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Abstract—We consider universal compression of n samples
drawn independently according to a monotone or m-modal
distribution over k elements. We show that for all these dis-
tributions, the per-sample redundancy diminishes to 0 if k =
exp(o(n/ logn)) and is at least a constant if k = exp(Ω(n)).

I. INTRODUCTION

Universal compression concerns encoding the output of
an unknown source in a known class of distributions. We
are interested in understanding compression of i.i.d. samples
from distributions over an underlying discrete alphabet X
(e.g., a subset of N). Let Pn def

= P × P . . . × P be a
product distribution over Xn. Shannon’s source coding the-
orem shows that H(P )

def
=

∑
X −P (x) logP (x) bits are

necessary and sufficient to encode a known source (with
distribution) P , where H(P ) is the entropy of P . By Kraft’s
Inequality, any distribution Qn over Xn implies a code that
uses − logQn(xn1 ) bits to encode xn1 ∈ Xn. The code implied
by the underlying distribution Pn uses − logPn(xn1 ) bits and
the expected number of bits used is nH(P ). The average
redundancy of Qn with respect to Pn is

D(Pn||Qn) = EPn

[
log

Pn(xn1 )

Qn(xn1 )

]
,

the expected extra number of bits used by Qn beyond the
entropy. D(P ||Q) is called the Kullback-Liebler divergence
between P and Q.

Let the underlying distribution be in a known class P , and

Pn def
= {Pn : P ∈ P}

be the class of all distributions of the form Pn. Then

R(Pn)
def
= inf

Qn

sup
Pn

D(Pn||Qn)

is the average or min-max redundancy of Pn, which corre-
sponds to the best coding for the worst distribution.

While coding over unknown distributions, often some apri-
ori knowledge about the underlying distribution is known. For
example, coding the last names of people from a census data is
close to coding a monotone distribution, since we have a prior
knowledge about the prevalences of last names. We expect that
the last name Smith is more likely than Galifianakis. In a text
document we have some knowledge about word frequencies
and probabilities. In such language modeling applications, Zipf
distributions are common [1]. Geometric distributions over

integers are useful in compressing residual signals in image
compression [2].

A natural generalization is to consider distributions with
at most m modes. For example, life expectancy of a pop-
ulation, Poisson, and Binomial distributions are unimodal.
There has been a considerable interest over the past decade
in approximating mixtures of distributions. Many real world
phenomenon can be modeled as outcomes of mixtures of
simple distributions and these have been studied since as early
as the study Naples crab population by Pearson [3]. In this set-
up after observing measurements (say diameter over heights),
the distribution that explained the data the best was a mixture
of two Gaussians, predicting the presence of more than one
specie. Such mixtures of m simple distributions are typically
m-modal. There has been enormous work in the past decade
in learning mixtures of distributions.

Before discussing monotone distributions, we state the re-
sults for the most well studied finite discrete distributions,
i.e., the i.i.d. distributions. Let Ink be the class of all i.i.d.
distributions over k elements and block length n. Redundancy
of Ink has been extensively studied [4–11]. It is now well
established that

1) For k = o(n)

R(Ink ) =
k − 1

2
log

n

k
(1 + o(1)). (1)

2) For n = o(k)

R(Ink ) = n log
k

n
(1 + o(1)). (2)

II. TERMINOLOGY

We consider distributions over the set N of positive inte-
gers. Such a distribution is non-increasing, or monotone, if
P (i) ≥ P (i + 1) for all i ≥ 1. Let M be the class of all
monotone distributions over N, and let Mk be the subset of
M consisting of monotone distributions over [k] = {1, . . . , k}.
LetMn

k denote the class of distributions obtained by sampling
one distribution in Mk independently n times, i.e., product
distributions of the form Pn for P ∈Mk.

Generalizing monotone distributions, a consecutive set
[l, r] = {l, . . . , r} of integers is a mode of a distribution P
if for all i, j ∈ [l, r] P (i) = P (j), and (P (l − 1) − P (l)) ·
(P (r + 1) − P (r)) > 0, representing a local minimum or
maximum of P . P is m-modal if it has at most m modes.
Note that a monotone distribution is 0-modal. Let Mk,m be



the collection of all m-modal distributions over [k], andMn
k,m,

the distributions over [k]n obtained by sampling the same
distribution in Mk,m independently n times.

III. RELATED WORK

Initial work on universal compression of monotone distri-
butions was motivated by representation of integers, hence
centered on a single instance, namely n = 1. [12] showed
that every positive integer k can be represented using roughly
log k + 2 log log k bits. [13] derived a related lower bound,
and [14] constructed a method for minimizing the expected
number of bits normalized by the distribution’s entropy.

Remarkably, [15] found the expected redundancy exactly,

R(Mk) = log

(
1 +

k∑
i=2

(
1− 1

i

)i
1

i− 1

)
.

Since (1− 1
i )
i → e−1 and

∑k
i=1

1
i ∼ log k, this shows that

R(Mk) = log log k +O(1),

and in particular, R(M) =∞.
More recently, [16] analyzed the min-ave redundancy that

replaces the redundancy of the worst distribution in the class
by the average over all distributions. They show that monotone
distributions have constant min-ave redundancy.

Recent work has concerned compression of independent
identical monotone distributions, namely distributions inMn.
The results above imply R(Mn) = ∞, yet [17] showed
that the set of all distributions in M with finite entropy
can be compressed with a diminishing per-sample relative
redundancy. Specifically, there is a distribution Qn over Nn,
such that for all P ∈M with H(P ) <∞,

D(Pn||Qn) ≤ nH(P )
log log(nH(P ))

log(nH(P ))
.

Note that the theorem holds for all distributions with finite
entropy, even those with infinite support. It therefore does
not necessarily imply that the redundancy is sub-linear. For
example, for the uniform distribution over [exp(

√
n)], the

bound is n3/2, hence super-linear.
[18] considered the redundancy of monotone distributions

as a function of the alphabet size k as well as the block length
n. They show tight lower and upper bounds for k = O(n) 1,

R(Mn
k ) = Θ̃(min{k, n1/3}).

In particular, this implies that when n grows linearly with k,
the per-sample redundancy diminishes to 0. These results can
be extended using methods from [19] to prove that Mn

k has
sub-linear redundancy for k = 2o(

√
n).

Universal compression is related to the problem of distribu-
tion estimation with Kullback-Leibler distortion. The problem
of estimating monotone and few-modes distributions has been
studied in statistics and theoretical computer science. [20]
considered learning monotone and unimodal distributions with

1g(n) = Θ̃(f(n) if f(n) = g(n)polylog(n)

few samples. The sample complexity of learning m-modal
distributions over an alphabet of size k was considered by [21].
Testing distributions for monotonicity has been considered in
varied settings [22–26].

IV. RESULTS

To begin, in Section V we consider approximating mono-
tone distribution over k elements by step distributions with
significantly fewer steps. While such approximation results
are known for `1 distance [20], we need approximation in KL
divergence, and these require more work as the KL divergence
is not a metric and does not satisfy the triangle inequality. In
Theorem 3 we show that for any integer b ≥ 10 log k, there
is a partition of [k] into b fixed intervals such that for any P ,
the step function P̄ derived by averaging P over each of the
intervals satisfies

D(P ||P̄ ) ≤ 10
log k

b
.

This result can be viewed as reducing the effective alphabet
size from k to b, and in Section VI we use it to show that

R(Mn
k ) ≤ 10

n log k

b
+

(b− 1)

2
log n.

Specifically, in Theorem 4 we show that for large n, and any
k,

R(Mn
k ) ≤

√
20n log k log n.

Hence in Corollary 5, we deduce that for k = 2o(n/ logn),

R(Mn
k ) = o(n).

In Section VII we extend these results to m-modal distribu-
tions and show in Theorem 7 that for large n and any k ≥ m

R(Mn
k,m) ≤ log

(
k

m

)
+ (m+ 1)R(Mn

k ).

Consequently, in Corollary 8, we deduce that for any fixed
m, and k = 2o(n/ logn),

R(Mn
k,m) = o(n).

Conversely, in Theorem 9, we show that for k = 2n,

R(Mn
k ) = Ω(n).

By monotonicity of redundancy, the same bound holds for
all k = 2Ω(n). It follows that if k is subexponential in
n/ log n then the redundancy diminishes to 0, while if it at
least exponential in n, the redundancy is at least a constant.

V. APPROXIMATING MONOTONE DISTRIBUTIONS

We show that any monotone distribution over k elements
can be approximated in KL-divergence by a step distribution
with significantly fewer steps. We will use the following
simple result on the average empirical variance of non-negative
numbers. Its proof follows from a straight-forward expansion
and is omitted for brevity.



Lemma 1: For 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn with mean x̄,
n∑
i=1

(xi − x̄)2 ≤ n(xn − x1)x̄. �

Let Ib1 = I1, . . . , Ib be a partition of [k] into consecutive
intervals. P is a step distribution over this partition if for every
1 ≤ j ≤ b, all i, i′ ∈ Ij satisfy P (i) = P (i′). Let |I| denote
the number of integers in interval I . For a distribution P , let P̄
be the step distribution over Ib1 whose constant value over each
interval is P ’s average over that interval, namely for x ∈ Ij

P̄ (x) =

∑
x∈Ij P (x)

|Ij |
=
P (Ij)

|Ij |
. (3)

Let P+
j and P−j be the highest and lowest probabilities in

interval Ij , and let kj be the number of non-zero probabilities
in interval Ij . The following lemma bounds the KL Divergence
between P and P̄ .

Lemma 2: For any P ∈Mk,

D(P ||P̄ ) ≤
b∑
j=1

kj(P
+
j − P

−
j ).

Proof: Using log x ≤ x− 12 for x ≥ 0 and Lemma 1,∑
x∈Ij

P (x) log
P (x)

P̄j
≤
∑
x∈Ij

P (x)
P (x)− P̄j

P̄j

=
∑
x∈Ij

P 2(x)− P̄ 2
j

P̄j

=
1

P̄j

∑
x∈Ij

(P (x)− P̄j)2

≤ kj(P+
j − P

−
j ),

and the proof follows by summing over all intervals.
We now describe a partition of [k] into b intervals over which
every monotone distribution P is closely approximated by the
step distribution P̄ . For γ = 2 log k

b define

|Ij | =

{
1 for 1 ≤ j ≤ b

2 ,

b2(1 + γ)j−b/2c for b
2 < j ≤ b.

Observe that
b∑
j=1

|Ij | = b/2 +

b∑
j= b

2 +1

b2(1 + γ)j−b/2c

≥
b∑

j=b/2+1

2(1 + γ)j−b/2

= 2
1 + γ

γ

(
(1 + γ)b/2 − 1

)
,

which is larger than k for log(1 + γ) ≥ 2 log k/b. Hence the
intervals span [k]. For j ≤ b

2 , |Ij | = 1, hence P+
j = P−j , and

for j > b/2, kj ≤ |Ij | ≤ 2(1 + γ)j−b/2.

2We use natural logarithms throughout the paper. The results are a constant
factor from base 2.

Theorem 3: Let b ≥ 10 log k and the intervals Ib1 as defined
above. Then for every P ∈M,

D(P ||P̄ ) ≤ 10
log k

b
.

Proof: By Lemma 2,

D(P ||P̄ ) ≤
b∑
j=1

kj(P
+
j − P

−
j )

≤
b∑

j=b/2+1

2(1 + γ)j−b/2(P+
j − P

−
j )

≤ 2(1 + γ)P+
b/2+1+

b∑
j=b/2+1

2(P+
j+1(1 + γ)j+1−b/2 − P−j (1 + γ)j−b/2)

≤ kb/2+1P
+
b/2+1 + 2γ

b∑
j=b/2+1

P−j (1 + γ)j−b/2,

where the last step uses P+
j+1 ≤ P

−
j .

We need to consider only non-zero kj’s. If kj+1 is non-zero
this implies that kj ≥ (1+γ)j−b/2. Therefore, the summation
above can be bounded as

D(P ||P̄ ) ≤ kb/2+1P
+
b/2+1 + 2γ

b∑
j=b/2+1

P−j kj

≤ |Ib/2+1|P+
b/2+1 + 2γ.

The theorem follows by substituting the values of γ and
|Ib/2+1| and the inequality P+

b/2+1 ≤ 2/b.

VI. UPPER BOUND ON MONOTONE REDUNDANCY

Theorem 4: For large n, and any k,

R(Mn
k ) ≤

√
20n log k log n.

Proof: Recall the definition of P̄ in (3). As before, P̄n

is the i.i.d. distribution by sampling P̄ n times. Then for any
distribution Qn over [k]n,

D(Pn||Qn) =
∑

xn
1∈[k]n

Pn(xn1 ) log
Pn(xn1 )

Qn(xn1 )

=
∑

xn
1∈[k]n

Pn(xn1 )

[
log

Pn(xn1 )

P̄n(xn1 )
+ log

P̄n(xn1 )

Qn(xn1 )

]

=nD(P ||P̄ ) +
∑

xn
1∈[k]n

Pn(xn1 ) log
P̄n(xn1 )

Qn(xn1 )
,

where the last step follows since the KL divergence for product
distributions is the sum of KL divergence of distributions on
each coordinate.

For intervals I1, . . . , Ib satisfying Theorem 3, by the defi-
nition of redundancy

R(Mn
k ) ≤ 10n log k

b
+inf
Qn

sup
P∈Mk

∑
xn
1∈[k]n

Pn(xn1 ) log
P̄n(xn1 )

Qn(xn1 )
.



We use this inequality and Equation (1) to construct a
distribution over [k]n that has a small KL divergence with
respect to any distribution inMn

k . We do this by showing that
the second expression is upper bounded by the redundancy of
n−length i.i.d. sequences over an alphabet of size b.

Equation (1) states that for b = o(n), there is a distribution
Qb,n over [b]n such that any distribution P over [b] satisfies

D(Pn||Qb,n) ≤ (b− 1)

2
log n. (4)

Using this distribution, we design a distribution over [k]n

as follows. For the intervals described earlier, and any x ∈ [k],
let f(x) be the index of the interval that x belongs to.
Therefore, f is a map from [k] to [b]. Then, f(xn1 )

def
=

f(x1, . . . , xn)
def
= f(x1), . . . , f(xn) maps [k]n to [b]n. Let

f(xn1 ) = jn1
def
= j1, . . . , jn. The number of xn1 that map to jn1

is |Ij1 | . . . |Ijn |. Define the distribution Q̄n over [k]n as

Q̄n(xn1 )
def
=

Qb,n(jn1 )∏n
i=1 |Iji |

. (5)

It is easy to check that it sums to 1 and the distribution is well
defined. Similarly by Equation (3),

P̄n(xn1 ) =

n∏
i=1

P (Iji)

|Iji |
.

Using these two, for any P ∈Mk∑
xn
1∈[k]n

Pn(xn1 ) log
P̄n(xn1 )

Q̄n(xn1 )

=
∑

jn1 ∈[b]n

 ∑
xn
1 :f(xn

1 )=jn1

Pn(xn1 )

 log

∏n
i=1 P (Iji)

Qb,n(jn1 )
.

Now, for jn1 ∈ [b]n,∑
xn
1 :f(xn

1 )=jn1

Pn(xn1 ) =
∑

xn
1 :xi∈Iji

n∏
i=1

P (xi)
(a)
=

n∏
i=1

P (Iji),

where (a) exchanges the sum and product. Therefore,∑
xn
1∈[k]n

Pn(xn1 ) log
P̄n(xn1 )

Qn(xn1 )
=
∑

jn1 ∈[b]n

n∏
i=1

P (Iji) log

∏n
i=1 P (Iji)

Qb,n(jn1 )

A distribution P induces a distribution over I1, . . . , Ib, an
alphabet of size b, and this expression is the KL divergence
of the product distribution over the intervals to Qb,n. By
Equation (4) it is bounded by (b− 1) log n/2, hence

R(Mn
k )≤10n log k

b
+ inf
Qn

sup
P∈Mk

∑
xn
1∈[k]n

Pn(xn1 ) log
P̄n(xn1 )

Qn(xn1 )

≤10n log k

b
+ sup
P∈Mk

∑
jn1 ∈[b]n

n∏
i=1

P (Iji) log

∏n
i=1 P (Iji)

Qb,n(jn1 )

≤10n log k

b
+

(b− 1)

2
log n.

Choosing b =
√

20n log k
logn proves the theorem.

Corollary 5: For k = 2o(n/ logn),

R(Mn
k ) = o(n). �

VII. UPPER BOUND ON m-MODAL DISTRIBUTIONS

We upper bound the redundancy of m-modal distributions
by decomposing them into m+1 monotone distributions. First
note that the redundancy of a union of distribution classes is
close to the highest redundancy of a class in the union.

Lemma 6 (Redundancy of unions): If P1, . . . ,PT are T
distribution classes over the same domain, then

R

 ⋃
1≤i≤T

Pi

 ≤ max
1≤i≤T

R(Pi) + log T.

Proof: Let distribution Q∗i achieve the redundancy of Pi,
and define Q∗ =

∑T
i=1Q

∗
i

T to be the average of these redun-
dancy achieving distributions. For any i and Pi ∈ Pi,

D(Pi||Q∗) ≤ D(Pi||Q∗i ) + log T ≤ R(Pi) + log T. �

We first decompose the class of m-modal distributions into(
k
m

)
classes.

Theorem 7: For large n and any k ≥ m

R(Mn
k,m) ≤ log

(
k

m

)
+ (m+ 1)R(Mn

k ).

Proof: There are
(
k
m

)
choices for the modes of the

distributions. Divide the class of all m-modal distributions
into

(
k
m

)
classes such that the modes of all the distributions

within one class are the same. The distributions are monotone
between the modes and there are at most m + 1 distinct
regions. Each such region can be coded with redundancy at
most R(Mn

k ) and therefore the total extra number of bits can
be bounded by (m + 1)R(Mn

k ). Combining with Lemma 6
with T =

(
k
m

)
proves Theorem 7.

Corollary 8: For any fixed m and k = 2o(n/ logn),

R(Mn
k,m) = o(n). �

VIII. LOWER BOUND

Theorem 9: For k = 2n,

R(Mn
k ) = Ω(n).

Proof: We show the lower bound using the redundancy
capacity theorem. Our objective will be to construct a large
class of distinguishable distributions defined below.

Definition 10: A collection S ⊂ Pn of distributions over
Xn is (1 − ε)−distinguishable if there exists a function f :
Xn → S, such that for any Pn ∈ S, Prob(f(Xn) 6= Pn) < ε.

In other words, a collection of distributions is distinguish-
able if given a sample generated by one of the distributions,
we can identify the distribution, with error ≤ ε.

A collection of distinguishable distributions provides a
lower bound on the redundancy by the following formulation
of the redundancy-capacity theorem.



Lemma 11: If there is a collection S ⊂ Mn
k of (1 −

ε)−distinguishable distributions, then

R(Mn
k ) ≥ (1− ε) log |S| − 1.

We now construct a class of 2cn distinguishable distributions
in Mn

k for k = 2n, and a constant c > 0. This will give a
lower bound of cn(1− ε)− 1 on R(Mn

k ).
Due to lack of space, we provide an overview of the

construction of distributions and a sketch the proof. We assume
n is even for the ease of illustration.

Divide [2n] into n intervals as I1 = {1, 2}, and Ij =
{2j−1 + 1, . . . , 2j} for j = 2, . . . , n. Our collection of
distinguishable distributions will be a subset of distributions
of the form Pn, where P satisfies

1) For 2 ≤ j ≤ n, and i1, i2 ∈ (2j , 2j+1], P (i1) = P (i2).
2) For n/2 of the intervals, P (Ij) = 2

3n and for the
remaining n/2, P (Ij) = 4

3n . Furthermore, P (I1) is
always 4

3n .
It is then easy to verify that any P satisfying these properties

is a distribution in Mk, and furthermore, the number of such
distributions is exactly

(
n−1

n
2

)
.

Consider the following bijection from the set of distributions
satisfying these conditions to the set of binary strings in
{0, 1}n that have weight n/2 and whose first bit is 1. For
j = 1, . . . , n, if P (Ij) = 4/3n set the jth bit to 1, and 0
otherwise, defining the bijection.

We now show the existence of a large subset of such dis-
tributions that map to strings with a large Hamming distance,
using the Gilbert-Varshamov bound [27], as follows.

Lemma 12: For α < 1
2 , there exists a class of M

def
=

2n(1−h(α)−o(1)) distributions satisfying the properties and such
that the Hamming distance between the strings that they map
to satisfies,

|S(Pi) ∩ S(Pj)| < n(1− α)/2.

In other words for any pair of distributions, their distributions
are different in at least a fraction (1− α)/2 of the intervals.

Using this, we prove the following theorem.
Theorem 13: The class of distributions defined above is

0.9−distinguishable and contains ≥ 2n/100 distributions.
Applying Lemma 11 to this theorem proves the lower bound.

Due to space constraints, we only sketch the function f that
maps [k]n to the collection of distributions in the previous
theorem and defer the complete proof to the full version of
the paper.

For a distribution P in the theorem, let L(P ) ⊂ [n] be the
intervals where P (I) = 4/3n. Note that |L(P )| = n/2, and
we expect 2/3rd of the n symbols to appear in these intervals
when P is sampled n times.

Given a sample in [k]n, compute the fraction of symbols
lying in L(P ) for each of the 2n/100 such P ’s. Output the P
that has the highest fraction of elements in its corresponding
L(P ). The proof of distinguishability uses Chernoff bounds
and is along the lines of the proof of lower bound in [19].
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