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Abstract—We consider the problem of classification, where the
data of the classes are generated i.i.d. according to unknown
probability distributions. The goal is to classify test data with
minimum error probability, based on the training data available
for the classes. The Likelihood Ratio Test (LRT) is the opti-
mal decision rule when the distributions are known. Hence, a
popular approach for classification is to estimate the likelihoods
using well known probability estimators, e.g., the Laplace and
Good-Turing estimators, and use them in a LRT. We are primar-
ily interested in situations where the alphabet of the underlying
distributions is large compared to the training data available,
which is indeed the case in most practical applications. We moti-
vate and propose LRT’s based on pattern probability estimators
that are known to achieve low redundancy for universal com-
pression of large alphabet sources. While a complete proof for
optimality of these decision rules is warranted, we demonstrate
their performance and compare it with other well-known classi-
fiers by various experiments on synthetic data and real data for
text classification.

I. INTRODUCTION

Classification is one of the most important problems in

the areas of machine learning and information theory. It in-

volves designing decision rules for classifying test data into

one among several classes characterized by training data

belonging to them. It has a wide range of important appli-

cations like text classification, optical character recognition

(OCR), bio-informatics, credit rating and many more. It has

been studied extensively and is a well understood problem.

In many practical applications of classification, a reasonable

model is to assume that the data of each class is generated

i.i.d. according to a probability distribution [4].

A. Notation and background

The following are some preliminaries about classification

and hypothesis testing [2, 11.7] [3]. Let I∗
k be the collection of

all i.i.d. distributions over the alphabet A def
= {a1, a2, . . . , ak}

of size k. Let p(1), p(2) ∈ I∗
k be the distributions that generate

the data, i.e., sequences, from the classes 1 and 2 respectively.

For simplicity, we limit ourselves to classification with two

classes, although the arguments presented here extend to more

than two classes as well. Let X
(1)

, X
(2) ∈ AN be training se-

quences from the two classes, generated randomly according

to p(1), p(2) respectively. A test sequence Y is generated ac-

cording to p(1) with probability π1, or p(2) with probability

π2 = 1−π1 respectively. For simplicity, we assume this prior

π̄
def
= (π1, π2) to be (1/2, 1/2). The goal is to assign a label 1

or 2 to Y , i.e., classify it as being generated by p(1) or p(2).

A (randomized) decision rule

Ω
def
= {(ω(1|x(1), x(2), y), ω(2|x(1), x(2), y)) :

(x(1), x(2), y) ∈ AN ×AN ×An}

assigns label 1 to the test sequence Y = y with prob-

ability ω(1|x(1), x(2), y) and label 2 with probability

ω(2|x(1), x(2), y) = 1 − ω(1|x(1), x(2), y) when the training

sequences are X
(1)

= x(1) and X
(2)

= x(2).

The probability of classifying correctly is therefore

Pc =
∑

x(1),x(2),y

p(1)(x(1))p(2)(x(2))
(1
2
p(1)(y)ω(1|x(1), x(2), y)

+
1

2
p(2)(y)ω(2|x(1), x(2), y)

)

and the error probability is Pe(Ω, p
(1), p(2))

def
= 1−Pc. Hence,

when the distributions p(1), p(2) are known, the optimal de-

cision rule Ω∗(p(1), p(2)) def
= argminΩ Pe(Ω, p

(1), p(2)) which

minimizes the error probability, i.e., maximizes Pc, is given

by the Likelihood Ratio Test (LRT)

ω(1|x(1), x(2), y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if p(1)(x(1))p(2)(x(2))p(1)(y) >

p(1)(x(1))p(2)(x(2))p(2)(y),

i.e., p(1)(y) > p(2)(y),

0 otherwise,

and ω(2|x(1), x(2), y) = 1−ω(1|x(1), x(2), y), ∀(x(1), x(2), y).

Likewise, if p(1), p(2) are not known, but instead a prior

μ(dp′(1), dp′(2)) over the (p′(1), p′(2)) ∈ I∗
k × I∗

k is known,

the error probability is

Pe(Ω, μ) = 1− 1

2

∑
(x(1),x(2),y)

(
Pμ(x

(1)y;x(2))ω(1|x(1), x(2), y)

+ Pμ(x
(1);x(2)y)ω(2|x(1), x(2), y)

)
,

where Pμ(z
(1); z(2)), the probability of (z(1), z(2)) ∈ A∗×A∗

under the prior μ, is

Pμ(z
(1); z(2))

def
=

∫
I∗
k×I∗

k

μ(dp′(1), dp′(2))p′(1)(z(1))p′(2)(z(2)).

Hence, the optimal decision rule Ω∗(μ) def
= argminΩ Pe(Ω, μ)

is the LRT

ω(1|x(1), x(2), y) =

⎧⎪⎪⎨
⎪⎪⎩
1 if Pμ(x

(1)y;x(2)) > Pμ(x
(1);x(2)y),

i.e.,Pμ(x
(1)y;x(2))

Pμ(x(1);x(2))
>

Pμ(x
(1);x(2)y)

Pμ(x(1);x(2))
,

0 otherwise,
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and ω(2|x(1), x(2), y) = 1−ω(1|x(1), x(2), y), ∀(x(1), x(2), y).

For example, when the prior μ is the uniform prior, the opti-

mal rule is a LRT based on Laplace estimator, while Jeffrey’s

prior (Dir( 12 )) leads to KT estimator based LRT.

B. Classification under large alphabet distributions

As the optimal decision rule when the distributions p(1), p(2)

are known is the LRT, a reasonable approach for classification

is to use various probability estimators to estimate the likeli-

hoods and plug them into the LRT. Despite the simplicity of

this approach, it is known to work very well in practice [4].

Most of the well known probability estimators, e.g., Laplace

and KT, estimate the probability of sequences and try to as-

sign each sequence a probability that is close to its maximum

likelihood among all possible i.i.d. distributions over a finite

alphabet. However, in most practical applications, the alphabet

is large compared to the length of the sequences, or possibly

infinite. For example, as we will see in Section III, in a typ-

ical text classification experiment with words considered as

alphabet symbols, the data available for each class consists of

about 2000 documents, each containing about 100 words and

the alphabet size k is at least 10000. With a 60:40 training-test

split, i.e., 60% of documents set aside for training and remain-

ing 40% used for test, we have N ≈ 120000 (and n ≈ 100),

which is not so large compared to the alphabet size. In such

large alphabet scenarios, there can be a large gap between the

estimated probability of a sequence and its maximum likeli-

hood, potentially the actual probability. Indeed no estimator

can assign a probability that is close to maximum likelihood

for all sequences [6].

It is relevant to use sequence probability estimators when

we want to perform almost as good as the optimal classifier

that knows p(1), p(2). However, if we can perform close to

an optimal classifier that has any information about p(1), p(2),

but does not know p(1), p(2) completely, for example their

support sets or collections/families to which they belong, then

we essentially have a near optimal classifier. To this end, we

consider the optimal classifiers that know about the probabil-

ity multisets of p(1), p(2), but do not know anything about

the associations between the multisets and the alphabet. As

we show, and is intuitive, such classifiers are LRT’s based on

pattern probabilities instead of sequence probabilities, assum-

ing all mappings of the alphabet to the probability multiset are

equally likely.

The pattern Ψ(z) of a sequence z conveys the order of ap-

pearances of symbols in z. For example, Ψ(abracadabra) =
12314151231. Clearly, the probability of a pattern depends

only on the probability multiset of the underlying distribu-

tion. In order to compete with classifiers which know the

probability multisets of the distributions, we use LRT’s that

use pattern probability estimators instead of the actual pat-

tern probabilties. In the context of universal compression, it

was previously shown in [8] that patterns can be compressed

with diminishing per symbol redundancy regardless of alpha-

bet size of the underlying distribution, demonstrating several

good pattern probability estimators in the process. Such es-

timators assign each pattern a probability that is close to its

maximum likelihood, and in a way estimate the pattern prob-

abilities accurately. The use of pattern probability estimators

for classification was introduced in [9] and preliminary em-

pirical results on text classification were encouraging. In this

paper, we further explore these techniques.

In Section II, we show in detail the role of pattern proba-

bilities in classification and consider classifiers based on good

pattern probability estimators. Finally, we show several exper-

imental results in Section III for the specific application of text

classification, involving both synthetic and actual data sets.

II. CLASSIFIERS BASED ON PATTERN PROBABILITIES

A. Single pattern classifiers

The following lemma characterizes the optimal classi-

fier Ω∗({p(1)}, {p(2)}) when the probability multisets {p(1)}
of p(1) and {p(2)} of p(2) are known. Let k1

def
= |{p(1)}|

and k2
def
= |{p(2)}| be the size of the nonzero support sets

of p(1) and p(2). For a sequence z ∈ A∗, let A(z) be

the set of symbols and m(z) = |A(z)| be number of

distinct symbols that have appeared in z. For brevity, let

m1
def
= m(x(1)), m2

def
= m(x(2)), Δm1

def
= m(x(1)y)−m(x(1))

and Δm2
def
= m(x(2)y) − m(x(2)) whenever (x(1), x(2), y)

are clear from the context. (Δmj is the number of new sym-

bols in y that have not appeared in x(j), for j = 1, 2.) Let

uv def
= u(u − 1) · · · (u − v + 1) denote the falling power for

integers u ≥ v ≥ 0. Also, 0v = 1 if v = 0 and 0 if v > 0.

Lemma 1: The decision rule Ω∗({p(1)}, {p(2)}) is given by

ω(1|x(1), x(2), y) =

⎧⎪⎪⎨
⎪⎪⎩
1 if 1

(k−m1)
Δm1

p(1)(Ψ(x(1)y))

p(1)(Ψ(x(1)))
>

1

(k−m2)
Δm2

p(2)(Ψ(x(2)y))

p(2)(Ψ(x(2)))
,

0 otherwise,

and ω(2|x(1), x(2), y) = 1−ω(1|x(1), x(2), y), ∀(x(1), x(2), y).
Proof: Since {p(1)},{p(2)} are known and all the kk1 ·kk2

associations of {p(1)} with A and {p(2)} with A are equally

likely, it is equivalent to a uniform prior μ over (p′(1), p′(2)) ∈
A{p(1)} ×A{p(2)}. Then,

Pμ(z
(1); z(2)) =

∑
(p′(1),p′(2))∈

A{p(1)}×A{p(2)}

1

kk1 · kk2
p′(1)(z(1))p′(2)(z(2))

=
∏

j=1,2

∑
p′(j)∈A{p(j)}

1

kkj
p′(j)(z(j))

(a)
=

∏
j=1,2

(k −m(z(j)))
kj−m(z(j))

kkj
p(j)(Ψ(z(j)))

=
∏

j=1,2

1

km(z(j))
p(j)(Ψ(z(j))),

where Equality (a) can be shown as follows. For j = 1, 2,

p′(j)(z(j)) �= 0 when each symbol in A(z(j)) is assigned a

probability from {p(j)}. The sum of p′(j)(z(j)) over all such

assignments is the pattern probability p(j)(Ψ(z(j))). And

once such an assignment is made, mapping the remaining

kj − m(z(j)) probabilities in {p(j)} to k − m(z(j)) remain-

ing symbols of A in all the (k −m(z(j)))
kj−m(z(j))

different

ways lead to the same p′(j)(z(j)).
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The lemma follows by substituting the above Pμ(z
(1); z(2))

in the decision rule Ω∗(μ).
In order to match the performance of Ω∗({p(1)}, {p(2)}),

we can consider classifiers that use one of the several pat-

tern probability estimators shown in [8], in place of the actual

pattern probabilities. We complete this subsection with a typi-

cality result similar to [7] which shows that estimated pattern

probabilities are close to the underlying pattern probabilities

with high probability. We consider the block estimator qspb for

probability of patterns ψ of length �, shown in [8, Thm. 11],

given by

qspb(ψ)
def
=

1

|Φ�|
1

N(ϕ(ψ))
.

Here, ϕ(ψ)
def
= (ϕ1, ϕ2, . . . , ϕ�) is the profile of the pattern

ψ, where ϕμ is the number of distinct symbols that have

each appeared μ times in ψ, for μ = 1, 2, . . . , �. For example,

ϕ(Ψ(abracadabra)) = ϕ(12314151231) = (2, 2, 0, 0, 1).

N(ϕ) is the number of patterns with the same profile ϕ,

which is shown in [8, Lem. 3] to be

N(ϕ) =
�!∏�

μ=1(μ!)
ϕμϕμ!

.

Φ� is the collection of all profiles of length �, and the number

of such profiles, |Φ�|, is same as the number of unordered par-

titions of �, i.e., the partition number p(�) [10, Thm 15.7][8],

given by

exp

(
π

√
2

3

√
�(1− o(1))

)
≤ |Φ�| ≤ exp

(
π

√
2

3

√
�

)
.

The estimator qspb assigns equal probability to all profiles and

equal probability to all patterns with the same profile.

Lemma 2: Let X be a sequence of length � generated by

an i.i.d. distribution p over an arbitrary alphabet. Then, for all

l > π
√

2
3

√
�,

Pr

{∣∣∣∣log qspb(Ψ(X))

p(Ψ(X))

∣∣∣∣ ≥ l

}
≤ exp

(
−l + π

√
2

3

√
�

)
.

Proof: The proof is along the lines of [7, Lem. 15]. We

observe that

log
qspb(Ψ(x))

p(Ψ(x))
= log

qspb(ϕ(Ψ(x)))

p(ϕ(Ψ(x)))
,

since both qspb and p assign equal probabilities to patterns

with the same profile. Also,

log(qspb(ϕ(Ψ(x)))) = log
1

|Φ�| ≥ −π

√
2

3

√
� > −l.

Hence, as p(ϕ(Ψ(x))) ≤ 1 and qspb(ϕ(Ψ(x))) ≤ 1,

∣∣∣∣log qspb(ϕ(Ψ(x)))

p(ϕ(Ψ(x)))

∣∣∣∣ ≥ l ⇒ log
1

p(ϕ(Ψ(x)))
≥ l.

Therefore,

Pr

{∣∣∣∣log qspb(Ψ(X))

p(Ψ(X))

∣∣∣∣ ≥ l

}
= Pr

{
log

qspb(ϕ(Ψ(X)))

p(ϕ(Ψ(X)))
≥ l

}

≤ Pr

{
log

1

p(ϕ(Ψ(X)))
≥ l

}
≤ |Φ�| exp(−l)

≤ exp

(
−l + π

√
2

3

√
�

)
.

The bound is uniform for all i.i.d. distributions. In particular,

substituting l = 2π
√

2
3

√
�,

Pr

{∣∣∣∣log qspb(Ψ(X))

p(Ψ(X))

∣∣∣∣ ≥ 2π

√
2

3

√
�

}
≤ exp

(
−π

√
2

3

√
�

)
.

Thus, probabilities of long patterns can be estimated cor-

rectly to first order in the exponent with high probability.

This is a positive result, since we are estimating probabil-

ities of patterns of length � ≥ N . However, it still does

not imply that the classifier based on qspb is good in terms

of worst case discrepancy between Pe(Ωspb, p
(1), p(2)) and

Pe(Ω
∗({p(1)}, {p(2)}), p(1), p(2)). This requires a stronger

result than the above lemma, i.e., typicality in terms of

conditional probabilties of patterns, and is an ongoing work.

We observe that single pattern classifiers require the alpha-

bet size k to supplied, which may not be known and may

therefore needed to be estimated. As we will see in the next

subsection, classifiers based on joint pattern probabilities do

not have this requirement.

B. Joint pattern classifiers

In this subsection, we look at classifiers that attempt

to perform as good as the optimal classifier that not only

knows {p(1)}, {p(2)}, but also knows the (relative) associ-

ations between them. We denote the multiset of pairs of

probabilities for different symbols by {p(1), p(2)}. For ex-

ample, the if p(1) = (0.7, 0.3, 0) and p(2) = (0.2, 0.6, 0.2),

then {p(1), p(2)} = {(0.3, 0.6), (0.7, 0.2), (0, 0.2)}. Be-

fore we proceed to characterize the optimal classifier

Ω∗({p(1), p(2)}), we introduce the notion of joint pattern of

two (or more) sequences, which apart from conveying the

patterns of the individual sequences, also conveys the associ-

ation between their actual symbols. For a pair of sequences

z(1), z(2) ∈ A∗, the joint pattern Ψ(z(1), z(2))
def
= (ψ

(1)
, ψ

(2)
),

where ψ
(1)

= Ψ(z(1)) and ψ
(1)

ψ
(2)

= Ψ(z(1)z(2)). For

example, Ψ(bab,abca) = (121, 2132).

Lemma 3: The decision rule Ω∗({p(1), p(2)}) is given by

ω(1|x(1), x(2), y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if p(Ψ(x(1)y, x(2))) >

p(Ψ(x(1), x(2)y)),

i.e.,p(Ψ(x(1)y,x(2)))

p(Ψ(x(1),x(2)))
> p(Ψ(x(1),x(2)y))

p(Ψ(x(1),x(2)))
,

0 otherwise,

where p = (p(1), p(2)), and ω(2|x(1), x(2), y) = 1 −
ω(1|x(1), x(2), y), for all (x(1), x(2), y).
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Proof: Let k∨ be the nonzero support of {p(1), p(2)}, i.e.,

the number of symbols that are assigned non-zero probabilities

by one of p(1) or p(2). All the kk∨ associations of {p(1), p(2)}
with A are equally likely, which is equivalent to the uniform

prior μ over (p′(1), p′(2)) ∈ A{p(1),p(2)}. Then,

Pμ(z
(1); z(2)) =

∑
(p′(1),p′(2))∈
A{p(1),p(2)}

1

kk∨
p′(1)(z(1))p′(2)(z(2))

=
(k −m)

k∨−m

kk∨
p(Ψ(z(1), z(2)))

=
1

km
p(Ψ(z(1), z(2))),

where m = m(z(1)z(2)). Substituting the above Pμ(z
(1); z(2))

in the decision rule Ω∗(μ) leads to the desired result.

We now consider a block estimator qjpb for probabilities of

joint patterns, that can be used in place of the actual pattern

probabilities in Ω∗({p(1), p(2)}). It is analogous to the estima-

tor qspb seen in last subsection. Let (ψ
(1)

, ψ
(2)

) be a joint pat-

tern of length (�1, �2), i.e., the length of ψ
(1)

is �1 and of ψ
(2)

is �2. The profile of this pattern is ϕ(ψ
(1)

, ψ
(2)

)
def
= [ϕμ1,μ2 ], a

(�1+1)×(�2+1) integer matrix, where ϕμ1,μ2 is the number of

symbols, i.e., labels, that have appeared μ1 times in ψ
(1)

and

μ2 times in ψ
(2)

, for μ1 = 0, 1, . . . , �1 and μ2 = 0, 1, . . . , �2.

By convention, ϕ0,0 ≡ 0. Like qspb, the estimator qjpb assigns

equal probability to all profiles and equal probability to all

patterns with the same profile. In other words,

qjpb(ψ
(1)

, ψ
(2)

)
def
=

1

|Φ�1,�2 |
1

N(ϕ(ψ
(1)

, ψ
(2)

))
,

where Φ�1,�2 is the collection of all distinct profiles of patterns

of length (�1, �2), and N(ϕ) is the number of joint patterns

with the same profile ϕ. We state without proof the following

two lemmas that calculate N(ϕ) and |Φ�1,�2 |.
Lemma 4: For all �1, �2 ≥ 0 and ϕ ∈ Φ�1,�2 ,

N(ϕ) =
�1!�2!∏�1

μ1=0

∏�2
μ2=0(μ1!μ2!)

ϕμ1,μ2ϕμ1,μ2
!
.

Proof: A proof is along the lines of [8, Lem. 3].

|Φ�1,�2 | is same as joint partition number p(�1, �2), the num-

ber of unordered partitions of (�1, �2) where each partition

consists of parts that are 2−tuples of non-negative integers and

component wise sums of all parts add to �1 and �2 respectively.

For example, p(2, 1) = 4, since (2, 1) = (2, 0) + (0, 1) =

(1, 1) + (1, 0) = 2 · (1, 0) + (0, 1).
Lemma 5: For all integers �1, �2 ≥ 8,

p(�1, �2) < exp
(
�
2/3
1 + �

2/3
2 + 2(�1�2)

1/3 + �
1/3
1 + �

1/3
2

)
.

Proof: A simple proof is similar to [10, Thm 15.7].

While it immediately follows that the per-symbol pattern re-

dundancy of qjpb goes to zero, a typicality result similar to

Lemma 2 is stated without proof below.

Lemma 6: Let X
(1)

, X
(2)

be sequences of length �1, �2 >

8 generated by i.i.d. distributions p(1), p(2) over an arbitrary

alphabet. Then,

Pr

{∣∣∣∣∣log qjpb(Ψ(X
(1)

, X
(2)

))

p(Ψ(X
(1)

, X
(2)

))

∣∣∣∣∣ ≥ 2l

}
≤ e−l,

where l = �
2/3
1 + �

2/3
2 + (�1�2)

1/3 + �
1/3
1 + �

1/3
2 .

The estimator qjpb and the results can be extended to more

than two classes but is computationally intensive owing to pro-

files of higher dimension. Also, the redundancy of joint pat-

terns increases with the number of classes, i.e., distributions.

III. EXPERIMENTAL RESULTS

We show experimental results for text classification to

demonstrate the performance of pattern based classifiers. In

this application, one is given a data set consisting of docu-

ments, for example, electronic messages from newsgroups,

along with their pre-assigned labels, for example, their topic,

and the task is to label new documents.

One of the techniques that works reasonably well in prac-

tice is Naive Bayes [4], which assumes a Bag of Words
model, i.e., the words in each document are generated i.i.d.
according to the distribution of the class to which it belongs.

Naive Bayes classifiers are LRT’s that use one of the sev-

eral well known probability estimators, for example, Laplace

or Good-Turing estimators, to estimate the underlying dis-

tributions of the classes from the training documents. Our

experiments show that pattern based classifiers, which are

essentially Naive Bayes classifiers that use pattern probabil-

ity estimators, can perform as good as the state-of-the-art

techniques like Support Vector Machine (SVM).

In addition to the classifiers based on block estimators for

pattern probability, i.e., qspb and qjpb, we also consider qsps,

a sequential estimator for single pattern probability developed

in [8, Thm. 18] and its analogue qjps for joint patterns.

The conditional probability assigned by the estimator qsps
to a symbol a ∈ A given a sequence z = z1z2 · · · z� ∈ A�,

with the symbol a appearing μ times in z, is given by

qsps(z�+1 = a|z) def
=

1

S

{
f�(ϕ1+1)

ϕ0
if μ = 0,

(μ+ 1)
f�(ϕμ+1+1)

f�(ϕμ)
if 1 ≤ μ ≤ �,

where S
def
= f�(ϕ1+1)+

∑�
μ′=1 ϕμ′

f�(ϕμ′+1+1)

f�(ϕμ′ ) is the normal-

ization factor and f�(ϕ)
def
= max

{
ϕ, ��1/3�} is a smoothing

function and ϕ0
def
= k − m(z) is the number of unseen sym-

bols.

Likewise, the probabilities assigned by the estimator qjps to

a symbol a ∈ A given sequences z(1) ∈ A�1 and z(2) ∈ A�2 ,

with the symbol a appearing μ1 and μ2 times in z(1) and z(2)

respectively, is given by

qsps(z
(1)
�1+1 = a|z(1), z(2)) def

=

1

S(1)

⎧⎪⎪⎨
⎪⎪⎩
f�1,�2(ϕ1,0 + 1) if (μ1, μ2) = (0, 0),

(μ1 + 1)
f�1,�2

(ϕμ1+1,μ2
+1)

f�1,�2
(ϕμ1,μ2

) if 0 ≤ μ1 ≤ �1, 0 ≤ μ2 ≤ �2

and (μ1, μ2) �= (0, 0),

where

S(1) def
= f�1,�2(ϕ1,0+1) +

∑
0≤μ1≤�1,0≤μ2≤�2

(μ1,μ2) �=(0,0)

ϕμ1,μ2

f�1,�2(ϕμ1+1,μ2
+ 1)

f�1,�2(ϕμ1,μ2
)

and f�1,�2(ϕ)
def
= max

{
ϕ, �(�1�2)1/8�

}
. The estimate

qsps(z
(2)
�2+1 = a|z(1), z(2)) is defined similarly.
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We use the rainbow toolkit [5] for classification, with ad-

dional support for pattern based classifiers and optimal clas-

sifiers that use actual distributions for synthetic data sets.

A. Synthetic data sets

These experiments are intended to demonstrate that pattern

based classifiers work well when the data sets indeed con-

firm to the Bag of words model. The data sets, which try

to resemble actual data sets, were generated as follows. All

classes have the same monotone distribution, which is a Zipf

distribution [11]. The actual distribution for each class is ob-

tained by permuting the monotone distribution, and ensuring

that the distributions of different distributions are not too far

apart, and thus being easily classifiable unlike real data sets.

This is achieved in two ways: permuting the probabilities ran-

domly such that the final index of each probability is within

(1) a fixed range of the original index (i.e., rank in monotone)

and (2) within a variable range that is proportionally large

as the original index, i.e., the smaller probabilities are per-

muted within a farther range. From the results shown in Table

I, it is seen that pattern based classifiers perform favorably.

In particular, JPS performs consistently well. Also observed

is the generally better performance of sequential estimators

than their block counterparts. As we will see in the case of

real data sets in the next subsection, the benefits of sequential

estimators are more prominent in skewed data sets, i.e., data

sets with variable number of documents per class and hence

non-uniform prior π̄.

Data set Classification method

Exp k lap svm sps spb jps jpb best

0.7 7,500 81.4 85.0 83.5 77.1 81.9 75.8 90.4

0.7 25,000 68.6 79.9 73.7 69.7 77.3 72.8 88.9

0.7 75,000 60.5 76.0 62.4 61.6 72.6 71.3 83.1

1.0 7,500 98.6 99.1 98.9 95.0 99.0 98.0 99.5

1.0 25,000 94.6 97.8 95.8 91.6 97.8 96.6 98.6

1.0 75,000 90.3 96.7 87.2 84.1 96.0 94.9 98.0

0.7 7,500 89.5 87.1 90.3 83.5 88.5 79.6 96.4

0.7 25,000 82.1 83.3 87.0 82.2 86.0 77.1 96.8

0.7 75,000 75.7 80.4 79.5 77.1 79.6 73.1 95.5

1.0 7,500 98.3 96.6 98.6 95.0 98.3 97.0 99.4

1.0 25,000 95.9 95.3 96.8 93.7 97.1 95.6 99.2

1.0 75,000 95.2 93.3 94.3 92.3 96.1 93.7 99.3

TABLE I

ACCURACY OF DIFFERENT CLASSIFIERS - LAPLACE, SVM, SPS, SPB,

JPS, JPB ON TWO-CLASS DATA SETS CONTAINING 2000 DOCUMENTS PER

CLASS AND 100 WORDS PER DOCUMENT, AND SPLIT 60-40 FOR TRAINING

AND TEST. ZIPF DISTRIBUTIONS ARE GENERATED WITH DIFFERENT

EXPONENTS AND SUPPORT SIZES. THE TOP HALF OF THE ROWS

CORRESPOND TO DISTRIBUTIONS GENERATED BY ‘FIXED RANGE’ AND

LATER HALF BY ‘PROPORTIONAL RANGE’ INDEX PERTURBATION.

B. Real world data sets

These experiments demonstrate the favorable performance

of pattern based classifiers on some of the well known actual

data sets. The collection Newsgroups, i.e., 20ng, is a list of

1000 articles collected from 20 newsgroups. It contains several

closely related subgroups, for example, comp.*, sci.* and

talk.*. The Reuters 21758 data sets, i.e., r52 and a subset

r8, have 52 and 8 classes respectively and the number of doc-

uments per class vary sharply between few thousands to just

one or two. The CADE dataset, i.e., cade, is a collection of

Portugese web documents consisitng of 12 classes. It is a fairly

large and uneven data set with documents per class ranging

between few hundreds to few thousands and is generally diffi-

cult to classify. The data set World Wide Knowledge Base, i.e.,
webkb, is a small data set of 4 classes of variable number of

documents per class. These data sets, along with their training-

test split can be obtained from [1]. The results are shown in

Table II. As mentioned earlier, we observe the generally lower

performance of block estimators, with the JPB estimator far-

ing especially poorly with the skewed data set r52 and r8.

While results in general are in favor of SVM, they also show

the favorable performance of pattern based classifiers. In par-

ticular, although JPS is not the best classifier for any of them,

it is the second best in all data sets except for webkb, and

performs well consistently.

Data set
Classification method

laplace svm sps spb jps jpb

20ng 80.76 80.80 82.68 83.05 83.01 81.92

cade 53.10 52.09 57.01 51.22 54.86 49.77

r52 80.53 92.04 85.59 83.30 87.32 32.52

r8 90.61 94.49 90.36 90.17 91.69 67.38

webkb 83.30 87.94 83.37 83.13 83.30 83.02

TABLE II

ACCURACY OF DIFFERENT CLASSIFIERS FOR REAL DATA SETS.
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