
Language-Independent Sandboxing of Just-In-Time
Compilation and Self-Modifying Code

Jason Ansel
MIT

Petr Marchenko
University College London

Úlfar Erlingsson Elijah Taylor Brad Chen Derek Schuff
David Sehr Cliff Biffle Bennet Yee

Google, Inc.

June 7, 2011

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 1 / 29

Outline

1 Motivation

2 Native Client background

3 Dynamic code modification

4 Experimental results

5 Conclusions

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 2 / 29

Web browser security model

Client-Side
Application

JavaScript
Language
Runtime

Untrusted Trusted

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 3 / 29

Web browser security model

Client-Side
Application

Malicious
Application

JavaScript
Language
Runtime

Untrusted Trusted

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 3 / 29

Web browser security model

Client-Side
Application

Malicious
Application

JavaScript
Language
Runtime

JIT Compiled
Machine Code

Untrusted Trusted

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 3 / 29

Web browser security model

Client-Side
Application

Malicious
Application

JavaScript
Language
Runtime

JIT Compiled
Machine Code

Java
Language
Runtime

JIT Compiled
Machine Code

ActionScript
Language
Runtime

JIT Compiled
Machine Code

Untrusted Trusted

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 3 / 29

Web browser security model

Client-Side
Application

Malicious
Application

JavaScript
Language
Runtime

JIT Compiled
Machine Code

Java
Language
Runtime

JIT Compiled
Machine Code

ActionScript
Language
Runtime

JIT Compiled
Machine Code

My
Language
Runtime

JIT Compiled
Machine Code

Untrusted Trusted

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 3 / 29

Web browser security model

Attack Surface

Client-Side
Application

Malicious
Application

JavaScript
Language
Runtime

JIT Compiled
Machine Code

Java
Language
Runtime

JIT Compiled
Machine Code

ActionScript
Language
Runtime

JIT Compiled
Machine Code

My
Language
Runtime

JIT Compiled
Machine Code

Untrusted Trusted

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 3 / 29

Web browser security model

Client-Side
Application

Malicious
Application

JavaScript
Language
Runtime

JIT Compiled
Machine Code

Java
Language
Runtime

JIT Compiled
Machine Code

ActionScript
Language
Runtime

JIT Compiled
Machine Code

My
Language
Runtime

JIT Compiled
Machine Code

Untrusted Trusted

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 3 / 29

Can we create better trust model?

Sandbox untrusted language run-times

Or, more generally, sandbox applications that:

Dynamically generate code
Modify the generated code (e.g. inline caches)
Use many threads
Garbage collected
Include large native libraries

While maintaining performance

Easy to verify correctness of the sandboxing

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 4 / 29

Sandboxing technology

Software Fault Isolation (SFI)1

OS-portable
Low overhead
Fast to enter/exit
Easy to reason about correctness
Traditionally does not allow dynamic code modification

We extend the Native Client SFI system to support self-modifying
code

1Wahbe et. al., 1993
Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 5 / 29

Sandboxing technology

Software Fault Isolation (SFI)1

OS-portable
Low overhead
Fast to enter/exit
Easy to reason about correctness
Traditionally does not allow dynamic code modification

We extend the Native Client SFI system to support self-modifying
code

1Wahbe et. al., 1993
Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 5 / 29

Outline

1 Motivation

2 Native Client background

3 Dynamic code modification

4 Experimental results

5 Conclusions

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 6 / 29

Software Fault Isolation (SFI) background

Entire program checked once for safety at
startup

Control safety

Control cannot leave untrusted address space

(Except through moderated interfaces)

Only known instructions in the untrusted
address space can execute

Data safety

Writes can only change untrusted memory

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 7 / 29

Software Fault Isolation (SFI) background

Entire program checked once for safety at
startup

Control safety

Control cannot leave untrusted address space

(Except through moderated interfaces)

Only known instructions in the untrusted
address space can execute

Data safety

Writes can only change untrusted memory

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 7 / 29

Control safety (Native Client background)

Must confine execution to instructions that have been checked

Prevent execution of “hidden” instructions
e.g., instructions overlapping at a different offset

Disassemble bytes 0 to 6: 81 c3 cd 80 eb 66

add $0x66eb80cd, %ebx

Disassemble bytes 2 to 6: 81 c3 cd 80 eb 66

int $0x80

jmp 0x40052c

Direct jumps

Can be checked statically

Indirect jumps

More difficult
Restricted, requiring guard sequence

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 8 / 29

Control safety (Native Client background)

Must confine execution to instructions that have been checked

Prevent execution of “hidden” instructions
e.g., instructions overlapping at a different offset

Disassemble bytes 0 to 6: 81 c3 cd 80 eb 66

add $0x66eb80cd, %ebx

Disassemble bytes 2 to 6: 81 c3 cd 80 eb 66

int $0x80

jmp 0x40052c

Direct jumps

Can be checked statically

Indirect jumps

More difficult
Restricted, requiring guard sequence

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 8 / 29

Instruction bundles (Native Client background)

0

32

64

96

128

160

Unsafe
Instructions

Indirect
jump target

Instruction NOP padding

All 32-byte aligned addresses in code region
must be safe jump targets

“Bundles”
Instructions and guard sequences can not
cross bundles
NOP padding often required

Indirect control flow must use guard
sequence

Masks away lower bits
Forces indirect jump to go to start of a
bundle

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 9 / 29

Instruction bundles (Native Client background)

0

32

64

96

128

160

Native Client
Instructions

Indirect
jump target

Instruction NOP padding

All 32-byte aligned addresses in code region
must be safe jump targets

“Bundles”
Instructions and guard sequences can not
cross bundles
NOP padding often required

Indirect control flow must use guard
sequence

Masks away lower bits
Forces indirect jump to go to start of a
bundle

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 9 / 29

Native Client summary

Data safety provided in a similar way

Guards and some hardware support

Native Client enforces a small set of local constraints

These constraints are:

Efficient to verify
Easy to reason about

Technique does not extend directly to self-modifying code

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 10 / 29

Outline

1 Motivation

2 Native Client background

3 Dynamic code modification

4 Experimental results

5 Conclusions

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 11 / 29

Challenges for dynamic code

Must incrementally validate new code

Must incrementally validate code modification

Must support deletion of code (or eval would leak memory)

Be safe in the presence of untrusted threads:

Memory consistency model for instructions is weaker than for data (on
x86)
Consistency guarantees vary between processors

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 12 / 29

New Native Client interfaces

Create Dynamic Code

i n t n a c l d y n c o d e c r e a t e (vo id ∗ t a r g e t ,
vo id ∗ s r c ,
s i z e t s i z e) ;

Modify Dynamic Code

i n t nac l d yn code mod i f y (vo id ∗ t a r g e t ,
vo id ∗ s r c ,
s i z e t s i z e) ;

Delete Dynamic Code

i n t n a c l d y n c o d e d e l e t e (vo id ∗ t a r g e t ,
s i z e t s i z e) ;

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 13 / 29

Dynamic code regions

Dynamic code region: a block of code inserted and deleted as a unit

Operate on entire regions:

nacl dyncode create

nacl dyncode delete

Operates on instruction(s) inside a region:

nacl dyncode modify

Unaligned direct jumps only allowed within dynamic regions

External entry points at bundle boundaries

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 14 / 29

Dynamic code regions

Dynamic code region: a block of code inserted and deleted as a unit

Operate on entire regions:

nacl dyncode create

nacl dyncode delete

Operates on instruction(s) inside a region:

nacl dyncode modify

Unaligned direct jumps only allowed within dynamic regions

External entry points at bundle boundaries

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 14 / 29

Lifecycle of a dynamic region

Program
Instructions

HLT
Instructions

...

...

P
os

si
bl

e
E

nt
ry

 P
oi

nt
s

nacl dyncode create

Validates new code
Two-phase update so that change
appears atomic

nacl dyncode modify

Possibly called many times
More details next

nacl dyncode delete

Must wait for all threads to leave
Wind-down before reuse

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 15 / 29

Lifecycle of a dynamic region

Program
Instructions

HLT
Instructions

...

...

P
os

si
bl

e
E

nt
ry

 P
oi

nt
s

nacl dyncode create

Validates new code
Two-phase update so that change
appears atomic

nacl dyncode modify

Possibly called many times
More details next

nacl dyncode delete

Must wait for all threads to leave
Wind-down before reuse

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 15 / 29

Lifecycle of a dynamic region

Program
Instructions

HLT
Instructions

...

...

P
os

si
bl

e
E

nt
ry

 P
oi

nt
s

nacl dyncode create

Validates new code
Two-phase update so that change
appears atomic

nacl dyncode modify

Possibly called many times
More details next

nacl dyncode delete

Must wait for all threads to leave
Wind-down before reuse

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 15 / 29

Lifecycle of a dynamic region

Program
Instructions

HLT
Instructions

...

...

P
os

si
bl

e
E

nt
ry

 P
oi

nt
s

nacl dyncode create

Validates new code
Two-phase update so that change
appears atomic

nacl dyncode modify

Possibly called many times
More details next

nacl dyncode delete

Must wait for all threads to leave
Wind-down before reuse

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 15 / 29

Lifecycle of a dynamic region

Program
Instructions

HLT
Instructions

...

...

P
os

si
bl

e
E

nt
ry

 P
oi

nt
s

nacl dyncode create

Validates new code
Two-phase update so that change
appears atomic

nacl dyncode modify

Possibly called many times
More details next

nacl dyncode delete

Must wait for all threads to leave
Wind-down before reuse

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 15 / 29

Lifecycle of a dynamic region

Program
Instructions

HLT
Instructions

...

...

P
os

si
bl

e
E

nt
ry

 P
oi

nt
s

nacl dyncode create

Validates new code
Two-phase update so that change
appears atomic

nacl dyncode modify

Possibly called many times
More details next

nacl dyncode delete

Must wait for all threads to leave
Wind-down before reuse

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 15 / 29

Modifying dynamic code

New constraints/validator for replacing code

New technique for copying replacement code safely

New constraints for replacing code OLD with code NEW

1 NEW must satisfy all NaCl safety constraints

2 NEW and OLD must have the same location and size

3 NEW and OLD must contain identical instruction boundaries

4 No pseudo instructions (guards) are added, changed, or removed

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 16 / 29

Modifying dynamic code

New constraints/validator for replacing code

New technique for copying replacement code safely

New constraints for replacing code OLD with code NEW

1 NEW must satisfy all NaCl safety constraints

2 NEW and OLD must have the same location and size

3 NEW and OLD must contain identical instruction boundaries

4 No pseudo instructions (guards) are added, changed, or removed

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 16 / 29

Danger of copying replacement code

Thread 1: in nacl dyncode modify

Running:
memcpy(A, B, 5);

A PUSH 00 00 00 03

B JUMP 00 00 00 00

Thread 2: in untrusted code

Executes: JUMP 00 00 00 03

... and just broke out of the sandbox!

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 17 / 29

Danger of copying replacement code

Thread 1: in nacl dyncode modify

Running:
memcpy(A, B, 5);

A PUSH 00 00 00 03

B JUMP 00 00 00 00

Thread 2: in untrusted code

Executes: JUMP 00 00 00 03

... and just broke out of the sandbox!

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 17 / 29

Memory consistency for x86 instructions

Different than data consistency model

Requires research to discover

Careful reading of documentation
Discussions with Intel
Tests with micro-benchmarks

Aligned 8-byte (AMD) or 16-byte (Intel) writes are atomic

Changes become visible to other processes in an undefined order

mfence doesn’t work for instructions!

Can run the latest instructions by executing a serializing instruction
(e.g., cpuid)

We base our algorithm on SerializeAllProcessors

Forces serializing instruction on each processor
Implementation described in the paper

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 18 / 29

Copying replacement code safely

Pseudo code

f o r (each p a i r o f changed i n s t r u c t i o n s OLD, NEW) {
i f (D i f f I s A l i g n e d Q u a d W o r d (OLD, NEW)) {

/∗ common f a s t path ∗/
update OLD w i t h a s i n g l e a l i g n e d movq s t o r e ;

} e l s e {
OLD [0] = 0 x f 4 ; /∗ HLT i n s t r u c t i o n ∗/

S e r i a l i z e A l l P r o c e s s o r s () ;

OLD [1 : n] = NEW[1 : n] ;

S e r i a l i z e A l l P r o c e s s o r s () ;

OLD [0] = NEW[0] ;
}

}

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 19 / 29

Outline

1 Motivation

2 Native Client background

3 Dynamic code modification

4 Experimental results

5 Conclusions

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 20 / 29

Representative language runtimes

V8: JavaScript runtime
JIT compiles JavaScript to machine code
Heavy use of self-modifying inline caches for performance

(≈ 10x performance difference if inline caches are disabled)

Mono: C# (and other .NET languages) runtime
JIT compiles Common Intermediate Language (CIL) to machine code
Often mixes constant data and code

Both 32-bit and 64-bit x86 versions of each
Code generation backends are different

e.g., V8 uses different large integer boxing

Native Client requirements are different

Memory accesses require guards in 64-bit

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 21 / 29

Porting effort

Porting effort relatively straightforward

Primarily in back-end code generation

LoC total LoC added/changed
V8 (32-bit) 190526 1972 (1.04%)
V8 (64-bit) 189969 5005 (2.63%)

Mono (32-bit) 386300 2469 (0.64%)
Mono (64-bit) 388123 3240 (0.83%)

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 22 / 29

Interesting porting challenges

Mixed code and data
V8: debug, relocation, and other metadata

We split the code and metadata

Mono: some immediate values

We decorated immediates to look like instructions
Insert a PUSH opcode

ILP32 data model on 64-bit

Pointers are 32-bits on heap, 64-bits on stack
Registers different size than pointers
Must differentiate stack and heap pointers

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 23 / 29

Interesting porting challenges

Mixed code and data
V8: debug, relocation, and other metadata

We split the code and metadata

Mono: some immediate values

We decorated immediates to look like instructions
Insert a PUSH opcode

ILP32 data model on 64-bit

Pointers are 32-bits on heap, 64-bits on stack
Registers different size than pointers
Must differentiate stack and heap pointers

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 23 / 29

Overhead sources breakdown (V8 benchmark suite)

Estimated by incrementally disabling features

Not additive

Percentage of total overhead

Source of overhead 32-bit 64-bit

NOP padding 23% 37%

Software guards 42% 46%

Runtime validation 2% 5%

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 24 / 29

Overheads for V8 (V8 benchmark suite)

0%

20%

40%

60%

80%

Crypto

DeltaBlue

EarleyBoyer

RayTrace

RegExp

Richards

Splay
GM

ean

S
an

db
ox

in
g

S
lo

w
do

w
n V8 32-bit

V8 64-bit

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 25 / 29

Overheads for Mono (SciMark benchmark suite)

0%

20%

40%

60%

80%

FFT
LU M

onteCarlo

SOR
SparseM

M

GM
ean

S
an

db
ox

in
g

S
lo

w
do

w
n Mono 32-bit

Mono 64-bit

0% -1% -1%

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 26 / 29

More results in our paper

Other benchmark suites

Overheads on different microarchitectures

Comparison to native-C and ahead-of-time compilation

New “Crankshaft” V8 optimizing backend

Other optimizations

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 27 / 29

Outline

1 Motivation

2 Native Client background

3 Dynamic code modification

4 Experimental results

5 Conclusions

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 28 / 29

Thanks!

Take away

A step towards safely bringing the language-freedom and performance of
desktop applications to the web.

Questions?

Open source: http://code.google.com/p/nativeclient/

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 29 / 29

http://code.google.com/p/nativeclient/

