
Distributed Algorithms for Dispersion in Indoor
Environments using a Swarm of Autonomous
Mobile Robots

James McLurkin1,2 and Jennifer Smith1

1 iRobot Corporation,
Burlington, MA 01803
{jamesm, jsmith}@irobot.com

2 Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139
jamesm@csail.mit.edu

We describe a set of distributed algorithms used to disperse a large group of
autonomous mobile robots efficiently throughout an indoor environment. Only
local inter-robot communication and processing is used. Ad-hoc communications
network topologies formed by gradient floods spread messages and guide robot
motion. Special attention has been given to doors, hallways, and other
constrictions. The network maintains a route to chargers to allow self-charging.

1 Introduction
Almost every application of swarms of robots requires them to disperse throughout
their environment. Exploration, surveillance, and security applications all require
coverage of large areas. In this work, we present algorithms for dispersing a large
swarm of robots into an enclosed space. In order for a dispersion algorithm to work
on physical robots, it must take into account engineering concerns – maintaining

Fig. 1. The iRobot Swarm is comprised of over 100 SwarmBots™, 16 charging stations and
navigational beacons. Each SwarmBot is roughly a 5” cube and has a suite of sensors,
communications hardware, and human interface devices. Hands-free operation is important,
thus the Swarm supports remote downloading and autonomous self-charging.

network connectivity, allowing for robot and communications failures, and
providing an infrastructure for the robots to maintain their battery charge.

1.1 Swarm Hardware
The iRobot Swarm is shown in Fig. 1. Each SwarmBot™1 contains an ARM
Thumb CPU, a FPGA, a unique ID (UID) chip, a radio modem, serial ports, eight
bump sensors, four light sensors, and a camera. Three extra-large LEDs and a 1.1
watt audio system provide user feedback.

The “Robot Ecology”™
Hands-free operation is critical, as even simple tasks, such as turning the robots on,
become time consuming. The "Robot Ecology" infrastructure provides resources for
centralized control, autonomous charging, and long-range navigation.

The ISIS™ Infrared Communication System
The primary sensor on the SwarmBot is an infrared inter-robot communication,
location, and obstacle avoidance system called ISIS. Each robot has four ISIS
transceivers, one in each corner. Nearby robots can communicate and determine
the bearing, orientation, and range of their neighbors. The location system has a
resolution of 1 cm and 2º at 30 cm range and a maximum range of 250 cm. A
smaller range, safer , is the maximum distance that provides reliable positioning.
Reflected packets are used to determine the location of nearby obstacles and walls.

The Neighbor Cycle
Robots periodically transmit their externally visible state at the end of each
neighbor cycle. This information includes their UID, what tasks they are
performing, and any gradient messages they are relaying. We use the Aloha[1]
protocol at the link layer. The period of the neighbor cycle, nt , is the same for all
robots. This implies that each robot will receive only one communication from
each of its neighbors during this period. These messages are collected and
processed in a batch operation. This transforms the asynchronous distributed
system into a synchronous distributed system, which greatly simplifies algorithm
design. The period nt is 250 ms, which allows for smooth robot motion control
based on neighbor positions.

Behavior System
Swarm software is written as behaviors that run concurrently[2]. Each behavior
returns a variable that contains actuator commands, i.e. motor velocities and light
patterns.

Gradient Communication
A gradient-based multi-hop messaging protocol provides long-range communication
using ISIS messages relayed from robot to robot. Gradients are used in many
routing protocols to find optimal routes for messages through a network [3]. We
use them to spread information and to guide robots through the network.

A source robot creates a gradient message that is relayed throughout the
network in a breadth-first fashion, constructing a tree rooted at the source as it

1 iRobot, ISIS, SwarmBot, Robot Ecology all copyright iRobot

propagates. In each neighbor period, each robot processes the messages it has
received and relays the one with the lowest hop count2. This eliminates cycles, and
rebuilds the gradient tree each neighbor cycle to allow it to dynamically respond to
changing network topologies as robots move.

With each robot transmitting periodically, but asynchronously, the expected
time for any robot to receive a message during the neighbor period is

2
n

p
t

t = .

The expected propagation time for a gradient message to disperse is

 () pg tGdiamt ⋅=

where G is the network graph, ()Gdiam is its diameter, and nt is the neighbor
cycle period. In the Swarm, the ideal value for pt is 125 ms, but communications
errors lengthen it to 172 ms. The diameter is dependent on the topography of the
environment, but with 100 robots the practical limit is about 40 hops, resulting in a
maximum propagation time of around 7 seconds. Multiple sources of the same
gradient type will tessellate the Swarm as shown in Fig. 2.

Each robot retransmits messages every neighbor cycle. The total number of
messages sent in an execution is given by:

 () n
t
t

ncn
n

gmsgsminm +=

where t is the total running time of the algorithm, n is the total number of
robots, gn is the number of types of gradient messages, and msgsminc is the
minimum number of messages sent by a single robot, currently 4. Minimizing the
number of messages per cycle per robot is an important design goal.

2 If there are multiple packets with the same hop count, then the UID of the source and finally
the UID of the sender is used as a tiebreaker. This deterministic tie-breaking procedure helps
robots select the same neighbors to consider over multiple neighbor cycles, which reduces
dithering between multiple equivalent neighbors.

Fig. 2. Robots communicate with their neighbors over the gray lines in the left hand figure.
Gradient-based routing protocols are used for long-range communication. Multiple gradient
sources of the same type will tessellate the Swarm into Voronoi polygons, shown with the solid
black lines in the figure on the right.

2 Directed Dispersion
The goal of the Directed Dispersion algorithm is to spread robots throughout an

enclosed space quickly and uniformly, while keeping each robot connected to the
network. The optimal running time occurs when each robot moves from a central
start location to its final position along the shortest possible path at maximum
velocity. Letting E be the closed polygon representing the environment, the
minimum time for a dispersion is given by:

()
max

min v
Ediam

t =

where ()Ediam is the maximum of shortest paths between any two points in the
environment E and maxv is the maximum velocity of the robots. This minimum
time is used to normalize the results of different algorithms.

The dispersion is accomplished by using two algorithms that alternate running
on the swarm: disperseUniformly and frontierGuidedDispersion. The
disperseUniformly algorithm spreads robots evenly, using boundary conditions to
limit the dispersion. The frontierGuidedDispersion algorithm directs robots
towards unexplored areas, and is designed to perform well both in open
environments and in environments with constrictions.

2.1 Uniform Dispersion - The disperseUniformly Algorithm
The disperseUniformly algorithm disperses robots uniformly throughout their
environment. A thorough treatment of this technique is presented in [4]. Physical
walls and a maximum dispersion distance between any two robots of safer are used
as boundary conditions to help prevent the Swarm from spreading too thin and
fracturing into multiple disconnected components.

The algorithm works by moving each robot, irobot , away from the vector sum
of the positions { }cp,,pp K1= of their c closest neighbors

{ }cneighbor,,neighbornbr K1= . The magnitude of the velocity vector that is
given to the motor controller is:

Fig. 3. Left: A dispersion into a small test space used to characterize the performance of
different dispersion algorithms. This environment is approximately 6 m x 6 m, with several
walls and “rooms”. Right: A dispersion into a large room, note the person in the upper-left
corner. It took about 20 minutes for them to achieve this dispersion, but they had to travel
through a narrow hallway to get to this space, slowing their progress.

>

≤
⋅

−
= ∑

=
safei

safei

c

i
i

safe

max

rp

rpp
rc

v
v

0
1

where maxv is the maximum allowable velocity output by this
behavior. This vector directs the active robot away from its c
nearest neighbors. The drive velocities are:

 ()bearing.nbrcosvv irot ⋅= , ()bearing.nbrsinvv itrans ⋅=

where, bearing.nbri , range.nbri is the bearing and range to

inbr .
This is a relaxation algorithm; imagine replacing graph

G with its Delaunay triangulation G′ , and then placing
compressed springs between connected robots. This will tend to
expand the Swarm to fill the available space, but once the space
is occupied, robots will position themselves to minimize the
energy in the springs. Total group energy is minimized by
minimizing local contributions, which happens when all the inter-
robot distances are roughly equal. Fig. 4c and Fig. 3 show the
robots uniformly dispersed in variously sized spaces.

The neighbors in G′ are also Voronoi neighbors, the
neighbors of the adjoining Voronoi cells of irobot . However, the
robots are able to communicate across Voronoi cells, so the graph
G usually has many edges that are not in the triangulation.
This means that ISIS neighbors of a robot are not always Voronoi
neighbors. Determining the set of Voronoi neighbors nbr from
the set of ISIS neighbors, ISISnbr , in real-time, is computation-
intensive,[5] so an approximation is used. The closest ISIS
neighbor will always be in the set nbr . However, avoiding a
single robot results in hectic movement as sensor errors can cause
the position of this neighbor to change radically. Adding
successively further neighbors to the set nbr cancels some of the
position errors, but can also include non-Voronoi neighbors and
cause the dispersion errors shown in Fig. 4a-h. When all elements
of ISISnbr are added to nbr , the robots are forced against the
walls because the forces from distant neighbors from the other
side of the circle are unbalanced.

In practice, using the two closest neighbors worked the best.

Fig. 4. The disperseUniformly algorithm is designed to spread the robots evenly. Instead of
computing the closest neighbors (the neighbors of adjoining Voronoi polygons) to determine
which robots to avoid, it avoids the n closest neighbors, sorted by range. Figs. a-h show the
results of avoiding an increasing number of neighbors, with h showing the limit. Avoiding the
two closest neighbors worked best in practice.

There are some cases in which second-closest neighbor is not a Voronoi neighbor,
caused when the farther neighbor is “shadowed” by the closer neighbor. This case
causes the robot to move in the same direction it would if only avoiding one
neighbor, which does not cause errors, but does increase jitter. This “shadowing”
effect is usually short lived, as the robot will typically encounter another neighbor
or obstacle quickly.

2.2 Exploring New Areas - frontierGuidedDispersion
The goal of frontierGuidedDispersion is to guide robots towards areas they have
yet to explore. Practical considerations require that the Swarm cannot fracture
into disconnected components, as there must always be a route back to the
chargers. The algorithm must self-stabilize to equalize voids and concentrations as
robots enter and leave the network to charge. We also desire a termination
condition to know when the Swarm is fully dispersed.

The frontierGuidedDispersion algorithm uses robots that are on the frontiers
of explored space to guide the Swarm into unoccupied areas, similar to [6], but with
support for multiple frontiers. The efficiency goal can be achieved if all the frontier
robots move along their optimal path, leading the rest of the Swarm into their final
positions.

Frontier Determination
Robots identify themselves as occupying one of three positions in the network: wall,
frontier, or interior. “Wall” robots are those that detect an obstacle with the ISIS
system. “Frontier” robots are those that have no neighbors and no walls within a
large angle on any side; i.e., they are on the edge of an open space. The remainder
are “interior” robots, as illustrated in Fig. 6. However, tight hallways require
robots to become frontiers even when they detect walls. Fig. 6 shows how
including the wall in the calculation of unoccupied space can correct this problem.

frontierDetermination() returns integer
1. edgeNbrSet ⇐ set-of-all-neighbors
2. if ISISWallSignalStrength > VirtualNeighborWallThreshold
3. edgeNbrSet ⇐ edgeNbrSet ∪ createVirtualNbr(ISISRadar.bearing)
4. endif

5. edgeNbrSet ⇐ sortNbrsByBearing(edgeNbrSet)
6. maxAngle ⇐ edgeNbrSet[1] + (360 - edgeNbrSet[length(edgeNbrs)])
7. for i ⇐ 2 to length(edgeNbrSet) – 1
8. a ⇐ edgeNbrSet[i] - edgeNbrSet[i - 1]
9. if a > maxAngle
10. maxAngle ⇐ a
11. endif
12. endfor

13. if maxAngle > EdgeAngle
14. return FrontierRobot
15. else if radar.range < WallRange
16. return WallRobot
17. else
18. return InteriorRobot
19. endif

Lines 1-4 create a virtual neighbor
if the global system variable
ISISRadarSignal is greater than the
VirtualNeighborWallThreshold.

Lines 5-12 find the largest angle
between any two adjacent robots.
It does so by sorting the robots by
bearing, then computing the
difference in angle between
adjacent elements. Lines 13-19
return the appropriate constant
indicating the robot’s position.

Swarm Motion -
disperseFromLeaves
Once the robots know their
positions in the network, the
frontier robots source a gradient
message. The trees created by

these gradients (“frontier trees”) guide the Swarm towards the frontier robots. It is
possible to let the frontier robots “pull” the rest of the Swarm behind them by
having the swarm cluster onto the frontier gradient source. However, any
algorithm that is based on pulling robots over multiple hops can cause newly
discovered frontiers to pull robots away from previously explored areas. This
causes a frontier to re-appear at the old location and pull the Swarm back, creating
oscillations, or fracturing the swarm and disconnecting robots from the chargers.

Instead, robots move away from children in the frontier tree. In order to build
a reliable network, robots only move if they are in contact with at least two
children in the frontier tree. This increases the min-cut of the network to two
while the robots are dispersing, and helps deal with voids created by corners or
robots heading home to charge.

disperseFromLeaves(beh)
1. childNbrSet ⇐ all-children-on-frontier-gradient-tree-closer-than-RSafe
2. siblingNbrSet ⇐ all-siblings-on-frontier-gradient-tree-closer-than-RSafe
3. if size(childNbrSet) > 2
4. avoidManyRobots(beh, (childNbrSet ∪ siblingNbrSet), d)
5. endif

Lines 1-2 create sets of children and sibling neighbors on the frontier tree that are
closer than safer . This limits the maximum dispersion to safer . Line 3 requires a
min-cut of 2 between this robot and its children. The avoidManyRobots behavior
in line 4 takes the vector sum of the positions of the input set, and moves the robot
in the opposite direction, i.e away from both sets of neighbors.

Leaves of the frontier tree remain stationary, which leaves robots in place to
provide a route to the chargers and to mark previously explored areas. Essentially,
the leaves become “anchors” and then limit the dispersion of robots away from

Fig. 5: Robots select their job as either frontier,
wall, or interior robot based on the positions of
their neighbors and nearby walls.

them to a distance of safer .3
As robots move away from the
leaves, they move closer to
their upstream robots, causing
a chain reaction that
eventually moves all the robots
towards the frontiers.

Multiple frontiers often
form as the Swarm explores
the environment. Their
gradients tessellate the Swarm
based on hop count as shown
in Fig. 2. This is useful
because progress of distant
frontiers will be slowed as
interior robots disperse towards
frontiers with smaller hop
counts, allowing these closer
frontiers to catch up. This
tends to make the Swarm
explore the building in a
breadth-first fashion.

2.3 Directed Dispersion
directedDispersion(beh)
1. if frontierDetermination() = FrontierRobot
2. gradientSource(FrontierGradient)
3. endif

4. if FrontierGradient.isActive = True
5. disperseFromSource(beh)
6. else
7. disperseUniformly(beh)
8. endif

Lines 1-3 source a FrontierGradient if this robot is on a frontier. Line 4 checks
to see if there are any frontier gradients in the network, including the one from this
robot. If so, line 5 runs the disperseFromLeaves behavior. Otherwise,
disperseUniformly runs and equalizes inter-robot spacing. The “pressure” from
disperseUniformly tends to push robots into open spaces and tight constrictions,
which can cause new frontiers to form. This activates the disperseFromLeaves
behavior on the rest of the swarm, which causes a directed dispersion towards the
frontiers. The disperseFromLeaves behavior stays active until all frontiers
encounter walls or move to the interior of the swarm. Termination of the combined

3 Another way to think about this is to imagine that any robot that is not maximally
dispersed from its children will head towards the frontier, causing its parent to move towards
the frontier, etc. This results in a “wave” of motion that the frontier “surfs” forward .

Fig. 6: Frontier robots guide the Swarm into unexplored
areas by propagating a gradient that forms a tree
rooted at the frontier robot. All robots then move away
from their children in this tree. Leaves on the tree do
not move, allowing previously dispersed robots to
remain stationary.

algorithm is defined when the frontier behavior stays inactive for a specified
amount of time. Unfortunately, complex environments, sensor noise, and robots
leaving to charge can make it difficult to quantify this time. We used ten seconds
for the experimental results.

3 Experimental Results
Experiments were conducted in February 2004, at iRobot in Burlington,
Massachusetts. Fifty-six robots were used with a reduced ISIS communications
power setting to explore the small environment shown on the left side of Fig. 3.
There were three goals placed at varying distances from the start location. The
Swarm was released and times required to reach the three goals and full dispersion
were recorded. Five algorithms were compared.

idealGasMotion: Robots move in straight lines but turn when they collide with
each other or with a wall. The network often breaks into disconnected
components. Inter-robot interference is a problem, with robots colliding often.
There is no termination condition, and dispersion is rarely uniform.

disperseFromSource: A robot near the base station sources a “disperse” gradient.
Robots move a distance disperser away from parents in the “disperse” tree.
Network connectivity is maintained during the dispersion process if

safedisperse rr ≤ . Uniform, complete coverage only occurs if the environment area
is known in advance and disperser is set accordingly; otherwise robots either bunch
up at boundaries or do not completely fill the area. However, the dispersion is very
efficient, quickly reaching all goals and full dispersion.

avoidClosestNeighbor: Robots move away from their closest neighbor at constant
velocity if disperserr < . Network connectivity can be maintained if

safedisperse rr ≤ . There is no termination condition. This is very similar to
disperseUniformly, and the results are also similar. Dispersion is uniform, but
robots oscillate back and forth between closest neighbors.

disperseUniformly: As described above in section 2.1. This algorithm runs more
slowly than avoidClosestNeighbor, but the motion is smoother. It has very
uniform dispersion and maintains network connectivity. Robots remain stationary
after dispersion.

directedDispersion: As described in section 2.3. The robots rarely head in the

Table 1. Dispersion Efficiency vs. Location

0.00

0.10

0.20

0.30

0.40

0.50

goal 1 goal 2 goal 3 full disperse
Location

N
or

m
al

iz
ed

 T
im

e
(E

ff
ec

ie
nc

y)

ideal-gas-motion

disperse-from-source

flow

avoid-closest-
neighbor
direcred-dispersion

wrong direction, and effectively push frontiers to the boundaries. The algorithm
terminates with uniform coverage and robots remain stationary after dispersion.

Additional tests were conducted at a government-run experiment in a empty
military schoolhouse in January 2004. A swarm of 108 robots dispersed into 3000
ft2 of indoor space in about 25 minutes, located an object of interest, and led a
human to it. Multiple room configurations were tested. The robots ran almost
continuously for six hours, demonstrating the value of a number of features of the
iRobot Swarm system: single-command activation, single-command return to base,
fully integrated automatic recharging behavior, and the ability to "bulk-reprogram"
the robots in the field.

4 Conclusion
Directed dispersion allows robots to explore large, complex, indoor environments.
The robots use the information in the graph in which they are embedded to modify
this same structure. Path planning and directed motion algorithms become easier
to develop when the primary input is the positions of other nearby robots.
Practical dispersion algorithms can be designed to meet efficiency, robustness,
scalability, and correctness constraints.

Acknowledgments
This work was supported by DARPA IPTO under contracts SPAWAR N66001-99-
C-8513 and SMDC DASG60-02-C-0028.

References

1 N. Abramson. "The Aloha System - Another Alternative for Computer
Communications". In Proc. Fall Joint Cornput. Conf., AFIPS Conf., page 37,
1970.

2 R. Brooks. "A robust layered control system for a mobile robot". In IEEE Journal
of Robotics and Automation, RA-2, pp.14-23, 1986.

3 C. Intanagonwiwat, R. Govindan and D. Estrin. Directed diffusion: A scalable
and robust communication paradigm for sensor networks. In Proc. Sixth Annual
International Conference on Mobile Computing and Networks, 2000.

4 J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile
sensing networks. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1327--1332, Arlington, VA, May 2002.

5 S. Arya and A. Vigneron. "Approximating a Voronoi Cell". HKUST Theoretical
Computer Science Center Research Report HKUST-TCSC-2003-10, Hong Kong
University of Science and Techology, available at
www.comp.nus.edu.sg/~antoine/avn.pdf, 2003.

6 D. Payton, M. Daily, R. Estowski, M. Howard, and C. Lee. "Pheromone
Robotics". In Autonomous Robots, vol. 11, pp.319-324, 2001.

