
An Efficient Evolutionary Algorithm for Solving
Incrementally Structured Problems

Jason Ansel Maciej Pacula
Saman Amarasinghe Una-May O’Reilly

MIT - CSAIL

July 14, 2011

Jason Ansel (MIT) PetaBricks July 14, 2011 1 / 30

Who are we?

I do research in programming languages (PL) and compilers

The PetaBricks language is a collaboration between:

A PL / compiler research group
A evolutionary algorithms research group
A applied mathematics research group

Our goal is to make programs run faster

We use evolutionary algorithms to search for faster programs

The PetaBricks language defines search spaces of algorithmic choices

Jason Ansel (MIT) PetaBricks July 14, 2011 2 / 30

Who are we?

I do research in programming languages (PL) and compilers

The PetaBricks language is a collaboration between:

A PL / compiler research group
A evolutionary algorithms research group
A applied mathematics research group

Our goal is to make programs run faster

We use evolutionary algorithms to search for faster programs

The PetaBricks language defines search spaces of algorithmic choices

Jason Ansel (MIT) PetaBricks July 14, 2011 2 / 30

Who are we?

I do research in programming languages (PL) and compilers

The PetaBricks language is a collaboration between:

A PL / compiler research group
A evolutionary algorithms research group
A applied mathematics research group

Our goal is to make programs run faster

We use evolutionary algorithms to search for faster programs

The PetaBricks language defines search spaces of algorithmic choices

Jason Ansel (MIT) PetaBricks July 14, 2011 2 / 30

A motivating example

How would you write a fast sorting algorithm?

Insertion sort
Quick sort
Merge sort
Radix sort
Binary tree sort, Bitonic sort, Bubble sort, Bucket sort, Burstsort,
Cocktail sort, Comb sort, Counting Sort, Distribution sort, Flashsort,
Heapsort, Introsort, Library sort, Odd-even sort, Postman sort,
Samplesort, Selection sort, Shell sort, Stooge sort, Strand sort,
Timsort?

Poly-algorithms

Jason Ansel (MIT) PetaBricks July 14, 2011 3 / 30

A motivating example

How would you write a fast sorting algorithm?

Insertion sort
Quick sort
Merge sort
Radix sort

Binary tree sort, Bitonic sort, Bubble sort, Bucket sort, Burstsort,
Cocktail sort, Comb sort, Counting Sort, Distribution sort, Flashsort,
Heapsort, Introsort, Library sort, Odd-even sort, Postman sort,
Samplesort, Selection sort, Shell sort, Stooge sort, Strand sort,
Timsort?

Poly-algorithms

Jason Ansel (MIT) PetaBricks July 14, 2011 3 / 30

A motivating example

How would you write a fast sorting algorithm?

Insertion sort
Quick sort
Merge sort
Radix sort
Binary tree sort, Bitonic sort, Bubble sort, Bucket sort, Burstsort,
Cocktail sort, Comb sort, Counting Sort, Distribution sort, Flashsort,
Heapsort, Introsort, Library sort, Odd-even sort, Postman sort,
Samplesort, Selection sort, Shell sort, Stooge sort, Strand sort,
Timsort?

Poly-algorithms

Jason Ansel (MIT) PetaBricks July 14, 2011 3 / 30

A motivating example

How would you write a fast sorting algorithm?

Insertion sort
Quick sort
Merge sort
Radix sort
Binary tree sort, Bitonic sort, Bubble sort, Bucket sort, Burstsort,
Cocktail sort, Comb sort, Counting Sort, Distribution sort, Flashsort,
Heapsort, Introsort, Library sort, Odd-even sort, Postman sort,
Samplesort, Selection sort, Shell sort, Stooge sort, Strand sort,
Timsort?

Poly-algorithms

Jason Ansel (MIT) PetaBricks July 14, 2011 3 / 30

std::stable sort

/usr/include/c++/4.5.2/bits/stl algo.h lines 3350-3367

Jason Ansel (MIT) PetaBricks July 14, 2011 4 / 30

std::stable sort

/usr/include/c++/4.5.2/bits/stl algo.h lines 3350-3367

Jason Ansel (MIT) PetaBricks July 14, 2011 4 / 30

Is 15 the right number?

The best cutoff (CO) changes

Depends on competing costs:

Cost of computation (< operator, call overhead, etc)
Cost of communication (swaps)
Cache behavior (misses, prefetcher, locality)

Sorting 100000 doubles with std::stable sort:

CO ≈ 200 optimal on a Phenom 905e (15% speedup over CO = 15)
CO ≈ 400 optimal on a Opteron 6168 (15% speedup over CO = 15)
CO ≈ 500 optimal on a Xeon E5320 (34% speedup over CO = 15)
CO ≈ 700 optimal on a Xeon X5460 (25% speedup over CO = 15)

If the best cutoff has changed, perhaps best algorithm has also
changed

Jason Ansel (MIT) PetaBricks July 14, 2011 5 / 30

Is 15 the right number?

The best cutoff (CO) changes

Depends on competing costs:

Cost of computation (< operator, call overhead, etc)
Cost of communication (swaps)
Cache behavior (misses, prefetcher, locality)

Sorting 100000 doubles with std::stable sort:

CO ≈ 200 optimal on a Phenom 905e (15% speedup over CO = 15)
CO ≈ 400 optimal on a Opteron 6168 (15% speedup over CO = 15)
CO ≈ 500 optimal on a Xeon E5320 (34% speedup over CO = 15)
CO ≈ 700 optimal on a Xeon X5460 (25% speedup over CO = 15)

If the best cutoff has changed, perhaps best algorithm has also
changed

Jason Ansel (MIT) PetaBricks July 14, 2011 5 / 30

Is 15 the right number?

The best cutoff (CO) changes

Depends on competing costs:

Cost of computation (< operator, call overhead, etc)
Cost of communication (swaps)
Cache behavior (misses, prefetcher, locality)

Sorting 100000 doubles with std::stable sort:

CO ≈ 200 optimal on a Phenom 905e (15% speedup over CO = 15)
CO ≈ 400 optimal on a Opteron 6168 (15% speedup over CO = 15)
CO ≈ 500 optimal on a Xeon E5320 (34% speedup over CO = 15)
CO ≈ 700 optimal on a Xeon X5460 (25% speedup over CO = 15)

If the best cutoff has changed, perhaps best algorithm has also
changed

Jason Ansel (MIT) PetaBricks July 14, 2011 5 / 30

Algorithmic choices

Language

e i the r {
I n s e r t i o n S o r t (out , i n) ;

} or {
Q u i c k S o r t (out , i n) ;

} or {
MergeSort (out , i n) ;

} or {
R a d i x S o r t (out , i n) ;

}

⇒
Representation

Decision tree synthesized by
our evolutionary algorithm

Jason Ansel (MIT) PetaBricks July 14, 2011 6 / 30

Algorithmic choices

Language

e i the r {
I n s e r t i o n S o r t (out , i n) ;

} or {
Q u i c k S o r t (out , i n) ;

} or {
MergeSort (out , i n) ;

} or {
R a d i x S o r t (out , i n) ;

}

⇒
Representation

Decision tree synthesized by
our evolutionary algorithm

Jason Ansel (MIT) PetaBricks July 14, 2011 6 / 30

Decision trees

Optimized for a Xeon E7340 (8 cores):

N < 600

N < 1420Insertion Sort

Quick Sort Merge Sort
(2-way)

Text notation (will be used later): I 600 Q 1420 M2

Jason Ansel (MIT) PetaBricks July 14, 2011 7 / 30

Decision trees

Optimized for Sun Fire T200 Niagara (8 cores):

N < 1461

N < 2400

Merge Sort
(4-way)

Merge Sort
(2-way)

N < 75

Merge Sort
(8-way)

Merge Sort
(16-way)

Text notation: M16 75 M8 1461 M4 2400 M2

Jason Ansel (MIT) PetaBricks July 14, 2011 8 / 30

The configuration encoded by the genome

Decision trees

Algorithm parameters (integers, floats)

Parallel scheduling / blocking parameters (integers)

Synthesized scalar functions (not used in the benchmarks shown)

The average PetaBricks benchmark’s genome has:

1.9 decision trees
10.1 algorithm/parallelism/blocking parameters
0.6 synthesized scalar functions

23107 possible configurations

Jason Ansel (MIT) PetaBricks July 14, 2011 9 / 30

Outline

1 PetaBricks Language

2 Autotuning Problem

3 INCREA

4 Evaluation

5 Conclusions

Jason Ansel (MIT) PetaBricks July 14, 2011 10 / 30

PetaBricks programs at runtime

ProgramRequest Response

Jason Ansel (MIT) PetaBricks July 14, 2011 11 / 30

PetaBricks programs at runtime

ProgramRequest Response

Configuration:
- point in ~100D space

Measurement:
- performance

- accuracy (QoS)

Jason Ansel (MIT) PetaBricks July 14, 2011 11 / 30

PetaBricks programs at runtime

ProgramRequest Response

Configuration:
- point in ~100D space

Measurement:
- performance

- accuracy (QoS)

Offline
Autotuning

Jason Ansel (MIT) PetaBricks July 14, 2011 11 / 30

The challenges

Evaluating objective function is expensive

Must run the program (at least once)
More expensive for unfit solutions
Scales poorly with larger problem sizes

Fitness is noisy

Randomness from parallel races and system noise
Testing each candidate only once often produces an worse algorithm
Running many trials is expensive

Decision tree structures are complex

Theoretically infinite size
We artificially bound them to 2736 bits (23 ints) each

Jason Ansel (MIT) PetaBricks July 14, 2011 12 / 30

Contrast two evolutionary approaches

GPEA: General Purpose Evolutionary Algorithm

Used as a baseline

INCREA: Incremental Evolutionary Algorithm

Bottom-up approach
Noisy fitness evaluation strategy
Domain informed mutation operators

Jason Ansel (MIT) PetaBricks July 14, 2011 13 / 30

General purpose evolution algorithm (GPEA)

Initial population ? ? ? ? Cost = 0

Generation 2 Cost =

Generation 3 Cost =

Generation 4 Cost =

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s ? ? ? Cost = 72.7

Generation 2 Cost =

Generation 3 Cost =

Generation 4 Cost =

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s ? ? Cost = 83.2

Generation 2 Cost =

Generation 3 Cost =

Generation 4 Cost =

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s 4.1s ? Cost = 87.3

Generation 2 Cost =

Generation 3 Cost =

Generation 4 Cost =

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s 4.1s 31.2s Cost = 118.5

Generation 2 Cost =

Generation 3 Cost =

Generation 4 Cost =

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s 4.1s 31.2s Cost = 118.5

Generation 2 ? ? ? ? Cost = 0

Generation 3 Cost =

Generation 4 Cost =

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s 4.1s 31.2s Cost = 118.5

Generation 2 4.2s 5.1s 2.6s 13.2s Cost = 25.1

Generation 3 Cost =

Generation 4 Cost =

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s 4.1s 31.2s Cost = 118.5

Generation 2 4.2s 5.1s 2.6s 13.2s Cost = 25.1

Generation 3 ? ? ? ? Cost = 0

Generation 4 Cost =

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s 4.1s 31.2s Cost = 118.5

Generation 2 4.2s 5.1s 2.6s 13.2s Cost = 25.1

Generation 3 2.8s 0.1s 3.8s 2.3s Cost = 9.0

Generation 4 Cost =

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s 4.1s 31.2s Cost = 118.5

Generation 2 4.2s 5.1s 2.6s 13.2s Cost = 25.1

Generation 3 2.8s 0.1s 3.8s 2.3s Cost = 9.0

Generation 4 ? ? ? ? Cost = 0

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s 4.1s 31.2s Cost = 118.5

Generation 2 4.2s 5.1s 2.6s 13.2s Cost = 25.1

Generation 3 2.8s 0.1s 3.8s 2.3s Cost = 9.0

Generation 4 0.3s 0.1s 0.4s 2.4s Cost = 3.2

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s 4.1s 31.2s Cost = 118.5

Generation 2 4.2s 5.1s 2.6s 13.2s Cost = 25.1

Generation 3 2.8s 0.1s 3.8s 2.3s Cost = 9.0

Generation 4 0.3s 0.1s 0.4s 2.4s Cost = 3.2

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s 4.1s 31.2s Cost = 118.5

Generation 2 4.2s 5.1s 2.6s 13.2s Cost = 25.1

Generation 3 2.8s 0.1s 3.8s 2.3s Cost = 9.0

Generation 4 0.3s 0.1s 0.4s 2.4s Cost = 3.2

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population

Jason Ansel (MIT) PetaBricks July 14, 2011 14 / 30

Bottom-up evolutionary algorithm

Train on input size 1, to form initial population for:

Train on input size 2, to form initial population for:

Train on input size 8, to form initial population for:

Train on input size 16, to form initial population for:

Train on input size 32, to form initial population for:

Train on input size 64

Naturally exploits optimal substructure of problems

Jason Ansel (MIT) PetaBricks July 14, 2011 15 / 30

Bottom-up evolutionary algorithm

Train on input size 1, to form initial population for:

Train on input size 2, to form initial population for:

Train on input size 8, to form initial population for:

Train on input size 16, to form initial population for:

Train on input size 32, to form initial population for:

Train on input size 64

Naturally exploits optimal substructure of problems

Jason Ansel (MIT) PetaBricks July 14, 2011 15 / 30

Bottom-up evolutionary algorithm

Train on input size 1, to form initial population for:

Train on input size 2, to form initial population for:

Train on input size 8, to form initial population for:

Train on input size 16, to form initial population for:

Train on input size 32, to form initial population for:

Train on input size 64

Naturally exploits optimal substructure of problems

Jason Ansel (MIT) PetaBricks July 14, 2011 15 / 30

Bottom-up evolutionary algorithm

Train on input size 1, to form initial population for:

Train on input size 2, to form initial population for:

Train on input size 8, to form initial population for:

Train on input size 16, to form initial population for:

Train on input size 32, to form initial population for:

Train on input size 64

Naturally exploits optimal substructure of problems

Jason Ansel (MIT) PetaBricks July 14, 2011 15 / 30

Noisy fitness evaluation

Both strategies terminate slow tests early

GPEA uses 1 trial per candidate algorithm

INCREA adaptively changes the number of trials

Represents fitness as a probability distribution

Runs a single tailed t-test to get confidence in differences

Runs more trails if confidence is low

Jason Ansel (MIT) PetaBricks July 14, 2011 16 / 30

Domain informed mutation operators

Mutation operators deal with larger structures in the genome

“Add algorithm Y to the top of decision tree X”
“Scale cutoff X using a lognormal distribution”

Generated fully automatically by our compiler

Jason Ansel (MIT) PetaBricks July 14, 2011 17 / 30

Outline

1 PetaBricks Language

2 Autotuning Problem

3 INCREA

4 Evaluation

5 Conclusions

Jason Ansel (MIT) PetaBricks July 14, 2011 18 / 30

Experimental Setup

Measuring convergence time

Important to both program users and developers
Vital in online autotuning

Three fixed-accuracy PetaBricks programs:

Sort 220 (small input size)
Sort 223 (large input size)
Matrix multiply
Eigenvector solve

Representative runs

Average of 30 runs, with tests for statistical significance in paper

Run an 8-core Xeon running Debian 5.0

Jason Ansel (MIT) PetaBricks July 14, 2011 19 / 30

Sort 220: training input size

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 60 120 240 480 960 1920

Tr
ai

ni
ng

 In
pu

t S
iz

e

Training Time

INCREA
GPEA

Jason Ansel (MIT) PetaBricks July 14, 2011 20 / 30

Sort 220: candidates tested

 100

 1000

 10000

 60 120 240 480 960 1920

Te
st

s
C

on
du

ct
ed

Training Time

INCREA
GPEA

Jason Ansel (MIT) PetaBricks July 14, 2011 21 / 30

Sort 220: performance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 60 120 240 480 960 1920

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

Jason Ansel (MIT) PetaBricks July 14, 2011 22 / 30

Sort 223: performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 180 540 1620 4860 14580

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

Jason Ansel (MIT) PetaBricks July 14, 2011 23 / 30

INCREA: Sort, best algorithm at each generation

Input size Training time (s) Genome

20 6.9 Q 64 Qp

21 14.6 Q 64 Qp

22 26.6 I

...

27 115.7 I

28 138.6 I 270 R 1310 Rp

29 160.4 I 270 Q 1310 Qp

210 190.1 I 270 Q 1310 Qp

211 216.4 I 270 Q 3343 Qp

212 250.0 I 189 R 13190 Rp

213 275.5 I 189 R 13190 Rp

214 307.6 I 189 R 17131 Rp

215 341.9 I 189 R 49718 Rp

216 409.3 I 189 R 124155 M2

217 523.4 I 189 Q 5585 Qp

218 642.9 I 189 Q 5585 Qp

219 899.8 I 456 Q 5585 Qp

220 1313.8 I 456 Q 5585 Qp

I = insertion-sort

Q = quick-sort

R = radix-sort

Mx = x-way merge-sort

p indicates run in
parallel

Jason Ansel (MIT) PetaBricks July 14, 2011 24 / 30

INCREA: Sort, best algorithm at each generation

Input size Training time (s) Genome

20 6.9 Q 64 Qp

21 14.6 Q 64 Qp

22 26.6 I

...

27 115.7 I

28 138.6 I 270 R 1310 Rp

29 160.4 I 270 Q 1310 Qp

210 190.1 I 270 Q 1310 Qp

211 216.4 I 270 Q 3343 Qp

212 250.0 I 189 R 13190 Rp

213 275.5 I 189 R 13190 Rp

214 307.6 I 189 R 17131 Rp

215 341.9 I 189 R 49718 Rp

216 409.3 I 189 R 124155 M2

217 523.4 I 189 Q 5585 Qp

218 642.9 I 189 Q 5585 Qp

219 899.8 I 456 Q 5585 Qp

220 1313.8 I 456 Q 5585 Qp

I = insertion-sort

Q = quick-sort

R = radix-sort

Mx = x-way merge-sort

p indicates run in
parallel

Jason Ansel (MIT) PetaBricks July 14, 2011 24 / 30

INCREA: Sort, best algorithm at each generation

Input size Training time (s) Genome

20 6.9 Q 64 Qp

21 14.6 Q 64 Qp

22 26.6 I

...

27 115.7 I

28 138.6 I 270 R 1310 Rp

29 160.4 I 270 Q 1310 Qp

210 190.1 I 270 Q 1310 Qp

211 216.4 I 270 Q 3343 Qp

212 250.0 I 189 R 13190 Rp

213 275.5 I 189 R 13190 Rp

214 307.6 I 189 R 17131 Rp

215 341.9 I 189 R 49718 Rp

216 409.3 I 189 R 124155 M2

217 523.4 I 189 Q 5585 Qp

218 642.9 I 189 Q 5585 Qp

219 899.8 I 456 Q 5585 Qp

220 1313.8 I 456 Q 5585 Qp

I = insertion-sort

Q = quick-sort

R = radix-sort

Mx = x-way merge-sort

p indicates run in
parallel

Jason Ansel (MIT) PetaBricks July 14, 2011 24 / 30

INCREA: Sort, best algorithm at each generation

Input size Training time (s) Genome

20 6.9 Q 64 Qp

21 14.6 Q 64 Qp

22 26.6 I

...

27 115.7 I

28 138.6 I 270 R 1310 Rp

29 160.4 I 270 Q 1310 Qp

210 190.1 I 270 Q 1310 Qp

211 216.4 I 270 Q 3343 Qp

212 250.0 I 189 R 13190 Rp

213 275.5 I 189 R 13190 Rp

214 307.6 I 189 R 17131 Rp

215 341.9 I 189 R 49718 Rp

216 409.3 I 189 R 124155 M2

217 523.4 I 189 Q 5585 Qp

218 642.9 I 189 Q 5585 Qp

219 899.8 I 456 Q 5585 Qp

220 1313.8 I 456 Q 5585 Qp

I = insertion-sort

Q = quick-sort

R = radix-sort

Mx = x-way merge-sort

p indicates run in
parallel

Jason Ansel (MIT) PetaBricks July 14, 2011 24 / 30

INCREA: Sort, best algorithm at each generation

Input size Training time (s) Genome

20 6.9 Q 64 Qp

21 14.6 Q 64 Qp

22 26.6 I

...

27 115.7 I

28 138.6 I 270 R 1310 Rp

29 160.4 I 270 Q 1310 Qp

210 190.1 I 270 Q 1310 Qp

211 216.4 I 270 Q 3343 Qp

212 250.0 I 189 R 13190 Rp

213 275.5 I 189 R 13190 Rp

214 307.6 I 189 R 17131 Rp

215 341.9 I 189 R 49718 Rp

216 409.3 I 189 R 124155 M2

217 523.4 I 189 Q 5585 Qp

218 642.9 I 189 Q 5585 Qp

219 899.8 I 456 Q 5585 Qp

220 1313.8 I 456 Q 5585 Qp

I = insertion-sort

Q = quick-sort

R = radix-sort

Mx = x-way merge-sort

p indicates run in
parallel

Jason Ansel (MIT) PetaBricks July 14, 2011 24 / 30

INCREA: Sort, best algorithm at each generation

Input size Training time (s) Genome

20 6.9 Q 64 Qp

21 14.6 Q 64 Qp

22 26.6 I

...

27 115.7 I

28 138.6 I 270 R 1310 Rp

29 160.4 I 270 Q 1310 Qp

210 190.1 I 270 Q 1310 Qp

211 216.4 I 270 Q 3343 Qp

212 250.0 I 189 R 13190 Rp

213 275.5 I 189 R 13190 Rp

214 307.6 I 189 R 17131 Rp

215 341.9 I 189 R 49718 Rp

216 409.3 I 189 R 124155 M2

217 523.4 I 189 Q 5585 Qp

218 642.9 I 189 Q 5585 Qp

219 899.8 I 456 Q 5585 Qp

220 1313.8 I 456 Q 5585 Qp

I = insertion-sort

Q = quick-sort

R = radix-sort

Mx = x-way merge-sort

p indicates run in
parallel

Jason Ansel (MIT) PetaBricks July 14, 2011 24 / 30

GPEA: Sort, best algorithm at each generation

Generation Training time (s) Genome

0 91.4 I 448 R

1 133.2 I 413 R

2 156.5 I 448 R

3 174.8 I 448 Q

4 192.0 I 448 Q

5 206.8 I 448 Q

6 222.9 I 448 Q 4096 Qp

7 238.3 I 448 Q 4096 Qp

8 253.0 I 448 Q 4096 Qp

9 266.9 I 448 Q 4096 Qp

10 281.1 I 371 Q 4096 Qp

11 296.3 I 272 Q 4096 Qp

12 310.8 I 272 Q 4096 Qp

...

27 530.2 I 272 Q 4096 Qp

28 545.6 I 272 Q 4096 Qp

29 559.5 I 370 Q 8192 Qp

30 574.3 I 370 Q 8192 Qp

...

I = insertion-sort

Q = quick-sort

R = radix-sort

Mx = x-way merge-sort

p indicates run in
parallel

Jason Ansel (MIT) PetaBricks July 14, 2011 25 / 30

Matrix Multiply (input size 1024x1024)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 60 120 240 480 960 1920 3840 7680

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

‘

Jason Ansel (MIT) PetaBricks July 14, 2011 26 / 30

Eigenvector Solve (input size 1024x1024)

 1

 1.5

 2

 2.5

 3

 60 240 960 3840 15360

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

Jason Ansel (MIT) PetaBricks July 14, 2011 27 / 30

Outline

1 PetaBricks Language

2 Autotuning Problem

3 INCREA

4 Evaluation

5 Conclusions

Jason Ansel (MIT) PetaBricks July 14, 2011 28 / 30

Conclusions

Take away

The technique of solving incrementally structured problems by exploiting
knowledge from smaller problem instances may be more broadly applicable.

Take away

PetaBricks is a useful framework for comparing techniques for autotuning
programs.

Jason Ansel (MIT) PetaBricks July 14, 2011 29 / 30

Thanks!

Questions?

http://projects.csail.mit.edu/petabricks/

Jason Ansel (MIT) PetaBricks July 14, 2011 30 / 30

http://projects.csail.mit.edu/petabricks/

	PetaBricks Language
	Autotuning Problem
	INCREA
	Evaluation
	Conclusions

