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Abstract—Pattern maximum likelihood (PML) is a
technique for estimating the probability multiset of
an unknown distribution. With any random sample, it
associates the distribution maximizing the probability of
its pattern. The required computation is a maximization
of a monomial symmetric polynomial over the monotone
simplex. The PML of only very few patterns have been
found analytically, and for other patterns, the PML has
been approximated by a heuristic algorithm. Taking an
algebraic approach, we determine the PML of short
patterns by solving a system of multivariate polynomial
equations using the method of resultants. Using this
approach, we determine the PML of the pattern 1112234,
the last length-7 pattern whose PML was unknown.
Under two plausible but yet unproved assumptions on
the optimal alphabet size and the number of distinct
probabilities, we also find the PML distribution of all
previously unknown patterns of length up to 14.

I. INTRODUCTION

Pattern Maximum Likelihood (PML) is a recent
technique for estimating the probability multiset from
an observed sample. The pattern of a sequence is
the integer sequence obtained by substituting each
symbol by its order of appearance, e.g., [1]. For
example, the pattern of ISIT is 1213 and the pattern
of abracadabra is 12314151231. The pattern reflects
the number of times and order in which the symbols
appear, while abstracting the actual values.

The PML distribution is the distribution maximizing
the probability of the observed pattern. Its estimation
properties have been studied in the context of universal
compression of large-alphabet sources in [1, 2, 3], and
it has been shown to better estimate the probability
multiset than Sequence Maximum Likelihood (SML)
which maximizes the sequence probability [4].

For example, Figure 1 shows a uniform distribution
over 500 elements, indicated by a solid (blue) line.
In a typical collection of 1000 samples from this
distribution, 2 elements appeared 7 times, 4 appeared
6 times, and so on, and 79 did not appear at all, as
shown in the figure. The SML estimate is the empirical
distribution, shown by the dotted (red) line. It not only
misses the elements which do not appear, but also
misses the uniformity. By contrast, PML distribution
is essentially same as the underlying distribution.

Although PML has good estimation properties, its
analytical calculation appears difficult. The compu-

Fig. 1. SML and PML reconstruction of uniform distribution over
500 symbols from 1000 samples

tation involved is that of maximizing a monomial
symmetric polynomial over the monotone simplex, for
which no general techniques are known. So far, PML
distributions have been analytically derived for only
special patterns, for example all but one pattern of
length ≤ 7, patterns with just two or three distinct
symbols, patterns that are close to uniform, and skewed
patterns [4, 5, 6, 7].

We consider an algebraic approach for finding the
PML. Given an upper bound on the support size of the
PML distribution, we maximize the pattern probability
by solving the system of multivariate polynomial equa-
tions obtained by differentiating the pattern probability
with respect to each variable.

In Section III we describe two well known elimi-
nation techniques, for solving systems of multivariate
polynomial equations, Groebner bases and resultants.
Given a pattern and bounds on the alphabet size and
number of distinct probabilities in its PML distribu-
tion, we find it using resultants.

However, severe computational requirements of al-
gebraic elimination methods render this approach time
intensive even for small patterns and moderate support
sizes. In Sections IV and V, we combine the algebraic
approach with analytic upper bounds on the support
size and number of distinct probabilities in the PML
distribution.

Of all patterns of length ≤ 7, the only one whose
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PML was not known, was 1112234. We show that its
PML distribution has support size ≤ 17 and ≤ 3 dis-
tinct probabilities. We then use the resultants method
to show that its PML distribution is the uniform
distribution over 5 symbols, { 1

5 ,
1
5 ,

1
5 ,

1
5 ,

1
5}. While we

do not have upper bounds on the alphabet size and
number of distinct probabilities of the PML distribu-
tion of general patterns, under two such plausible but
unproved bounds, we compute the PML of all patterns
of length ≤ 14.

II. NOTATION

A. Patterns

The pattern Ψ(x) of a sequence x def
= x1x2 · · ·xn is

the integer sequence derived by replacing each symbol
in x by its order of appearance. For example, in
the sequence ISIT , the symbol I appears first, the
symbol S appears second, and T is the third distinct
symbol to appear, hence Ψ(ISIT ) = 1213. Similarly,
Ψ(abracadabra) = 12314151231.

We denote the length and the number of distinct
symbols in a pattern by n and m respectively. The
multiplicity µψ of an integer ψ in a pattern ψ is the
number of times ψ appears in ψ. For example, the
pattern 12314151231, has n = 11,m = 5, µ1 =
5, µ2 = µ3 = 2, and µ4 = µ5 = 1.

For simplicity, if a number ψ repeats consecutively
i times, we abbreviate it as ψi. For example, we
may write the pattern 11222111 as 122313. A pattern
of the form 1µ12µ2 · · ·mµm with µ1 ≥ · · · ≥ µm
is canonical. Clearly every pattern has a canonical
pattern with the same multiplicities. For example, the
canonical pattern of 123323 is 13223.

B. Pattern probabilities

The probability of a pattern ψ is

P (ψ)
def
= P ({x : Ψ(x) = ψ}),

the probability of observing a sequence with that
pattern. Throughout this paper, we consider sequences
generated i.i.d. according to probability distributions.
Let ψ = 1µ12µ2 · · ·mµm be a length-n canonical
pattern and P = (p1, p2, . . . , pk) be a distribution over
the alphabet [k]

def
= {1, 2, . . . , k} of size k. Since there

are km def
= k(k−1) · · · (k−m+1) sequences that have

the same pattern ψ, the pattern probability is

P (ψ)
def
=

∑
x:Ψ(x)=ψ

P (x)

=
∑

(i1,i2,...,im)∈[k][m]

pµ1

i1
pµ2

i2
· · · pµmim .

where [k][m] is the set of all mappings from [m] to [k].
Observe that the pattern probability is a symmetric

polynomial in the probabilities. Also, when sequences

are generated i.i.d., a pattern and its canonical pattern
have the same probability and hence, we only consider
the PML of canonical patterns.

For example, if a distribution P assigns probability
pa to an element a, and pb to element b, and pc to
element c, then the probability of the pattern 121 is
the sum of probabilities of the 32 = 6 sequences with
pattern 121,

P (121) = P (112)

=P (aab)+P (bba)+P (aac)+P (cca)+P (ccb)+P (bbc)

=p2
apb + p2

bpa + p2
apc + p2

cpa + p2
cpb + p2

bpc.

C. PML Distribution

Let PM be the set of all monotone distributions,

PM
def
= {(p1, p2, . . .) : pi ≥ 0, pi ≥ pi+1,

∞∑
i=1

pi = 1}.

The pattern maximum likelihood P̂ψ(ψ) of a pattern
ψ is its maximum likelihood under all possible distri-
butions, i.e.,

P̂ψ(ψ)
def
= max

P∈PM
P (ψ).

The distribution P̂ψ
def
= arg maxP∈PM P (ψ) is called

the PML distribution of ψ. Existence and convergence
properties of P̂ψ were presented in [4].

We denote the alphabet size of P̂ψ by k̂ def
= k̂(ψ)

and the number of distinct probabilities in P̂ψ by

∆̂
def
= ∆̂(ψ). Similar to P̂ψ , we define P̂

k

ψ as the
distribution maximizing P (ψ) among all distributions
with at most k nonzero probabilities, and P̂

k,∆

ψ as
the maximizing distribution when further restricting to
distributions with at most ∆ distinct nonzero probabil-
ities.

III. ALGEBRAIC APPROACH FOR FINDING THE PML

Consider the set

Pk def
= {(p1, p2, . . . , pk) : pi ≥ 0,

k∑
i=1

pi = 1}

of distributions whose support size is at most k. The
Kuhn-Tucker conditions imply that if a distribution
P ∈ Pk is a local maximum of P (ψ), then for all
i, j ∈ [k] such that pi, pj > 0,

∂P (ψ)

∂pi
=
∂P (ψ)

∂pj
.

To find P̂
k

ψ , we can solve the system of equations

∂P (ψ)

∂pi
=
∂P (ψ)

∂pi+1
, i = 1, 2, . . . , κ− 1 (2a)

p1 + p2 + · · ·+ pκ = 1, (2b)
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for each κ ∈ {m,m + 1, . . . , k}, and among all
solutions, find the one maximizing P (ψ). Note that
since the Kuhn-Tucker equalities hold only for the
nonzero probabilities, it is not sufficient to consider
solutions to system of equations (1a) and (1b) for just
κ = k.

As an example of this basic method and the need to
solve the equations for all κ ≤ k, consider P̂

3
112. For

κ = 2, the equations yield

p2
1 = p2

2,

p1 + p2 = 1,

whose unique solution is P = (p1, p2) = ( 1
2 ,

1
2 ) with

P (112) = 1
4 . For κ = 3, Equations (1a) and (1b), yield

p1(2− 3p1) = p2(2− 3p2) = p3(2− 3p3),

p1 + p2 + p3 = 1,

whose only solution is P ′ = (p1, p2, p3) = ( 1
3 ,

1
3 ,

1
3 ).

Furthermore, P ′(112) = 2
9 < 1

4 = P (112), hence
P̂

3
112 = ( 1

2 ,
1
2 ).

While such simple manipulations work for small
patterns, for longer patterns, we need a systematic
approach for solving the set of polynomial equations
obtained. The natural approach for solving a system
of polynomial equations is to generalize the Gaussian-
elimination method for linear equations to address
polynomial equations. There are two well-known ap-
proaches for doing that.

The first uses Buchberger’s algorithm and its vari-
ations that yield a Groebner basis for the original
polynomials. However, the degrees of the resulting
polynomials, and hence also the computation time of
these algorithms may in general be doubly exponential
in the number of variables. For more information, see,
e.g., [8].

The second approach uses resultants, e.g., [9, 8].
While it too may require doubly-exponential time, in
our experiments it has performed more efficiently, and
we describe it here.

The resultant of a degree-u polynomial f = f0x
u+

f1x
u−1 + · · · + fu and a degree-v polynomial g =

g0x
v + g1x

v−1 + · · · + gv is the determinant of a
corresponding (u+ v)× (u+ v) Sylvester matrix,

Res(f, g, x)
def
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 g0
f1 f0 g1 g0
... f1

. . . f0
... g1

. . . g0

fu
...

. . . f1 gv
...

. . . g1

fu
... gv

...
. . . fu

. . . gv

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where v columns correspond to f , u columns to g, and
blank spaces are zeros.

If f and g are multivariate polynomials with x
as one of the variables, then viewing f and g as

polynomials in x whose coefficients are polynomials
in the other variables, Res(f, g, x) is a polynomial
in the remaining variables. The important property of
resultants that makes them useful for elimination is
that Res(f, g, x) = a · f + b · g for two polynomials
a and b. Hence solving the equations f = g = 0 is
equivalent to solving the system f = Res(f, g) = 0.

To eliminate variables p2, . . . , pκ−1 from Equa-
tions (1a), we use resultants to eliminate p2 from
the κ − 1 equations in (1a) to obtain κ − 2 equa-
tions in p1, p3, . . . , pκ from which we eliminate p3

and obtain κ − 3 equations. We proceed similarly
to eliminate p4, . . . , pκ−1, until we are left with a
single homogenous equation in p1 and pκ. We use
this to solve for pκ

p1
and by backsubstution, obtain

(pκ−1

p1
, pκ−2

p1
, . . . , p2p1 ). Finally, using Equation (1b), we

obtain all the probabilities (p1, p2, . . . , pκ).
While the resultant of two polynomials can be

obtained by explicitly computing the determinant of
their Sylvester matrix or using other well known de-
terminantal formulae for resultants, a brute-force com-
putation is challenging. Other computationally efficient
methods for computing resultants that use interpolation
techniques are discussed in [10, 9]. Nevertheless, it
is easy to see that after eliminating p2, . . . , pκ−1, the
degree of the final polynomial in p1 and pκ can be
O(n2κ). This makes the resultant calculations intensive
for even small values of n and κ.

The number of calculations is smaller when con-
sidering distributions with at most ∆ distinct proba-
bilities. For such distributions, it suffices to consider
for each d ∈ 1, 2, . . . ,∆, partitions of {p1, p2, . . . , pκ}
into d parts where within each part all probabilities are
equal, and perform the elimination with d variables.

When evaluating resultants of two polynomials, we
remove their common factors, otherwise the resultant
is zero. While we do not discuss mixed distributions
that have discrete probabilities as well as a continuous
part, the method can be easily extended to this case
by adding an additional variable q for the probability
of the continuous part. A summary of the complete
method is listed in Algorithm 1, which computes the
PML distribution P̂

k,∆

ψ , given as input a pattern ψ and
bounds k and ∆.

We implemented Algorithm 1 in MATHEMATICA.
Due to computational limitations, the program can be
used to compute P̂

k,∆

ψ for patterns of length ≤ 14 with
k ≤ 17 and and ∆ ≤ 4. In the next two sections, we
consider bounds on k̂ and ∆̂ which are used with the
program to compute the PML of 1112234 and other
patterns.

IV. PML OF 1112234

We show a sufficient condition for a pattern to have
no continuous part in its PML distribution. Following
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Algorithm 1 Computation of P̂
k,∆

ψ using resultants

Initialize solution set S = {}
for κ = m to k and d = 1 to max{∆, κ} do

for unordered partitions (K1, . . . ,Kd) of [κ] do
for i = 1 to d− 1 do
g1,i := ∂P (ψ)

∂pı
− ∂P (ψ)

∂p
for some ı ∈ Ki and

 ∈ Ki+1

Set pı = zj for all ı ∈ Kj for all j
end for
G1 := {g1,1, g1,2, . . . , g1,d−1}
// Solve the system of equations G1 = 0
for j = 2 to d− 1 do

for i = 1 to d− j do
// Eliminate zj by taking resultants
gj,i = Res(gj−1,i, gj−1,i+1, zj)
Remove any monomial factors of gj,i and
trivial factors of form (zı − z)
Return error for current k and d if gj,i is
a constant polynomial

end for
end for
Set z1 = 1 and solve the triangular system
of equations {G1,G2, . . . ,Gd−1} for variables
z2, z3, . . . , zd by backsubstitution
For solutions (z1, z2, . . . , zd) such
that all zi are real and positive, find
Z =

∑d
i=1 zi|Ki|, find (p1, p2, . . . , pκ)

such that pı = zj/Z where ı ∈ Kj and
S = S ∪ {sort(p1, p2, . . . , pκ)}

end for
end for
Output arg maxP∈S P (ψ)

the notation in [1], let ϕµ(ψ) = ϕµ denote the number
of symbols that have appeared µ times in a pattern ψ.

Lemma 1. The PML distribution of patterns with
ϕ2 ≥ n−1

2(m−1)

(
ϕ1

2

)
has no continuous part.

Proof Outline: Let P be the PML distribution
of ψ̄. Suppose P has a positive continuous probability
q > 0. Let Qε be the distribution obtained from P̂ψ̄ by
replacing q with q − ε and a new discrete probability
ε. The main idea is to show that if ϕ2 <

n−1
2(m−1)

(
ϕ1

2

)
,

then there exists 0 < ε ≤ q such that Qε(ψ̄) is strictly
greater than P (ψ̄), a contradiction. The details are
omitted for brevity.

For the pattern 1112234, ϕ2 = 1 = 7−1
2(4−1)

(
2
2

)
=

n−1
2(m−1)

(
ϕ1

2

)
. Hence Lemma 1 implies that its PML

distribution has no continuous part.
The next lemma upper bounds the number of distinct

probabilities of the PML distribution. It follows from
the main result of [11].

Lemma 2. The PML distribution of any length-n

pattern has ≤ bn2 c distinct discrete probabilities.

The following theorem upper bounds k̂(1112234),
and the techniques used can potentially be extended to
other patterns.

Theorem 3. k̂(1112234) ≤ 17.

Proof Outline: Let P = (p1, p2, . . . , pk) be the
PML distribution of pattern 1112234, where p1 ≥
p2 ≥ · · · ≥ pk > 0. Let p̃1 > p̃2 > · · · > p̃d > 0 be
the distinct probabilities in P and ki be the number of
occurrences of p̃i in P , for i = 1, . . . , d. By Lemma 2
d ≤ 3.

Given any i ∈ [d], fix kip̃i as well as kj and p̃j
for all j 6= i. Then P (1112234) can be viewed as a
function of ki. This function can be shown to decrease
in ki for ki ≥ 4 and p̃i ≤ 0.04327. The details are
omitted. Thus to maximize P (1112234) we must have,
for any i ∈ [d],

ki ≤ 3, or p̃i > 0.04327.

On the other hand we also obtain the following bounds
which are not proved here for lack of space.

p1 > 0.1990, and p1 + p2 + p3 > 0.5139.

From this it follows that k1 ≤ 5. Hence if k1 ≥ 4,
then k1p̃1 ≥ 4 · 0.1990 = 0.794 and k ≤ 5 + 3 ·
max

{
3,
⌊

1−0.794
0.04327

⌋}
= 17.

But, if k1 ≤ 3, there are at most 2 distinct probabil-
ities in {p4, p5, . . . , pk}. Since p1 +p2 +p3 ≥ 0.5139,
we have k ≤ 3 + 2 ·max

{
3,
⌊

1−0.5139
0.04327

⌋}
= 17.

The above bounds on k̂ and ∆̂ of 1112234 along
with Algorithm 1 yields that P̂1112234 = P̂

17,3
1112234 =

{ 1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5}, i.e., the uniform distribution over 5

symbols.

V. PML OF SHORT PATTERNS UNDER TWO
ASSUMPTIONS

While we do not have good general upper bounds
on k̂ and ∆̂ two plausible assumptions are:
A1 ∆̂ is at most the number of distinct multiplicities

in the pattern.
A2 P̂

k

ψ(ψ) is strictly increasing for m ≤ k ≤ k̂.
One possible justification for A1 is that each of the
probabilities may correspond to an observed symbol
and then symbols whose multiplicities are equal would
be assigned equal probability estimates. For A2, it may
be plausible that if P1 and P2 are two distributions
whose alphabet sizes are k and k + 2, and P1(ψ) >
P2(ψ), then there may exist a distribution P3 whose
support size is k + 1 such that P1(ψ) < P3(ψ) ≤
P2(ψ).

Under these assumptions, given a pattern ψ, we
use Algorithm 1 with ∆ as the number of distinct
multiplicities in ψ for k = m,m + 1, . . . until
P̂
k,∆

ψ (ψ) = P̂
k+1,∆

ψ (ψ).
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TABLE I
PML OF PATTERNS OF LENGTH ≤ 10, COMPUTED UNDER

ASSUMPTIONS A1 AND A2.

n ψ P̂ψ P̂ψ(ψ)

142234 {0.462.., 0.134..4} 4.08× 10−4

8 132334 {0.254} 3.66× 10−4

1322345 {0.156256, 0.0625} 4.38× 10−4

152234 {0.553.., 0.0893..5} 1.99× 10−4

142334 {0.389..2}, 0.222.. 1.33× 10−4

1422324 {0.254} 9.16× 10−5

9 1422345 {0.433.., 0.0708..8} 1.10× 10−4

1323324 {0.254} 9.16× 10−5

1323345 {0.333..2}, 0.333.. 1.02× 10−4

13223456 {0.138..6}, 0.171.. 1.57× 10−4

162234 {0.599.., 0.0800..5} 1.15× 10−4

152334 {0.42}, 0.2 5.24× 10−5

1522324 {0.461.., 0.180..3} 2.67× 10−5

1522345 {0.499.., 0.0626..5} 5.02× 10−5

142434 {0.42}, 0.2 5.24× 10−5

1423324 {0.254} 2.29× 10−5

10 1423345 {0.352}, 0.3 3.47× 10−5

14223245 {0.304.., 0.139..5} 1.23× 10−5

14223456 {0.32}, 0.4 3.73× 10−5

1323334 {0.254} 2.29× 10−5

13233245 {0.25} 1.23× 10−5

13233456 {0.32}, 0.4 3.73× 10−5

132234567 {0.157..4}, 0.371.. 7.16× 10−5

For example, for the canonical pattern ψ =
15223245 of abracadabra, the multiplicities of the
symbols are (5, 2, 2, 1, 1) and there are 3 distinct
multiplicities 5, 2 and 1. Assumption A1 implies that
the number of distinct probabilities is at most 3. Since
m = 5, we run Algorithm 1 with ∆ = 3 and
k = 5, 6, 7, . . ., and observe that P̂

5,3
15223245 = 3.241..×

10−6, P̂
6,3
15223245 = P̂

7,3
15223245 = 4.073..×10−6. Hence

we stop and output P̂
6,3
15223245 =

{
α

5+α , (
1

5+α )5
}

=
{0.4429.., 0.1114..5}, where α = 3.976.. is a root of
6x4 − 19x3 − 19x2 − x− 1 = 0.

Under these assumptions, we computed the PML
of all patterns of length ≤ 14. For space consider-
ations, Table I shows the PML only of patterns of
length ≤ 10. Furthermore, the PML of all binary,
ternary, skewed, and quasi-uniform patterns have been
determined before, and the table shows the remaining
patterns. The PML distribution P̂ψ is represented in the
form {p̃k11 , . . . , p̃

kd
d }, q indicating that for i = 1, . . . , d

it consists of ki symbols whose probability is p̃i,
and that the continuous part is q = 1 −

∑d
i=1 kip̃i,

shown only when nonzero. Note that all numbers are
algebraic, and are truncated to a few significant digits.
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