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Can we create better trust model?

Sandbox untrusted language run-times

Or, more generally, sandbox applications that:

Dynamically generate code
Modify the generated code (e.g. inline caches)
Use many threads
Garbage collected
Include large native libraries

While maintaining performance

Easy to verify correctness of the sandboxing
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Sandboxing technology

Software Fault Isolation (SFI)1

OS-portable
Low overhead
Fast to enter/exit
Easy to reason about correctness
Traditionally does not allow dynamic code modification

We extend the Native Client SFI system to support self-modifying
code

1Wahbe et. al., 1993
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Software Fault Isolation (SFI) background

Entire program checked once for safety at
startup

Control safety

Control cannot leave untrusted address space

(Except through moderated interfaces)

Only known instructions in the untrusted
address space can execute

Data safety

Writes can only change untrusted memory
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Control safety (Native Client background)

Must confine execution to instructions that have been checked

Prevent execution of “hidden” instructions
e.g., instructions overlapping at a different offset

Disassemble bytes 0 to 6: 81 c3 cd 80 eb 66

add $0x66eb80cd, %ebx

Disassemble bytes 2 to 6: 81 c3 cd 80 eb 66

int $0x80

jmp 0x40052c

Direct jumps

Can be checked statically

Indirect jumps

More difficult
Restricted, requiring guard sequence
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Instruction bundles (Native Client background)
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must be safe jump targets

“Bundles”
Instructions and guard sequences can not
cross bundles
NOP padding often required

Indirect control flow must use guard
sequence

Masks away lower bits
Forces indirect jump to go to start of a
bundle
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Native Client summary

Data safety provided in a similar way

Guards and some hardware support

Native Client enforces a small set of local constraints

These constraints are:

Efficient to verify
Easy to reason about

Technique does not extend directly to self-modifying code
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Challenges for dynamic code

Must incrementally validate new code

Must incrementally validate code modification

Must support deletion of code (or eval would leak memory)

Be safe in the presence of untrusted threads:

Memory consistency model for instructions is weaker than for data (on
x86)
Consistency guarantees vary between processors
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New Native Client interfaces

Create Dynamic Code

i n t n a c l d y n c o d e c r e a t e ( vo id ∗ t a r g e t ,
vo id ∗ s r c ,
s i z e t s i z e ) ;

Modify Dynamic Code

i n t nac l d yn code mod i f y ( vo id ∗ t a r g e t ,
vo id ∗ s r c ,
s i z e t s i z e ) ;

Delete Dynamic Code

i n t n a c l d y n c o d e d e l e t e ( vo id ∗ t a r g e t ,
s i z e t s i z e ) ;
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Dynamic code regions

Dynamic code region: a block of code inserted and deleted as a unit

Operate on entire regions:

nacl dyncode create

nacl dyncode delete

Operates on instruction(s) inside a region:

nacl dyncode modify

Unaligned direct jumps only allowed within dynamic regions

External entry points at bundle boundaries
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Lifecycle of a dynamic region

Program 
Instructions

HLT 
Instructions
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nacl dyncode create

Validates new code
Two-phase update so that change
appears atomic

nacl dyncode modify

Possibly called many times
More details next

nacl dyncode delete

Must wait for all threads to leave
Wind-down before reuse
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Modifying dynamic code

New constraints/validator for replacing code

New technique for copying replacement code safely

New constraints for replacing code OLD with code NEW

1 NEW must satisfy all NaCl safety constraints

2 NEW and OLD must have the same location and size

3 NEW and OLD must contain identical instruction boundaries

4 No pseudo instructions (guards) are added, changed, or removed
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Danger of copying replacement code

Thread 1: in nacl dyncode modify

Running:
memcpy(A, B, 5);

A PUSH 00 00 00 03

B JUMP 00 00 00 00

Thread 2: in untrusted code

Executes: JUMP 00 00 00 03

... and just broke out of the sandbox!
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Memory consistency for x86 instructions

Different than data consistency model

Requires research to discover

Careful reading of documentation
Discussions with Intel
Tests with micro-benchmarks

Aligned 8-byte (AMD) or 16-byte (Intel) writes are atomic

Changes become visible to other processes in an undefined order

mfence doesn’t work for instructions!

Can run the latest instructions by executing a serializing instruction
(e.g., cpuid)

We base our algorithm on SerializeAllProcessors

Forces serializing instruction on each processor
Implementation described in the paper
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Copying replacement code safely

Pseudo code

f o r ( each p a i r o f changed i n s t r u c t i o n s OLD, NEW) {
i f ( D i f f I s A l i g n e d Q u a d W o r d (OLD, NEW) ) {

/∗ common f a s t path ∗/
update OLD w i t h a s i n g l e a l i g n e d movq s t o r e ;

} e l s e {
OLD [ 0 ] = 0 x f 4 ; /∗ HLT i n s t r u c t i o n ∗/

S e r i a l i z e A l l P r o c e s s o r s ( ) ;

OLD [ 1 : n ] = NEW[ 1 : n ] ;

S e r i a l i z e A l l P r o c e s s o r s ( ) ;

OLD [ 0 ] = NEW[ 0 ] ;
}

}
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Representative language runtimes

V8: JavaScript runtime
JIT compiles JavaScript to machine code
Heavy use of self-modifying inline caches for performance

(≈ 10x performance difference if inline caches are disabled)

Mono: C# (and other .NET languages) runtime
JIT compiles Common Intermediate Language (CIL) to machine code
Often mixes constant data and code

Both 32-bit and 64-bit x86 versions of each
Code generation backends are different

e.g., V8 uses different large integer boxing

Native Client requirements are different

Memory accesses require guards in 64-bit
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Porting effort

Porting effort relatively straightforward

Primarily in back-end code generation

LoC total LoC added/changed
V8 (32-bit) 190526 1972 (1.04%)
V8 (64-bit) 189969 5005 (2.63%)

Mono (32-bit) 386300 2469 (0.64%)
Mono (64-bit) 388123 3240 (0.83%)

Jason Ansel (MIT) Native Client Dynamic Code June 7, 2011 22 / 29



Interesting porting challenges

Mixed code and data
V8: debug, relocation, and other metadata

We split the code and metadata

Mono: some immediate values

We decorated immediates to look like instructions
Insert a PUSH opcode

ILP32 data model on 64-bit

Pointers are 32-bits on heap, 64-bits on stack
Registers different size than pointers
Must differentiate stack and heap pointers
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Overhead sources breakdown (V8 benchmark suite)

Estimated by incrementally disabling features

Not additive

Percentage of total overhead

Source of overhead 32-bit 64-bit

NOP padding 23% 37%

Software guards 42% 46%

Runtime validation 2% 5%
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Overheads for V8 (V8 benchmark suite)
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Overheads for Mono (SciMark benchmark suite)
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More results in our paper

Other benchmark suites

Overheads on different microarchitectures

Comparison to native-C and ahead-of-time compilation

New “Crankshaft” V8 optimizing backend

Other optimizations
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Thanks!

Take away

A step towards safely bringing the language-freedom and performance of
desktop applications to the web.

Questions?

Open source: http://code.google.com/p/nativeclient/
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