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Abstract—We describe two algorithms for calculating
the probability of m-symbol length-n patterns over k-
element distributions, a partition-based algorithm with
complexity roughly 2O(m log m) and a recursive algorithm
with complexity roughly 2O(m+log n) with the precise
bounds provided in the text. The problem is related to
symmetric-polynomial evaluation, and the analysis reveals
a connection to the number of connected graphs.

I. INTRODUCTION

Recent works on estimating distributions over large

alphabets have replaced the observed sequence, assum-

ing i.i.d., by its pattern, the integer sequence obtained

by substituting each symbol by its order of appear-

ance [1, 2, 3, 4] For example the pattern of @∧@ is 121,

and the pattern of abracadabra is 12314151231. The

pattern reflects the number of times and order in which

symbols appear, while abstracting their actual values.

It has been shown that typically the maximum like-

lihood (ML) distribution maximizing the probability of

the observed pattern, approximates the underlying dis-

tribution better than the ML distribution of the sequence

itself.

For example, Figure 1 shows a uniform distribution

over 500 elements, indicated by a solid (blue) line. In a

typical collection of 1000 samples from this distribution,

6 elements appeared 7 times, 2 appeared 6 times, and

so on, and 77 did not appear at all, as shown in

the figure. The sequence maximum-likelihood (SML)

estimate, which always agrees with empirical frequency,

is shown by the dotted (red) line. It underestimates

that the distribution’s support size, and also misses the

uniformity. By contrast, PML postulates essentially the

correct distribution.

As shown in the above and other experiments, PML’s

empirical performance seems promising. In addition,

several results have proved its convergence to the un-

derlying distribution [5], yet analytical calculation of the

PML distribution for specific patterns appears difficult.

So far the PML distribution has been analytically derived

for only very simple or short (length ≤ 7) patterns.

Essentially all practical PML’s have therefore been

evaluated computationally, typically using an Ex-
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Fig. 1. SML and PML reconstruction of uniform distribution over
500 symbols from 1000 samples

pectation Maximization Algorithm approxmiating the

PML [6].

In this paper, we address the more basic problem of

precise calculation of pattern probability. The problem

is of interest for its own sake, and also as it corresponds

to the calculation of symmetric polynomials.

II. PATTERN PROBABILITY

The probability that a sample has pattern ψ is

P (ψ) def= P ({x : ψ(x) = ψ}).
For example, if a distribution P assigns probability

p(a) to an element a, and p(b) to element b, then the

probability of the pattern 121 is

P (121) = P (aba)+P (bab) = p2(a)p(b) + p2(b)p(a).

In general, we denote the length of a pattern by n and

its number of distinct symbols by m. The multiplicity of

an integer ψ in a pattern ψ is the number μψ of times ψ
appears in ψ. For example, for 12314151231, n = 11,

m = 5, μ1 = 5, μ2 = μ3 = 2, and μ4 = μ5 = 1.
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For simplicity, if a number ψ repeats consecutively

i times, we abbreviate it as ψi. For example, we may

write the pattern 11222111 as 122313. A pattern of the

form 1μ12μ2 · · ·mμm with μ1 ≥ · · · ≥ μm is canonical.
Clearly every pattern has a canonical pattern with the

same multiplicities, and their probabilities are the same

under any distribution. For example, the canonical pat-

tern of 123223 is 13223, and P (123223) = P (13223)
for every distribution P . We therefore consider only

canonical patterns.

Note that the pattern probability is determined by just

the multiset of probabilities, hence P can be identified

with a vector in the monotone simplex

{(p1, p2, . . . ) : p1 ≥ p2 ≥ · · · ≥ 0,
∑

pi = 1}.
It is easy to see that the pattern probability is a

symmetrized monomial (also called monomial symmetric
polynomial)

P (1μ12μ2 . . .mμm)

=
k∑

i1=1

k∑
i2=1
i2 �=i1

. . .

k∑
im=1

im �=i1,i2,...

pμ1
i1
pμ2
i2
. . . pμm

im
.

This expression consists of km terms. In cases of

interest, both k and m could be large, rendering straight-

forward calculation of the pattern probability infeasible.

In this paper we analyze two methods for calculating

the pattern probability. One has complexity m2m +
kn log n, and the other m · 3m + kn log n. While these

complexities are large as well, their evaluation will reveal

an interesting connection to the number of connected

graphs.

III. RECURSIVE ALGORITHMS

For any pattern ψ̄ = 1μ1 · · ·mμm and distribution P ,

P (ψ̄) can be written as

P (ψ̄)=P (1μ1)·P
(
1μ2 · · · (m−1)μm

)
−
m∑
i=2

P (ψ̄i), (1)

where ψ̄i
def= 1μ1+μi2μ2 · · · (i−1)μi−1iμi+1 · · · (m−1)μm

is the pattern obtained from ψ̄ by identifying the i-th
symbol with the first symbol. For example, for ψ̄ =
11223, ψ̄2 = 11112, ψ̄3 = 11122, and

P (11223) = P (11) · P (112) − P (11112) − P (11122).

The pattern probability P (ψ̄) can be calculated by

recursively applying Equation (1) to patterns appearing

on its right-hand side.

Observe that all patterns of the form 1μ appearing in

the recursive calculation satisfy μ =
∑
i∈S μi for some

S ⊆ [m].

The prevalence ϕμ of an integer μ in a pattern ψ̄ is

the number of symbols appearing μ times. The profile
ϕ̄ of a pattern ψ̄ is the formal product

∏
μ μ

ϕμ . For

example, the prevalences in pattern 132332 are ϕ2 = 1
and ϕ3 = 2, and the profile is therefore 2132.

Let νϕ1
1 νϕ2

2 · · · νϕd

d be the profile of pattern ψ̄, where

d is the number of distinct multiplicities. The following

theorem bounds the complexity in terms of k, n, m,

and d. showing in particular that for constant d, the

complexity is polynomial in the other parameters.

Theorem 1. For any distribution P , the probability of
pattern ψ̄ = 1μ12μ2 · · ·mμm can be deterministically
calculated in time

O

(
kmin {n, 2m} log n

+ min
{
meπ

√
n, nm2m,m3m, nmd,m2d

})
,

where d is the number of distinct multiplicities.

Proof: Assume that P (1
P

i∈S μi) are calculated

beforehand for all S ⊆ [m], which can be done in time

O (kmin{n, 2m} log n).

Patterns of the same canonical form have the same

probability. The computational graph for calculating

P (ψ̄) is a directed graph, consisting of canonical forms

of all patterns ever appearing in the recursive calculation,

and the (outgoing) neighbors of pattern ψ̄ are patterns

appearing on the right-hand side of Equation (1), namely

1μ1 , 1μ2 · · · (m− 1)μm , and ψ̄i’s.

All patterns in the computational graph have length

at most n. Since a canonical pattern of length n can be

uniquely represented as the partition of its length into

its multiplicities: n =
∑m
i=1 μi, the number of patterns

in the computational graph is at most the number of

partitions of integers up to n, which is approximately

O(eπ
√
n). Thus the computational time for the recursive

steps is O(m · eπ
√
n).

Furthermore, patterns of the same profile have the

same probability. Any pattern in the computational graph

can be obtained by first removing a subset of symbols

from ψ̄ , and then identifying another subset of the

remaining symbols. Any such pattern can be repre-

sented by its profile form (ν0;φ1, φ2, . . . , φd) : one

pivot symbol appearing ν0 times, and φi (≤ ϕi) symbols

appearing νi times, where ν0 is the sum of multiplicities

from the removed subset.

For example, ψ̄ = 13223245 has multiplicities

{3, 2, 2, 1, 1}, where the distinct ones are ν1 = 3, ν2 = 2,

and ν3 = 1. Pattern 15223 appears in the computational
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graph, corresponding to removing the subset {1} from

{3, 2, 1, 1} and adding elements in the subset {3, 2}, and

hence it can written as (5; 0, 1, 1).
Then Equation (1) for a pattern with profile form

(ν0;φ1, φ2, . . . , φd) can be rewritten as

P (ν0; φ1, φ2, . . . , φd)
= P (1ν0) · P (νi∗ ; φ1, . . . , φi∗ − 1, . . . , φd)

−
d∑
i=1

φiP (ν0 + νi; φ1, . . . , φi−1, . . . , φd), (2)

where i∗ = min{i : φi �= 0} is the
smallest index i such that φi is not zero. We

have rewritten the pattern (0;φ1, φ2, . . . , φi, . . . , φd) as

(νi∗ ; φ1, . . . , φi∗− 1, . . . , φd) by taking one symbol that

appears νi∗ times to be the pivot symbol.

The profile computational graph for calculating

P (ψ̄) is a directed graph, consisting of profile forms

(ν0;φ1, φ2, . . . , φd) representing patterns appearing in

the recursive calculation, and the (outgoing) neighbors

of any profile form are those appearing on the right-hand

side of Equation (2).

For all patterns (ν0; φ1, φ2, . . . , φd) in the profile

computational graph, the multiplicity ν0 is the sum of

a subset of multiplicities of ψ̄. Thus it can be written as

ν0 =
∑d
i=1 ciνi, where ci is the number of multiplicities

νi added to ν0. Note that ci + φi ≤ ϕi. Thus a profile

form corresponds to writing each ϕi as a sum of three

nonnegative integers: ϕi = ci + ϕi + �i. It follows that

the number of profile forms is at most
∏d
i=1

(
ϕi+2

2

)
.

On the other hand, since ν0 ≤ n and 0 ≤ φi ≤ ϕi,
the number of profile forms can also be bounded by

n
∏d
i=1(ϕi + 1). Thus the number of profile forms is at

most min
{
n

∏d
i=1(ϕi + 1),

∏d
i=1

(
ϕi+2

2

)}
.

Since each recursive step requires at most O(d)
calculations, the overall computational time is

O
(
dmin

{
n

∏d
i=1(ϕi + 1),

∏d
i=1

(
ϕi+2

2

)})
, which

can be further bounded as follows. Since
∑d
i=1 ϕi = m,

d∏
i=1

(
ϕi + 2

2

)
≤

(m
2d

+ 1
)d

≤ 1.5m,

d∏
i=1

(ϕi + 1) ≤
(m
d

+ 1
)d

≤ 2m.

Hence

dn

d∏
i=1

(ϕi + 1) ≤ dn
(m
d

+ 1
)d

= O(nmd),

d

d∏
i=1

(
ϕi + 2

2

)
=d

d∏
i=1

(ϕi + 1)
d∏
i=1

(
ϕi + 2

2

)
=O(m2d),

and also

dn

d∏
i=1

(ϕi + 1) ≤ nm2m, and d

d∏
i=1

(
ϕi + 2

2

)
≤ m3m.

Example: For any distribution P with fixed support size

the probability of pattern 1122 · · ·mm can be calculated

in time O (m3m) = O
(
3m(1+o(1))

)
.

IV. FORMULATION IN POWER SUMS

The recursive algorithms using Equation (1) achieve

efficiency in time at the cost of memory storage. Given

pattern ψ̄ = 1μ12μ2 · · ·mμm and distribution P =
(p1, p2, . . . , pk), a direct calculation of P (ψ̄) as sum of

sequence probabilities requires constant memory space.

However, the computational time is in the order of the

size of ψ̄, i.e., km.

We show that the pattern probabilities can be calcu-

lated in time O(kmin{n, 2m} log n + mm+1(logm)4)
by writing P (ψ̄) as a polynomial in power sums P (1t) =∑k
i=1 p

t
i, 2 ≤ t ≤ n. For example, P (112) = P (11) −

P (111).

A. Expansion over graphs

Let M
def= {μ1, μ2, . . . , μm} be the multiset of multi-

plicities of pattern ψ̄. The probability of graph G over

M is P (G) def=
∏t
i=1 P (1

P
μ∈Vi

μ), where V1, V2, . . . , Vt
are the vertex sets of components of G.

For example, suppose ψ̄ = 1μ12μ23μ34μ45μ5 , and G
has edges {μ1, μ2}, {μ2, μ3}, and {μ4, μ5}. Then G has

two components with vertex sets V1 = {μ1, μ2, μ3}, and

V2 = {μ4, μ5}, and P (G) = P (1μ1+μ2+μ3)P (1μ4+μ5).
Let GM be the set of all graphs over M . Let

sign(G) def= (−1)|E(G)|, i.e., sign(G) is 1 if G has even

number of edges; otherwise sign(G) = −1.

Theorem 2. For any pattern ψ̄ and distribution P ,

P (ψ̄) =
∑
G∈GM

sign(G)P (G). (3)

Proof: Let ψ̄ = 1μ12μ2 · · ·mμm , and define

U
def= {xμ1

1 xμ2
2 · · ·xμm

m : xi ∈ A for all i ∈ [m]},
the set of sequences consisting of runs of lengths

μ1, μ2, . . . , μm, where A is the alphabet set of distri-

bution P , and xi’s are not necessarily distinct.

Let
(
[m]
2

)
be the set of all 2-element subsets of [m].

For any pair {i, j} ∈ (
[m]
2

)
, let

Si,j
def= {xμ1

1 xμ2
2 · · ·xμm

m ∈ U : xi = xj}.
Then

ψ̄ = ∩
{i,j}∈([m]

2 )
(U \ Si,j) = U \

(
∪

{i,j}∈([m]
2 )
Si,j

)
.
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Thus P (ψ̄) = P (U) − P
(
∪{i,j}∈([m]

2 ) Si,j
)
. Using

the inclusion exclusion principle, we get

P (ψ̄) = P (U) +
∑

I⊆([m]
2 ),I �=∅

(−1)|I|P
(

∩
{i,j}∈I

Si,j

)
. (4)

Observe that any subset I ⊆ (
[m]
2

)
uniquely deter-

mines a graph GI over M with edge set I . For I �= ∅,

P

(
∩

{i,j}∈I
Si,j

)
= P (GI), and P (U) = P (G∅).

It follows from Equation (4) that P (ψ̄) can be written

as
∑
G∈GM

sign(G)P (G).
Example: Consider pattern 1μ12μ23μ3 . There are 8

graphs over the multiset M = {μ1, μ2, μ3}: the empty

graph, three graphs with one edge, three graphs with two

edges, and the complete graph. Then

P (1μ12μ23μ3)
= P (1μ1)P (1μ2)P (1μ3) − P (1μ2+μ3)P (1μ1)
− P (1μ1+μ3)P (1μ2) − P (1μ1+μ2)P (1μ3)
+ 3P (1μ1+μ2+μ3) − P (1μ1+μ2+μ3).

A direct application of Equation (3) for calculating P (ψ̄)
requires time

O
(
kmin{n, 2m} log n+m · 2(m

2 )
)
.

For example, under any distribution with fixed support

size the probability of pattern 1122 · · ·mm can be calcu-

lated in time O
(
m2m(m−1)/2

)
= O

(√
2 m2(1+o(1))

)
.

B. Expansion over partitions

Note that, for any graph G ∈ GM , the vertex sets of

components form a partition of M , which is sufficient for

calculating P (G). The probability of a partition P of M ,

denoted P (P), is the probability of any graph whose ver-

tex sets of components is P, namely
∏
C∈P

P (1
P

μ∈C μ).
Thus in Equation (3) of Theorem 2, we may combine

terms over graphs whose vertex sets of components form

the same partition. Let PM be the set of all partitions

of M .

Theorem 3.

P (ψ̄) =
∑

P∈PM

(−1)m−|P|P (P)
∏
Ci∈P

(|Ci| − 1)!, (5)

To prove Theorem 3, we first show the following

lemma, which is of its own interest, shows that the

number of connected n-graphs with an even number of

edges, minus the number of connected n-graphs with an

odd number of edges is (−1)n(n− 1)!.

Let Cn denote the number of connected graphs on n
vertices, and let Ce

n and Co
n denote the number of con-

nected graphs on n vertices with even and odd number

of edges respectively. While a closed-form formula for

Cn = Ce
n + con

is unknown, the next lemma shows that

Ce
n − con = (−1)n−1(n− 1)!.

In a recent private communication, Philippe Flajolet

showed that this result can also be derived using generat-

ing functions related to ones used to enumerate trees with

any given number of inversions. The lemma therefore

also provides a combinatorial proof for the number of

trees with zero inversions [7].
Let Gn be the set of all connected graphs over vertex

set [n]. Then
Lemma 4. ∑

G∈Gn

sign(G) = (−1)n−1(n− 1)!.

Proof of Lemma 4: Let f(n) def=
∑
G∈Gn

sign(G).
For any G ∈ Gn+1, a connected graph of n+1 vertices,

let G1, G2, . . . , Gm be the connected subgraphs after

removing vertex n + 1 from G. Let ϕμ be the number

of Gi’s of size μ. Given ϕμ’s, there are

n!∏
μ(μ!)ϕμϕμ!

partitions of [n] having ϕμ parts of size μ for all μ.

Furthermore, note that, for all connected graphs of n+1
vertices having the same Gi’s, their signs cancel, except

for those with only one edge from vertex n+ 1 to each

Gi. Thus

f(n+ 1) =
∑

ϕ:|ϕ|=n

n!∏
μ(μ!)ϕμϕμ!

∏
μ

(−1)ϕμ

∏
μ

f(μ)ϕμ ,

where the negative sign comes from a single edge from

n + 1 to each Gi. Note that
∏
μ(−1)ϕμ+(μ−1)ϕμ =

(−1)n. Using induction, it’s sufficient to show that∑
ϕ:|ϕ|=n

n!∏
μ(μ!)ϕμϕμ!

·
∏
μ

[(μ− 1)!]ϕμ = n!,

which is true since each term in the left-hand side is the

number of permutations having ϕμ cycles of size μ for

all μ.
We use Lemma 4 to prove Theorem 3.

Proof of Theorem 3: For any graph G ∈ GM , let

PG be the collection of vertex sets of components. it’s

easy to verify that, for any partition P ∈ PM ,∑
G∈GM : PG=P

sign(G) =
∏
Ci∈P

∑
G∈Gmi

sign(G),
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where mi
def= |Ci|. By Theorem 2,

P (ψ̄) =
∑

P∈PM

P (P)
∏
Ci∈P

∑
G∈Gmi

sign(G).

By Lemma 4,
∑
G∈Gmi

sign(G) = (−1)mi−1(mi − 1)!.
Then

P (ψ̄) =
∑

P∈PM

P (P)
∏
Ci∈P

(−1)mi−1(mi − 1)!

=
∑

P∈PM

(−1)m−|P|P (P)
∏
Ci∈P

(mi − 1)!.

To evaluate P (ψ̄) using Equation (5), note that P (P) =∏
C∈P

P (1
P

μ∈C μ). Evaluating P (1
P

μ∈C μ) for all C ⊆
M can be done in time O(kmin{n, 2m} log n). Since

there are at most mm partitions in PM , the sum in

Equation (5) has at most mm terms.

We can show that, using the Schönhage-Strassen al-

gorithm [8], the product of m integers can be computed

in time O((N + m)(logN)2 logm), where N is the

number of digits in the product. Since
∏
Ci∈P

(mi − 1)!
has at most m logm digits, it can be computed in time

O(m(logm)4). Hence P (ψ̄) can be computed in time

O
(
kmin{n, 2m} log n+mm+1(logm)4

)
.

For example, under any distribution with fixed support

size the probability of pattern 1122 · · ·mm can be cal-

culated in time O(mm+1(logm)4) = O(mm(1+o(1))).

C. Expansion over multi-profiles

Further improvement can be obtained by considering

profiles. Note that any partition P ∈ PM induces a

partition of the pattern ψ̄ into shorter patterns. Let the

multi-profile of a partition P ∈ PM be the multiset of

profiles of the shorter patterns induced by P.

For example, for ψ̄ = 15233343, μ1 = 5 and μ2 =
μ3 = μ4 = 3. The partition P = {{μ1, μ2}, {μ3, μ4}}
induces a partition of ψ̄ into two shorter patterns

1μ12μ2 = 1523 and 1μ32μ4 = 1323 with profiles 3151

and 32. Then the multi-profile of P is the multiset

{3151, 32}, namely one part has one 5 and one 3 and

the other part has two 3’s.

It’s easy to see that two partitions with the same

multi-profile have the same probability. In the previous

example, let P
′ = {{μ1, μ3}, {μ2, μ4}}. Then P and P

′

have the same multi-profile, and hence they have the

same probability P (15+3)P (13+3).
Let Pϕ be the set of all partitions of M having multi-

profile ϕ. The number of partitions with the same multi-

profile ϕ, namely |Pϕ|, can be calculated as follows. Let

ϕ1, ϕ2, . . . be the distinct profiles in ϕ, let di be the

number of ϕi’s in ϕ, and let ϕiμ be the prevalence of μ
in ϕi. Then |Pϕ| =

∏
μ

( ϕμ

ϕ1
μ,ϕ

2
μ,...

)
/

∏
i di!.

The probability of multi-profile ϕ, denoted P (ϕ), is

the probability of any partition having multi-profile ϕ.

Equation (5) in Theorem 3 can be rewritten by grouping

terms over partitions having the same multi-profile.

Let Φ be the set of distinct multi-profiles of partitions

in PM , and for any profile ϕ let |ϕ| def= {μ : ϕμ > 0}.

Corollary 5.

P (ψ̄) =
∑
ϕ∈Φ

(−1)m−|ϕ|P (ϕ)

·
∏
ϕ∈ϕ

(|ϕ| − 1) ·
∏
μ

( ϕμ

ϕ1
μ,ϕ

2
μ,...

)
∏
i di!

. (6)

Using Corollary 5 P (ψ̄) can be calculated in time

O
(
kmin{n, 2m} log n+m(logm)4|Φ|) .

For patterns with all distinct multiplicities, Equation (6)

is the same as Equation (5). For patterns with few distinct

multiplicities, Equation (6) achieves better complexity.

For example, for uniform patterns, |Φ| is the same as

the number of partitions of the number m, which is

asymptotically bounded by eπ
√
m. Under any distribu-

tion with fixed support size, the probability of uniform

patterns can be computed in time O(m(logm)4eπ
√
m) =

O(eπ
√
m(1+o(1))).
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