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Who are we?

I do research in programming languages (PL) and compilers

The PetaBricks language is a collaboration between:

A PL / compiler research group
A evolutionary algorithms research group
A applied mathematics research group

Our goal is to make programs run faster

We use evolutionary algorithms to search for faster programs

The PetaBricks language defines search spaces of algorithmic choices
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A motivating example

How would you write a fast sorting algorithm?

Insertion sort
Quick sort
Merge sort
Radix sort
Binary tree sort, Bitonic sort, Bubble sort, Bucket sort, Burstsort,
Cocktail sort, Comb sort, Counting Sort, Distribution sort, Flashsort,
Heapsort, Introsort, Library sort, Odd-even sort, Postman sort,
Samplesort, Selection sort, Shell sort, Stooge sort, Strand sort,
Timsort?

Poly-algorithms
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std::stable sort

/usr/include/c++/4.5.2/bits/stl algo.h lines 3350-3367
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Is 15 the right number?

The best cutoff (CO) changes

Depends on competing costs:

Cost of computation (< operator, call overhead, etc)
Cost of communication (swaps)
Cache behavior (misses, prefetcher, locality)

Sorting 100000 doubles with std::stable sort:

CO ≈ 200 optimal on a Phenom 905e (15% speedup over CO = 15)
CO ≈ 400 optimal on a Opteron 6168 (15% speedup over CO = 15)
CO ≈ 500 optimal on a Xeon E5320 (34% speedup over CO = 15)
CO ≈ 700 optimal on a Xeon X5460 (25% speedup over CO = 15)

If the best cutoff has changed, perhaps best algorithm has also
changed
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Algorithmic choices

Language

e i the r {
I n s e r t i o n S o r t ( out , i n ) ;

} or {
Q u i c k S o r t ( out , i n ) ;

} or {
MergeSort ( out , i n ) ;

} or {
R a d i x S o r t ( out , i n ) ;

}

⇒
Representation

Decision tree synthesized by
our evolutionary algorithm
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Decision trees

Optimized for a Xeon E7340 (8 cores):

N < 600

N < 1420Insertion Sort

Quick Sort Merge Sort
(2-way)

Text notation (will be used later): I 600 Q 1420 M2
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Decision trees

Optimized for Sun Fire T200 Niagara (8 cores):

N < 1461

N < 2400

Merge Sort
(4-way)

Merge Sort
(2-way)

N < 75

Merge Sort
(8-way)

Merge Sort
(16-way)

Text notation: M16 75 M8 1461 M4 2400 M2
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The configuration encoded by the genome

Decision trees

Algorithm parameters (integers, floats)

Parallel scheduling / blocking parameters (integers)

Synthesized scalar functions (not used in the benchmarks shown)

The average PetaBricks benchmark’s genome has:

1.9 decision trees
10.1 algorithm/parallelism/blocking parameters
0.6 synthesized scalar functions

23107 possible configurations
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Outline

1 PetaBricks Language

2 Autotuning Problem

3 INCREA

4 Evaluation

5 Conclusions
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PetaBricks programs at runtime

ProgramRequest Response
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The challenges

Evaluating objective function is expensive

Must run the program (at least once)
More expensive for unfit solutions
Scales poorly with larger problem sizes

Fitness is noisy

Randomness from parallel races and system noise
Testing each candidate only once often produces an worse algorithm
Running many trials is expensive

Decision tree structures are complex

Theoretically infinite size
We artificially bound them to 2736 bits (23 ints) each
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Contrast two evolutionary approaches

GPEA: General Purpose Evolutionary Algorithm

Used as a baseline

INCREA: Incremental Evolutionary Algorithm

Bottom-up approach
Noisy fitness evaluation strategy
Domain informed mutation operators
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General purpose evolution algorithm (GPEA)

Initial population ? ? ? ? Cost = 0

Generation 2 Cost =

Generation 3 Cost =

Generation 4 Cost =

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population
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Generation 4 Cost =
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General purpose evolution algorithm (GPEA)

Initial population 72.7s 10.5s 4.1s 31.2s Cost = 118.5

Generation 2 Cost =

Generation 3 Cost =

Generation 4 Cost =

Cost of autotuning front-loaded in initial (unfit) population

We could speed up tuning if we start with a faster initial population

Key insight

Smaller input sizes can be used to form better initial population
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Bottom-up evolutionary algorithm

Train on input size 1, to form initial population for:

Train on input size 2, to form initial population for:

Train on input size 8, to form initial population for:

Train on input size 16, to form initial population for:

Train on input size 32, to form initial population for:

Train on input size 64

Naturally exploits optimal substructure of problems
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Noisy fitness evaluation

Both strategies terminate slow tests early

GPEA uses 1 trial per candidate algorithm

INCREA adaptively changes the number of trials

Represents fitness as a probability distribution

Runs a single tailed t-test to get confidence in differences

Runs more trails if confidence is low
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Domain informed mutation operators

Mutation operators deal with larger structures in the genome

“Add algorithm Y to the top of decision tree X”
“Scale cutoff X using a lognormal distribution”

Generated fully automatically by our compiler

Jason Ansel (MIT) PetaBricks July 14, 2011 17 / 30



Outline

1 PetaBricks Language

2 Autotuning Problem
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4 Evaluation

5 Conclusions
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Experimental Setup

Measuring convergence time

Important to both program users and developers
Vital in online autotuning

Three fixed-accuracy PetaBricks programs:

Sort 220 (small input size)
Sort 223 (large input size)
Matrix multiply
Eigenvector solve

Representative runs

Average of 30 runs, with tests for statistical significance in paper

Run an 8-core Xeon running Debian 5.0
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Sort 220: training input size
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Sort 220: candidates tested
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Sort 220: performance
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Sort 223: performance
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INCREA: Sort, best algorithm at each generation

Input size Training time (s) Genome

20 6.9 Q 64 Qp

21 14.6 Q 64 Qp

22 26.6 I

...

27 115.7 I

28 138.6 I 270 R 1310 Rp

29 160.4 I 270 Q 1310 Qp

210 190.1 I 270 Q 1310 Qp

211 216.4 I 270 Q 3343 Qp

212 250.0 I 189 R 13190 Rp

213 275.5 I 189 R 13190 Rp

214 307.6 I 189 R 17131 Rp

215 341.9 I 189 R 49718 Rp

216 409.3 I 189 R 124155 M2

217 523.4 I 189 Q 5585 Qp

218 642.9 I 189 Q 5585 Qp

219 899.8 I 456 Q 5585 Qp

220 1313.8 I 456 Q 5585 Qp

I = insertion-sort

Q = quick-sort

R = radix-sort

Mx = x-way merge-sort

p indicates run in
parallel
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GPEA: Sort, best algorithm at each generation

Generation Training time (s) Genome

0 91.4 I 448 R

1 133.2 I 413 R

2 156.5 I 448 R

3 174.8 I 448 Q

4 192.0 I 448 Q

5 206.8 I 448 Q

6 222.9 I 448 Q 4096 Qp

7 238.3 I 448 Q 4096 Qp

8 253.0 I 448 Q 4096 Qp

9 266.9 I 448 Q 4096 Qp

10 281.1 I 371 Q 4096 Qp

11 296.3 I 272 Q 4096 Qp

12 310.8 I 272 Q 4096 Qp

...

27 530.2 I 272 Q 4096 Qp

28 545.6 I 272 Q 4096 Qp

29 559.5 I 370 Q 8192 Qp

30 574.3 I 370 Q 8192 Qp

...

I = insertion-sort

Q = quick-sort

R = radix-sort

Mx = x-way merge-sort

p indicates run in
parallel
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Matrix Multiply (input size 1024x1024)
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Eigenvector Solve (input size 1024x1024)
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Conclusions

Take away

The technique of solving incrementally structured problems by exploiting
knowledge from smaller problem instances may be more broadly applicable.

Take away

PetaBricks is a useful framework for comparing techniques for autotuning
programs.
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Thanks!

Questions?

http://projects.csail.mit.edu/petabricks/
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