
Expected Query Complexity of Symmetric Boolean Functions

Jayadev Acharya Ashkan Jafarpour Alon Orlitsky
University of California San Diego

La Jolla, CA 92093
{jacharya,ajafarpo,alon}@ucsd.edu

Abstract— The problem of finding optimal querying policy,
for expected query complexity of symmetric boolean threshold
functions was solved in [1] in the context of collocated networks.
In this paper, instead of considering the optimal policy to
compute the functions, we define the problem of verification
of the function value. We use this idea to provide a simpler
proof of the optimal querying policy for threshold functions.
The method is more generic and is extended to delta and
some other symmetric functions. We also provide some partial
results for interval functions and finally address a question
posed in [1]. Recently we have extended these results to any
symmetric function of boolean inputs, which we mention at the
end.

I. INTRODUCTION

The worst-case query complexity or decision-tree com-
plexity [2], [3], [4], [5], [6], of a multi-variate function, is
the number of function inputs that must be revealed in the
worst case to determine its value. For example, the worst-
case query complexity of the 3-variable boolean function
f(x, y, z) = xy ∨ xz is 2, as the value of x determines
which of y or z needs to be queried to find the value of f .

A function f : {0, 1}n → {0, 1} is symmetric if the
output remains the same under all permutations of the inputs,
namely if it depends only on the number of 0’s and 1’s in the
input. Several popular functions, such as parity, threshold,
and delta functions, are symmetric. It is easy to see that the
worst-case query complexity of all non-constant symmetric
functions is n.

Motivated by sensor networks, Kowshik and Kumar [1]
recently considered the expected query complexity of
symmetric functions when the inputs Xi are distributed
Bernoulli(pi), independent of each other. The objective is
to find the optimal query order given the distributions of
the inputs and the observations that minimizes the average
number of inputs to be queried. They determined the
optimal order of queries for boolean threshold functions.
In particular, they showed that for threshold functions the
query order depends only on the relative values of pi’s, not
on their precise values.

In this paper we propose a method for establishing the
optimal query order for more general functions.

The idea is to consider the expected verification query
complexity of a function, which is the expected number of
bits that need to be revealed to convince an observer of the
value of the function. In other words, it is the expected query
complexity of the function when the value of the function is
known in advance. We clarify that the verification complexity

is different from the certificate complexity [3], [4] where
there is access to the values of the inputs in advance, rather
than only the value of the function.

For example, consider the OR function x1 ∨ . . . ∨ xn. To
convince that the function value is 1, it suffices to show that
some xi = 1, whereas when the output is 0, one has to
convince that there are no ones in the input. In other words,
when the output is 0 the verification and computation query
complexity are both n, since one needs to query all inputs
(and make sure they are all zeros).

We use this method and determine the optimal query order
for a class of symmetric boolean functions. More precisely,
using this technique we obtain:

1) Simpler proof for the optimal query order of threshold
functions.

2) Optimal query order for all delta functions.
3) Optimal query order for all functions that are not

constant over any three consecutive input weights.
For the above functions, the query order is independent of

the input probabilities pi. We show that for interval functions,
the query order depends on the pi’s. Using this we also show
that for general functions, the querying order depends on pi’s.

Also, resolving in the negative a question asked in [1], we
show that a simple extension of the optimal query order for
single instantiation is suboptimal for block queries.

Perhaps a fundamental and interesting result we show
is that for the functions mentioned above, the verification
and computation query complexity are the same. We have
recently extended this result to the class of all symmet-
ric boolean functions, and show that they have the same
verification and computation complexity under independent
Bernoulli distributions.

The paper is organized as follows. In section II we
provide formal definition of the problem of computation and
verification. In III we see how the problem of verification
can be related and used to get optimal computation policies.
Sections IV, V provide optimal policies for threshold and
delta functions. In section VI we look at general interval
functions and show that there are simple functions for which
the order of queries depends on the actual input probabilities.
In section VII we address a question about block computation
of functions from [1] and answer it in the negative. We
provide the optimal query order for functions which are
not constant for 3 consecutive input weights. Finally in
section IX we mention a result about all symmetric functions
of boolean inputs.

26

Forty-Ninth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 28 - 30, 2011

U.S. Government work not protected by U.S. copyright



II. NOTATION AND PROBLEM FORMULATION

Consider a collection of n binary inputs 1, 2, . . ., n, where
input i independently generates Bernoulli distributed random
variable Xi with P (Xi=1)=pi. Without loss of generality
we assume p1 ≥ p2 ≥ . . . ≥ pn throughout the paper.
We denote 1− pi by p̄i and the vector of random variables
Xi, Xi+1, . . . , Xj by Xj

i .
We are interested in computing symmetric boolean func-

tions of Xn
1 , the random variables generated by the inputs.

As an example, consider the inputs as senators voting on a
legislation which needs at least half of the votes in favor to
pass. Let Xi = 1 if senator i votes for the legislation and
0 otherwise. We are thus interested in the random variable
Y which is 1 if

∑
iXi ≥ n/2 and 0 otherwise. This is a

symmetric function since the order of votes is immaterial
once we know the number of votes for the legislation. So,
the value of a symmetric boolean function can be specified
by the number of 1’s in the input, in other words by the
sum of the inputs. Thus, any symmetric boolean function f
can be completely specified as a function g : {0, 1, . . . , n} →
{0, 1}, where f(X1, X2, . . . , Xn) = g(X1+X2+ . . .+Xn).
From now on we define functions on N knowing that they
can be easily mapped to symmetric functions on {0, 1}n.

In this work, we study the boolean threshold, delta and
interval functions, all of which are symmetric.

The threshold function Πθ(x) is defined as

Πθ(x) =

{
1 if x ≥ θ,
0 otherwise.

Threshold function is a general case of the example with
senators and the OR function. This problem is relevant in
scenarios where we want to know if there is a consensus or
majority.

The delta function ∆θ(x) is defined as

∆θ(x) =

{
1 if x = θ,

0 otherwise.

Interval function Iθ1,θ2(x) is defined as,

Iθ1,θ2(x) =

{
1 if θ1 ≤ x ≤ θ2,
0 otherwise.

Let Ij denote the set of all symmetric boolean functions
which are not constant for any consecutive j + 1 input
weights. Note that Ij ⊂ Ij+1.

We now state the problem formally. Initially input i has
a binary value Xi (for brevity we refer to input i as Xi),
known to itself. An input can be queried at a unit cost.
The inputs are queried sequentially. The next input to be
queried is decided based on the pi’s and the values of the
queried inputs up to that point. The computation is to be
done with zero error, which means that the queried values
can determine the function. The probability of an input Xn

1

can be easily calculated from the pi’s. The expected cost or
expected computation complexity is the number of queries
averaged over all n-length binary inputs. The problem is to

determine the query order that minimizes the expected cost to
evaluate the function. We denote the optimal querying policy
as P and the expected complexity is denoted by L(P).

The problem of finding expected number of queries is
more interesting than the worst case owing to the following
observation [7].

Observation 1: For any non-constant symmetric function
f : {0, 1}n → {0, 1}, the number of queries is n in the worst
case.

To motivate and clarify the expected cost consider the
following problem. Let n = 2, p1 = 0.8 and p2 = 0.1.
Suppose the function is Π1(X1 +X2), i.e., if at least one of
the two random variables is 1 then output is 1, 0 otherwise.
If Xi is queried first, the expected cost is 1·pi+2·(1−pi) =
2 − pi. Thus, it is optimal to query X1 first. In general for
any function one can write the expected query complexity
in terms of the input probabilities and optimize it. But the
problem may not be trivial for general functions since the
possible number of orderings is exponential.

We now define the problem of verification which we use
to solve the problem of computation. For a function f , and
an instantiation of Xn

1 , suppose we are given the value of
f . The objective is to then verify the value using queries on
the inputs in the same setting as before. The problem here
is to decide the order of queries that minimize the expected
verification complexity. We denote the optimal verification
policy with PV and the expected complexity with L(PV ).
Since function computation is one way of verification, the
expected computation complexity is at least the expected ver-
ification complexity. Thus, for any f , its optimal computation
and verification policies satisfy L(P) ≥ L(PV ). It is easy
to come up with non-symmetric, functions with dependent
inputs where strict inequality holds.

In the next section we describe how the problem of
verification can provide a simpler way of coming up with
the optimal query order compared to direct optimization of
the expected computation complexity.

III. PROOF TECHNIQUE

In the last section we saw that for any f , L(P) ≥ L(PV ).
Suppose f is such that the inequality holds with equality.
This proves that the optimal computation complexity equals
verification complexity. Since verification policies are usu-
ally easier to come up with, it might provide us with the
optimal computation policy as we show for some specific
functions.

For threshold and delta functions, for any instantiation of
inputs, we show that if S ⊆ [n] is the final set of inputs
queries by PV , then we can come up with policy P which
can compute the function by querying the same set S (may be
in a different order). This shows that verification complexity
equals computation complexity, thus proving optimality of
the scheme.

In the next two subsection, for threshold and delta func-
tions we find a policy PV and use it to find a policy P such
that L(P) = L(PV ).

27



IV. THRESHOLD FUNCTION: Πθ(x)

To come up with the optimal policy we first find the
optimal verification policy PV .

Consider the case when the threshold function has value
1. This can be verified only when θ 1’s have been observed.
So an optimal policy should minimize the expected time for
observing θ 1’s. It’s intuitive to first query the input with
highest probability i.e., p1 and so on. The following theorem
formalizes this intuition.

Theorem 1: For Πθ = 1, an optimal verification policy is
to query in the order X1, X2, . . . until θ 1’s are observed and
for Πθ = 0, the order is Xn, Xn−1, . . . until (n− θ+ 1) 0’s
are observed.

Proof: We prove the optimality when Πθ = 1. A similar
argument holds when Πθ = 0. It suffices to prove that for
an optimal policy, there is a policy with no more expected
cost and where input 1 is queried first. This is because after
the first query, the problem reduces to computing another
threshold function over the rest of the inputs. We prove this
by induction on (n, θ). If n < θ the function is trivially zero.
If n = θ, all inputs must be queried to verify that Πθ = 1.
So without loss of generality, input 1 can be queried first.

For θ ≥ 2, suppose Xk is queried first. If Xk = 1, then
we have to find optimal query order for n − 1 inputs and
threshold θ − 1, and if Xk = 0, then we have to find
optimal verification policy for n − 1 inputs and threshold
θ. By induction hypothesis, for both these cases there is an
optimal hypothesis in which X1 is queried first. This implies
that there is an optimal policy for our problem in which the
first two observed inputs are Xk and X1 respectively, and
since θ ≥ 2 at least two inputs are queried. Thus the order
of Xk and X1 is immaterial and X1 could be queried first,
followed by Xk and no further changes to the policy.

This leaves us with the case when θ = 1. For n = 1 it is
trivial to ask X1, for n = 2, we proved as an example that
input 1 should be queried first. We prove this case again by
induction on n. Suppose the optimal policy queries Xk 6= X1

first. If we observe 1 then we stop. If Xk = 0, then by
induction hypothesis there is an optimal policy where the
next query is X1. Now consider the policy where we query
X1 and then Xk if needed, and from the third step onwards
the policy follows the decision of the optimal policy. When
Xk = X1, then the two policies query the same set of inputs,
since at any stage given the set of queried inputs, the next
input depends only on the number of 1’s observed. Now
the remaining cases are (Xk, X1) = (0, 1) or (1, 0). These
events happen with probability pk(1 − p1) and p1(1 − pk).
Since p1 ≥ pk it is easy to see that the new policy’s expected
complexity is less than or equal to the expected complexity
of the optimal policy.

Given this theorem, we consider the following policy P
and show that it is optimal. In the first round we query Xθ.
Suppose up to round i−1, imin and imax are the smallest and
largest inputs which have been queried. If at round i− 1 the
value observed is 1 then the next input queried is imin − 1,
else it is imax + 1. This process continues until θ 1’s or
n− θ + 1 0’s are observed.

Theorem 2: P is optimal for Πθ.
Proof: It is clear that at each stage the set of queried

random variables is of the form Xj
i for some i and j.

We show that for any instantiation of Xn
1 , the final set of

queried inputs is the same as those observed for the optimal
verification of threshold function. Consider the case when
Πθ = 1. We show that at the termination of the policy, input
1 has been queried, and if k is the largest input index queried,
then Xk = 1. We start with Xθ and for every 1 we observe,
an input with smaller index than all queried inputs up to that
time is queried. Since Πθ = 1, when (θ− 1)th 1 is queried,
X1 is queried. Now from the policy it is clear that we go to
a smaller index for every value of 1 queried, and thus the
value queried from the largest index is 1. This shows that
when the policy terminates, the set of queried inputs is Xk

1

where k is such that Xk = 1 and
∑k
i=1Xi = θ. The case

of Πθ = 0 follows similarly.

V. DELTA FUNCTIONS

For delta functions, we define a similar verification prob-
lem. Since we are interested in zero error computation, any
correct policy can not only tell us the value of the delta
function but also whether

∑n
i=1Xi < θ,

∑n
i=1Xi = θ or∑n

i=1Xi > θ. This can be seen easily by invoking Observa-
tion 1. We consider the problem of verification for these cases
separately. Using the results obtained for threshold functions,
we obtain the following optimal verification policy.∑n
i=1Xi = θ: In this case any order is optimal since all

inputs must be queried to verify that the sum is exactly θ.∑n
i=1Xi < θ: This problem is identical to the threshold

problem with θ as the threshold value. We know from the
previous section that an optimal verification policy is to query
Xn, Xn−1, . . . until (n− θ + 1) 0’s are observed.∑n
i=1Xi > θ: An optimal verification policy for this case is

to query X1, X2, . . . until (θ + 1) 1’s are queried.
Now suppose the function to be computed is Πθ, instead

of ∆θ. We found an optimal query policy P for Πθ. We
claim that the same policy with slightly different stopping
criterion is optimal for the delta function. The new stopping
criteria is when (θ+ 1) 1’s or (n− θ+ 1) 0’s are observed,
or all inputs have been queried, whichever occurs first. For
simplicity we also call this policy P .

Theorem 3: P is optimal for ∆θ.
Proof: The proof is along the lines of the argument

for threshold functions. We consider the final set of queried
inputs and show that it is identical to the set of queried inputs
for the verification in all the three cases above.

VI. INTERVAL FUNCTIONS

For threshold and delta functions we observe that the query
order depends on the relative values of the probabilities and
not on their exact values. In this section, we provide a simple
function, where the query order depends on the exact values
of pi’s. Furthermore we show a way for generalizing the
example to a large n.

28



The example considers the case when n = 4, and the
interval function I1,3. This function value is 0 whenever all
inputs are all zeros or all ones, else its value is 1.

Suppose Xk is queried first. If Xk = 0, the problem
reduces to finding an optimal policy for Π1 over the 3
remaining inputs, and if Xk = 1, then we have to find an
optimal policy for Π3 over the 3 remaining inputs. We know
an optimal policy for these problems from section IV.

For each value of k we can calculate the expected query
complexity of the best policy given that Xk is queried first.
The expressions for these values are given below.

L(P|k = 1) = 1 + p1(p4 + p3p4) + p̄1(p̄2 + p̄2p̄3),

L(P|k = 2) = 1 + p2(p4 + p3p4) + p̄2(p̄1 + p̄1p̄3),

L(P|k = 3) = 1 + p3(p4 + p2p4) + p̄3(p̄1 + p̄1p̄2),

L(P|k = 4) = 1 + p4(p3 + p2p3) + p̄4(p̄1 + p̄1p̄2).

It is easy to check that for p4 ≥ p̄1, L(P|k = 3) is the
smallest among the four values above, and for p4 ≤ p̄1
L(P|k = 2) is smallest. This shows that the first input to
be queried depends on the values and not only on the order.

We can easily extend this example for larger n, by adding
inputs with pi = 1 or pi = 0.

VII. OBSERVATIONS ON BLOCK COMPUTATION

Consider the problem where each input is a k-length
vector. The question of optimal strategy of querying can now
be asked in this setting where each input is a block of binary
random variables. In [1] it was asked whether the following
is an optimal strategy for block computation of threshold
functions. The θth input is queried using a Huffman coding.
At the next stage the inputs θ + 1 and θ − 1 are queried
for those inputs where the first value queried was a 0 or 1
respectively. This recursive policy was a proposed optimal
policy for all n and k. We come up with a simple example
where there is a better strategy. The idea is to observe that in
this policy there could be inputs which are queried multiple
times. If the number of times an input is queried could be
reduced we can hope to reduce the expected cost.

For example, consider n = 3 and k = 2, i.e., each input
has 2 values. Let p1 = 0.8−ε, p2 = 0.8 and p3 = 0.8+ε. Let
θ = 2. For ε→ 0 consider the following policy. Query inputs
1 and 2 using Huffman code. The probabilities associated
with each inputs is {0.64, 0.16, 0.16, 0.04} and the Huffman
codewords have lengths {1, 2, 3, 3}. The expected length is
1.56 per input and thus 3.12 for querying two inputs . Now
with probability 0.4624, the observed values are identical,
and the third input need not be queried. With probability
0.1024 the third input needs be queried, using 1.56 bits. With
probability 0.4352 the final input is queried for only one
input, thus taking 1 bit. The total expected cost is thus 2×
1.56 + .1024× 1.56 + .4352 = 3.71.

For the policy conjectured in [1], a similar computation
shows that the query complexity is 3.88.

VIII. OPTIMAL ORDERING FOR I2
Theorem 4: For any function in I2 the optimal querying

policy is to first query all the inputs Xn−1
2 . Let

∑n−1
i=2 Xi =

s. If f(s) = f(s+ 1) then the next input queried is Xn, and
if needed X1 is queried. If f(s) 6= f(s+ 1) and f(s+ 1) =
f(s+ 2) then X1 is queried and then Xn if needed. If none
of these are true then all nodes are queried.

Proof: Consider the optimal verification policy given
the value of

∑n
i=1Xi. Thus we know the value of the

function and also the exact number of zeros and ones in
the input.

We can once again do an induction on the number of
inputs and prove this result. The argument is similar to the
previous proof and is omitted here.

IX. RECENT RESULTS

We conclude the paper with a more general result (without
proof), which states that for all symmetric functions of
independent boolean inputs the computation and verification
complexities are same. We also note that all the conditions
(e.g., independence, boolean, symmetric) are necessary for
the result to hold.

Theorem 5: For any symmetric function of independent
boolean inputs,

L(P) = L(PV ).

REFERENCES

[1] H. Kowshik and P. R. Kumar, “Optimal ordering of transmissions
for computing boolean threshold functions,” in Proceedings of IEEE
Symposium on Information Theory, 2010, pp. 1863–1867.

[2] I. Wegener, The complexity of Boolean functions. New York, NY,
USA: John Wiley & Sons, Inc., 1987.

[3] H. Buhrman and R. de Wolf, “Complexity measures and decision tree
complexity: A survey,” Theoretical Computer Science, vol. 288, p. 2002,
1999.

[4] S. Arora and B. Barak, Computational Complexity: A Modern Ap-
proach, 1st ed. New York, NY, USA: Cambridge University Press,
2009.

[5] Y. Ben-Asher and I. Newman, “Decision trees with boolean threshold
queries,” Journal of Computer and System Sciences, vol. 51, pp. –,
1995.

[6] K. J. Arrow, L. Pesotchinsky, and M. Sobel, “On partitioning of a
sample with binary-type questions in lieu of collecting observations,”
Journal of the American Statistical Association, vol. 76, pp. 402–409,
1981.

[7] A. K. Dhulipala, C. Fragouli, and A. Orlitsky, “Silence-based com-
munication,” IEEE Transactions on Information Theory, vol. 56, pp.
350–366, January 2010.

29


