
return');

This results in a static diffusion that you can then operate on by clicking
different motes.  Another example is the relay network division of labor program:
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% Lots of initialization stuff goes here
Done=10;
while Done>0
   acount=0;

RandomOrder=Randomize([1:length(Motes)]);
   for count=1:length(Motes)
      mote=Motes{RandomOrder(count)};
      if acount<=NumOfAgentsInBrownMotes &

strcmp(MoteGet(mote,'NetworkState'),'CantSeeRelay')==1
         agent('Secret Agent',mote,[226 12 128]/255,{'Hi Mom'});
         acount=acount+1;
      elseif acount>NumOfAgentsInBrownMotes
         agent('Secret Agent',mote,[226 12 128]/255,{'Hi Mom'});
         acount=acount+1;
      end
      if acount>=NumOfAgentsInAllMotes
         break
      end
   end
   AllMotesDo('MoteDecayPheromone','RelayMote');
   NetworkCantSeeRelayNum=0;
   AllMotesDo('UpdateNetwork');
   AllAgentsDo('MoveUpNetwork','ChairMote','RelayMote');
   AllAgentsDo('NominateRelayMote',RelayMotePh);

UpdateDisplay;
end

Most of the details here are not important.  The underlined while-end
statements control program execution.  This program is a loop that will run forever.
The commands with the gray highlights are processed by all the motes and agents
sequentially.

Motes in real sensor networks will be processing and communicating
asynchronously with respect to each other.  In order to more accurately simulate their
interactions, some of the programs were re-written from a more mote-centric point of
view.  For example, here is the demo for finding edges:

weCInit
%Square workspace, Area=25
MakeWorkspace(0,5,5,0)
MakeMotes(1600,1);
MoteCode='FindEdges';
weCRun

The last command transfers control to the weCRun function which evaluates the
program referred to in MoteCode, in this case, ‘FindEdges’  The code for weCRun
follows:
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function weCRun()
global TimeStep

TimeStep=0;
while 1==1
   for CurrentMote = 1:length(Motes)
      feval(MoteCode,Motes{CurrentMote});
   end
   for CurrentAgent = 1:length(Agents)
      feval(AgentCode,Agents{CurrentAgent});
   end
   UpdateDisplay;
   TimeStep=TimeStep+1
end

Essentially, this is just a loop that runs the method in the global variable
MoteCode for each dustmote object, and then does the same for the agent objects.  In
this example MoteCode contains ‘FindEdges’.   The find edges program passes
messages between motes to determine the global minimum and maximum, then
changes the color of the mote if its neighbor count is below threshold.

The major shortcoming of this evaluation technique is that it is still not
asynchronous.  Control is passed from one mote to the next.  The next step in
simulation fidelity would be to use a discrete event simulator package to handle
message passing and algorithm execution.  This step was not taken initially in an
attempt to keep the simulation as simple as possible.
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5 MacroMotes: A Hardware Simulation
Simulations are a useful design

tool, but it is important to realize their
limitations.  The algorithms presented
in this work were designed to function
on distributed smart dust motes that
live in the real world of radio
interference, dead batteries, and flaky
connectors.  The macromotes are
designed to provide a physical
simulation environment that allows for
rapid algorithm development, yet still
incorporates all the wonderful problems
of real hardware.

5.1 Hardware Overview
The macromote designed for this

work is a variant of other designs from
our group.[19]  A block diagram of the hardware is shown in Figure 29.  The full
schematic can be found in the appendix, section 7.3.

The main processor is an Atmel AT90S8535.  This chip has 8k of built-in
EEPROM program memory, low power consumption, and many I/O pins.  The
drawback is that its memory architecture does not allow it to reprogram itself.  To
provide this ability, we added a programming processor, an Atmel AT90LS2343, and a
shared EEPROM chip, a Microchip 24LC256.  A RF Monolithics TR1000 900mhz
transceiver enables nearby motes to communicate with each other.  Our algorithms
assume a circular communications area, so the antenna is designed to provide a RF
field with the nulls pointed up and down, not side to side.

Figure 28: The Macromote designed for this
work.

Main
Microcontroller

Programming
Microcontroller

EEPROM

Light Sensor

Temperature Sensor

Status LEDs

RF Tranceiver

Figure 29: Block diagram of the macromote hardware.  The main microcontroller is responsible
for almost all the computational duties.  To download new software, the user needs to download
new software.  This processor then puts the new code into the EEPROM, programs the main
processor, and resets the system.  This enables remote
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The motes are equipped with a light sensor and a temperature sensor.  The light
sensor enables the user to stimulate/select individual motes with a flashlight, which is
essential for debugging purposes.  The temperature sensors allow us to measure a
quantity that varies as a function of position in most physical environments.  The LEDs
allow the user to quickly determine what the network as a whole is doing.

5.2 Algorithms
Assuming a population macro motes spread out over an area larger that their

communications range.  If each mote transmits fixed-length packets periodically, the
probability of a transmission collision with one neighbor is given by:

riodtransmitPeRe

PacketTime2
P

⋅
= (27)

with multiple neighbors, the worst-case probability is:

riodtransmitPeRe

PacketTimeighborsNumberOfNe2
P

⋅⋅
≤ (28)

Some more relations…

BPS

ketBitsPerPac
PacketTime = (29)

sgeBitsPerMesgesNumOfMessaketBitsPerPac ⋅= (30)

…and estimated numbers…
Bits per Second 19200

Message Length (Bits) 100
NumOfMessages 4

RetransmitPeriod (seconds) 2
NumberOfNeighbors 5

…gives us a worst-case collision probability of about 10%.  This simple
retransmit routine should be fine for initial experiments, but will need to be replaced
with more sophisticated bandwidth sharing approaches as the average neighbor count
increases.  Once a communications infrastructure is implemented, the algorithms in
this work can be ported to their new home and tested.
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6 Conclusions and Future Work

6.1 Design Philosophies
You can develop a lot of insighti after watching your umpteenth simulation

generate output at 3 a.m.  In this section, I will do my best to articulate design
philosophies and techniques that I found useful.

6.1.1 Scalability
The algorithm should be invariant to the number of motes.  A system of 10

motes will not have the same properties that a system of 10,000 motes will have, but
basic algorithms like diffusion, relay network formation, and position estimation still
work fine.  In contrast, our simple directed communication algorithm from section 4.3.3
does not scale with increasing network size because the list of motes that the message
must keep track of will grow larger as the transmitter and receiver mote get farther
apart.  When I think about algorithms, I always imagine what the limit would be it there
were Avogadro’s Number of dust motes, i.e. how does your algorithm scale to the
continuous distribution case?

All manner of random errors should be tolerated.  Generally, I imagine how the
algorithm would perform if 50% of the population suddenly stopped working.  As long
as there are no systematic failures and the hardware is homogenous, then motes are
completely interchangeable.  Lessons learned from natural systems also apply here.
Often “good enough”, not “perfect”, seems to be the goal.

6.1.2 Robustness
Pheromone decay gives you stability – you always end up in the zero state.  This

gives great robustness to pheromone level and topology changes.

6.2 Future Work
This work touched on many related disciplines including communications,

networking, computational geometry, graph artificial intelligence, and robotics.

Sensing
I have made grand assumptions that the motes will be able to determine when

they have detected something, what they have detected.  In reality, this is a very hard
problem.  The ability to share information with your neighbors opens up the possibility
for more reliable sensory data, but brings with it the added complexity of distributed
information management.

Learning: The “Distributed Database”
There are two extremes to storing information in a network like this.  At one

limit everybody only knows their own state.  At the other extreme, everybody knows
their state and has a copy of everyone else’s state.  Both are impractical, but it remains
to be seen what the best way is to distribute information.  The best solution is one that
delivers effective local sharing of information to maximize “intelligence” and minimize
network traffic.  To talk about recognizing targets implies that you are also talking
about recognizing the absence of one.  The group would need to “habituate” to nominal
sensory data in order to avoid false targets.

                                             
i Not to be confused with sleep deprivation induced hallucinations.
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Because information could be spread all over the network, search agents that
could seek out information sources, collect the necessary data.  then head back to the
mote that sent them would be very useful.

The diffusion algorithm is essentially a way of spreading routing information
throughout the network.  Each mote that has a pheromone knows who it originally
came from, the next step in the chain to get a message back to that sender, but not the
entire set of hops to move a message to the source.

Spatial Division of Labor
Coore’s conclusion [18] says that we can divide our network into any spatial

patterns we desire. This is a powerful technique for determining which motes will
perform what tasks

General-Purpose Messages.
Pheromone messages and agent messages might prove too limiting for more

sophisticated algorithms.  A better solution is to communicate using small programs
instead of data.

Statistics of Real Distributions
The assumption of uniform distributions was necessary for some of our

algorithms, but probably does not accurately reflect real-world distributions.  There are
three different classes of distributions:

Uniform Density
Our assumption for this work.

Quasi-Uniform
Local density is a function of position, but not a strong one.  The algorithms

will work within error bounds defined by the variation in the density over the area
they are operating.
Non-Uniform

Local density is unpredictable, or systematically flawed.  This is a difficult
problem and will probably need to be dealt with on a algorithm by algorithm basis.

Better Position Estimation
Average distance position estimation copmutes the line straightness constant, C,

as a side effect of computing the position.  However, C can be measured directly by
computing the distances and hops between BasisMotes.   Each BasisMote pair could
then broadcast its value for C.  An individual mote could take the average of these
values, of use the value from the BasisMote pair that it is the fewest hops away.

Our position estimation algorithms only use information from a few BasisMotes
and the number of hops of separation.  It seems that estimates could be made in a more
distributed fashion by relating your position to your neighbors.  This would use more of
the topology information available and might provide a better estimate.

Better edge detection
Edge detection becomes a trivial problem if you can determine direction

information from your communications signals.  Without a sensor upgrade, a more
through understanding of the statistical distribution might enhance edge detection.

Using Min/Max information is not as direct as using a global average.
Communication errors prevent that technique from working reliably.  A clever solution
would be to devise a system such that communications errors result in a 50/50 chance
of gaining or losing charge [3].  That way, random errors would average out to zero and
not affect the global amount of charge.

Estimating the Size of a Target
If a target excites several nearby motes, which all release a unique pheromone,

its size can be estimated as follows:
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As with path prediction, the difficulty will be in identifying the target.

Better simulation
While it is practical to build physical systems composed of dozens of

macromotes, constructing systems of thousands is not.  Therefore, more realistic
simulations of sensor network operations will be needed to explore more of problems
and solutions carefully.  A discrete event simulator that does a better job of capturing
the asynchronous operation of the motes is the logical next step.

Robotics
Depending on your personal biases, a community of Smart Dust Motes can be

interpreted as a group of very slowly moving robots.  Although some of the sensor
network algorithms developed in this work may not lend themselves directly to robotics
applications, the thought process certainty does.

6.3 Conclusion
Algorithms for distributed sensor networks allow many elements to perform

tasks that are greater than the sum of their parts.  Every step taken towards
understanding these synergistic interactions further unravels the mystery between local
behaviors and global results.  The potential applications for this knowledge spread
across all of science and technology.  The ultimate goal of being able to define global
goals and use these to specify local interactions is moving closer every day.
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7 Appendices

7.1 Appendix A: weC code
See http://www.eecs.berkeley.edu/ for more information

7.2 Appendix B: Macromote Parts List
Ref. Des. Description Manufacturer Part Number

U1 Radio Transceiver RF Monolithics TR1000
U2 Microcontroller Atmel AT90LS8535
U3 Temperature Sensor Analog Devices AD7418
U4 EEPROM Microchip 24LC256
U5 Microcontroller Atmel AT90LS2343

SW1 DPDT Micro switch NKK
J1 12 position micro connector Walcom
J2 Ground Clip
J3 Whip antenna socket
X1 4mhz Crystal
X2 32.768khz Crystal
D1 Red SMD LED
D2 Green SMD LED
D3 Yellow SMD LED
C1 100pf cap

C2,C3 10uf cap
C4,C10 0.01uf cap

C5 0.1uf cap
C6,C9 13pf cap

C7 27pf cap
C8 0.015uf cap

R1,R9 100ohm
R2 Photoresistor
R3 270k ohm
R4 330k ohm

R5,R8 10k ohm
R6 27k ohm
R7 100k ohm

R10,R16 2.2k ohm
R11 30k ohm

R12,R13,R14 470 ohm
R15,R17 4.7k ohm

L1 10nh
L2 100nh

All discrete components in 0805 SMD form factor
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7.3 Appendix C: Macromote Schematic
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