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Abstract—We consider a generalization of the problem of
estimating the support size of a hidden subset S of a universe U
from samples. This framework falls under the group testing [1]
and the conditional sampling models [2, 3]. In group testing,
for a query set, we are told if it intersects with the set S. We
propose a generalization of this problem, where each element has
a non-negative weight, and the objective is to estimate the total
weight of the universe. In contrast to the regular group testing,
we consider stronger access models, where each query outputs an
element (with an appropriate probability), and reveals its weight.
We show that in this natural generalization of the problem can
be solved with only polylogarithmically many queries, and also
discuss some lower bounds for the problem.

Keywords: Group testing, Conditional sampling, Distribu-
tion support estimation

I. INTRODUCTION

Introduced by Dorfman [1] for the purpose of identifying
infected individuals by efficient testing of blood samples,
group testing has found applications in a number of fields,
including biology, experimental design and optimization. At
a high level, the objective of (combinatorial) group testing is
to identify an unknown subset S of defective items from a
universe U of n elements (where |S| = o(n)), by making as
few queries as possible. In the usual setting, a query (also
referred to as test) consists of a subset T ⊆ U , and receives a
positive answer if the intersection T ∩ S is non-empty – that
is, one is told whether the set queried contains at least one
defective item.

While |U | queries trivially suffice to determine S, [1] shows
that when |S| is small, one can achieve this goal with far fewer
queries. Following this work, a long line of research has delved
into this problem, tightening the bounds and analyzing some
of its variants (see [4–7] for surveys on group testing and
various related topics).

Broadly speaking, group testing can be divided into two
categories, namely adaptive and non-adaptive testing. In the
former, one is allowed to choose queries based on the previous
observations and answers; while the latter enforces that the
queries be fixed in advance [5, 8]. Although non-adaptive
group testing requires more queries, it allows the protocol to be
performed in a distributed fashion. This is a great advantage in
situations such as DNA sequencing, where each test can take
by itself a significant amount of time. In particular, it is known
that for adaptive testing the optimal number of queries scales
as Θ

(
|S| log n

|S|

)
, versus the optimal Θ

(
|S|2 log n

)
for the

non-adaptive case [5].

Relation with previous work: Besides the vanilla version
of group testing, many variants have been investigated over
the last few decades. These include noisy group testing [9,
10], testing with more structured types of queries [11, 12], as
well as various types of algorithms ranging from the classic
combinatorial to some inspired by “compressive sensing-type”
problems.

Most of these variants are still concerned with determining
the exact set S. In contrast, in this work we are interested
in estimating some function of the set S: specifically, in our
model each element of the universe is assigned an unknown
non-negative weight. The objective is then to approximate the
sum W of the weights of all defective elements. A special
case of this problem is when all weights are either 0 or 1, and
the goal is to determine the support size of non-zero weight
elements, i.e. the number of defective items, as in e.g. [13].

We observe that our setup is reminiscent of those of survey
sampling (see e.g. [14] or [15] for an introduction to this broad
field) and priority sampling (as defined and studied in [16,
17]). Indeed, in both settings, one is similarly given the task
of estimating the total weight of a subset, and has (a type
of) sampling access to its elements. We note however two
major differences: firstly, in these settings, the task amounts to
designing a good sampling procedure, either by preprocessing
the weights of all elements of the universe or by acting directly
on the sampling process. Secondly, and quite crucially, they
assume that the subset itself is known beforehand – that is, the
set S is provided as input to the estimation procedure, which
is then required to estimate its total weight. For these reasons,
the techniques used in these areas do not directly apply to our
problem.

Motivation: As a concrete example of a scenario where
such a question would arise, imagine being in charge of an
Internet hub, handling and monitoring on a daily basis the re-
quests and network traffic of millions of clients. Among these,
a small portion may be corrupted – their communications
originating from a computer virus. Your present concern is to
estimate which overall fraction of the traffic data is controlled
by these “infected clients”, e.g. to decide whether it is time to
shutdown this portion of the network. Detecting the trace of
the virus in any particular data transmission is not difficult –
it usually is given away by a pattern or signature, itself easy
to spot. However, analyzing every single such transmission is
clearly impossible, as this would require going through huge
amounts of data in real-time.

Fortunately, our results show this task is not as hopeless as



it may seem: indeed, by choosing to inspect any particular
data transmission at random, one effectively samples them
according to their volume (i.e., “weight”); moreover, as the
total length of a data flux is usually provided in the headers
alongside the data itself, by doing so we obtain the weight of
the sampled communication at the same time. This network
estimation scenario does therefore fall under our weighted
group testing model, and can benefit from the techniques we
develop.

Organization: In Section II, we formally define the
setting of “weighted group testing” that we shall work in. In
Section V, we describe and analyze an (adaptive) algorithm for
this generalization of group testing. This algorithm is able to
output a good estimate of W =

∑
i∈U wi with only polylog n1

“labelled conditional queries” (an extension of the basic
queries described above). This result is to be compared to the
naive approach of Section IV, which yields a O(|S| log n

|S| )-
query protocol. In particular, the former becomes particularly
interesting in the “not-too-sparse” regime, where |S| = nγ for
some small constant γ: we discuss this tradeoff and show how
to combine both results in Section VI, under a mild assumption
on the weights wi. Finally, in Section VII we draw connections
with other work, allowing us to obtain lower bounds for the
weighted group testing problem in both the non-adaptive and
adaptive settings.

II. PROBLEM STATEMENT

Consider a setting with n individuals, represented by [n] =
{1, . . . , n}, where the i-th individual has a corresponding
weight wi ≥ 0. For a subset S ⊆ [n], let WS =

∑
i∈S wi.

The experiment is as follows. Each test takes as input a set
T ⊆ [n] and returns:
• an element i ∈ T with probability wi/WT (or uniformly

in T if WT = 0), along with
• its weight wi.

The objective is to estimate W def
=
∑n
i=1 wi. A special case

of the problem is estimating the support size of a ground set
S ⊆ [n]. In this case wi = 1 for i ∈ S, and wi = 0 otherwise.

More specifically, the problem we address is as follows.
Given a parameter ε > 0, the experimenter needs to come up
with a protocol that allows her to obtain an estimate Ŵ which,
with probability 2/3, satisfies (1 − ε)W ≤ Ŵ ≤ (1 + ε)W .
Furthermore, she must do so while performing as few tests as
possible. (Note that in this setting, the tests are allowed to be
adaptive, that is to be chosen taking into account the outcome
of previous tests.)

III. PRELIMINARIES

Let D(T ) = WT /W be the probability of observing an
element from T when we sample from the entire universe [n].
Hereafter, we write DT for the conditional distribution induced
by a probability distribution D on a set T , noting that DT is
only defined whenever D(T ) > 0. In the setting above, we

1Hereafter, polylogn denotes a polynomial in logn.

say that D is induced by the weights wi if D(i) = wi

W for
all i ∈ [n]. Given an (unknown) probability distribution D
over [n] (induced by a set of weights (wi)i∈[n]), a labelled
conditional query to D consists of a subset T ⊆ [n], and is
answered as follows:
• if D(T ) > 0, then a random element x is sampled from
DT independently of any previous query;

• otherwise (if D(T ) = 0, i.e. WT = 0), a uniformly
distributed element x in T is drawn (again independently
from previous queries).

The pair (x,wx) is then returned.
Note that this is in contrast with the weaker usual access

model of group testing, where the only type of queries allowed
is, given a subset T ⊆ [n], the question “is D(T ) non-
zero?”. In particular, given labelled conditional queries one
can determine any specific weight wi by querying the set {i},
getting as answer the pair (i, wi).
Finally, we shall use the following Chernoff bound.

Lemma 1: [18] Suppose X1, . . . , Xn are independent ran-
dom variables taking values in [0, 1], and set X = X1 + . . .+
Xn. Let µ = E[X]. Then for 0 ≤ ε ≤ 1,

P [X ∈ ((1− ε)µ, (1 + ε)µ)] ≥ 1− 2 · exp

(
−ε

2µ

3

)
.

IV. WARMUP: AN EASY O(|S| log n)-QUERY ALGORITHM
FOR EXACT COMPUTATION OF W

Suppose only a subset S of the elements have a non-zero
weight. In this case, it is not difficult to see that, using known
machinery and results from group testing [5], one can identify
with O(|S| log n

|S| ) queries the exact hidden subset of elements
S. From there, by repeatedly making conditional queries on
{x} for each x ∈ S, it is possible to retrieve each non-zero wi
and compute the exact value of W , at the price of a (negligible)
additional |S| queries.

However appealing and simple this approach may be, it
quickly becomes impractical as |S| grows – in particular,
whenever |S| = nΩ(1), and in particular S = [n], when all the
elements have non-zero weights. As we shall see momentarily,
in this case (which arguably occurs in many situations) it is
possible to obtain a good approximation of W using far fewer
queries: namely, only polylog n.

V. AN Õ(log3 n/ε2)-QUERY ALGORITHM

In this section, we describe an approach that leverages
the ability to perform conditional queries on the distribution
induced by the weights, i.e. D(i) = wi

W . At a high-level, our
algorithm derives from the following observation: if we can
obtain, for any i ∈ S, a (good enough) approximation p̂i of
D(i), then the value Ŵ

def
= wi

p̂i
will in turn be an accurate

estimate of W .
In the spirit of [3]2, it turns out one can indeed obtain

(modulo some technical details) such a good p̂i for a “nice” i,
by making Õ(log3 n/ε2) (adaptive) conditional queries to D.

2See e.g. the proofs of Theorem 4 and Theorem 15, which adopt a related
“binary descent” approach.



At a very high level, the idea is, given any i ∈ [n], to perform
a “biased-towards-the-heaviest binary descent” by splitting
the current domain T (originally T = [n]) in two halves
T1 and T2 and estimating the ratio D(T1)/D(T2); before
recursing on T1, until the point where T is a singleton {i}.
Provided all estimates were accurate enough, it then suffices
to multiply them to obtain a multiplicative approximation of
D(i)/D([n]) = D(i).

The caveat here is that estimating the ratio may only be
efficient if T1 and T2 have comparable weights, or at least
that D(T1)/D(T2) = Ω(1); hence the need for, at each stage,
a suitable partitioning of T to ensure this happens with high
probability. Specifically, taking a constant number of samples
from the conditional distribution of D on T we can ensure (by
the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [19, 20])
that one of the following happens:
(a) we find an element x ∈ T such that D(x)/D(T ) = Ω(1);

or
(b) we get a partition T1 and T2 of T such that

D(T1)/D(T2) = Ω(1) and |T1| < |S|/2.
In the first case, we are done, as estimating this ratio
D(x)/D(T ) and backtracking the recursion yields a good
estimate of D(x), as wished; while in the second we can
efficiently get an approximation of D(T1)/D(T2) before re-
cursing on T1 (which has at most half as many elements as
R, making sure the recursion will end in at most log n steps).
We give the algorithm in Algorithm 1, proving the following
theorem:

Theorem 2 (Main upper bound): There exists an algorithm
which, given labelled conditional query access to a hidden
subset S ⊆ [n] as defined in Section II, satisfies the following.
On input ε ∈ (0, 1], it makes Õ( log3 n

ε2 ) adaptive queries, and
outputs an estimate Ŵ which, with probability at least 2/3, is
within a factor (1 + ε) of WS .

Proof: We first argue correctness of Algorithm 1, before
establishing its query complexity.

Correctness: Observe that, by the choice of T , the
recursion ends after at most log n stages, as the size of
R drops by a factor at least 2 at each iteration. By the
DKW inequality, the choice of constant in the O(·) nota-
tion and a union bound over all log n stages, we get that
for each choice of R in the execution of the algorithm,
supi≤j |D̂({i, . . . , j})−DR({i, . . . , j})| ≤ 1/10, except with
probability at most 1/20. We hereafter condition on this.

This in particular implies that DR(T ) is within ±1/10 of
D̂(T ); since our preliminary check ensured that D̂(c) < 1/10,
this in turn guarantees that DR(T ) ∈ [9/20, 12/20]. But then,
a direct application of the Chernoff bounds (along with our
choice of q) yields that, with probability at least 1 − δ, the
estimate ρT we compute satisfies DR(T )/ρT ∈ [1 − ε′, 1 +
ε′]. Similarly, if a “heavy” element x ∈ R is found (and an
estimate ρx is computed), we have that DR(T )/ρx ∈ [1 −
ε′, 1 + ε′] with probability at least 1− δ. Overall, by a union
bound and our choice of δ, all estimates computed during the
course of the algorithm are correct except with probability at

Algorithm 1 BINARY-DESCENT-ESTIMATION

Set ε′ = ε
2 logn , δ = 1

20 logn , q = O
(

1
ε′2

log 1
δ

)
Initialize R← [n], Ŵ ← 1
while |R| > 1 do

Obtain O(log(1/δ)) queries from R = {a, . . . , b}, let
D̂ be the empirical probability distribution they define.

if ∃x ∈ R s.t. D̂(x) > 1/10 then
Make q fresh queries from R, getting q elements.
Compute ρx, the estimate of DR(x) defined as the

frequency of x among them.
Set Ŵ ← Ŵ · ρ−1

x , R← {x} and exit the loop.
else

Let c be the min. element s.t. D̂({a, . . . , c}) ≥ 1/2.
Let T = {a, . . . , c} if |{a, . . . , c}| ≤ |S|/2 and T =

{c+ 1, . . . , b} otherwise.
Make q fresh queries from R, getting q elements.
Compute ρT , the estimate of DR(T ) defined as the

fraction of elements from T among them.
Set Ŵ ← Ŵ · ρ−1

T and R← T .
end if

end while
return Ŵ ← Ŵ · wi, where R = {i}.

most 1/20. Again, we condition on this event.
Putting it all together, we get that, with probability at least

18/20 = 9/10 (and writing [n] = R1 ⊇ R2 · · · ⊇ Rk = {i}
for the sets computed during the execution of Algorithm 1)
the estimate Ŵ we output satisfies the following.

Ŵ = wi ·
k∏
`=1

ρ−1
R`
∈ wi · [(1− ε′)k, (1 + ε′)k]

k∏
`=2

1

DR`−1
(R`)

∈ wi · [(1− ε′)k, (1 + ε′)k]

k∏
`=2

D(R`)

D(R`−1)

∈ [(1− ε′)k, (1 + ε′)k]
wi

D({i})
= [(1− ε′)k, (1 + ε′)k]W

∈ [(1− ε′)logn, (1 + ε′)logn]W

⊆ [1− ε, 1 + ε]W,

where the last inclusion comes from our choice of ε′ = ε
2 logn .

Therefore, with probability at least 2/3, the algorithm outputs
a value which is within a multiplicative (1 ± ε) of W , as
desired.

Query complexity: It is straightforward to see that the
query complexity at each of the (at most) log n stages is
dominated by the q queries to R. Thus, the total number of
queries is at most O(q · log n) = O( logn

ε′2
log log n), giving the

claimed Õ( log3 n
ε2 ).

A. Boosting the success probability

The algorithm above has a probability of success 2/3. It
is possible to achieve any probability of error pe > 0 with



Õ( log3 n
ε2 log 1

pe
) using the following classic trick. Repeat Al-

gorithm 1 O(log 1
pe

) times and output the median of all W ’s
thus generated. It can then be shown that the median does
not fall in the specified interval with a probability that drops
exponentially with the number of experiments.

VI. BEST OF BOTH WORLDS: CHOOSING THE BEST
ALGORITHM

The two algorithms we described, respectively in Section IV
and Section V, yield different guarantees; and it is not clear
a priori which one to choose, as which of the two is the best
option depends on the – unknown – size of the hidden set S.

However, it is possible to leverage one of the results of
Acharya, Canonne, and Kamath [21] to efficiently perform this
choice as long as we are promised the non-zero weights are not
too small, and always opt for the best of our two approaches.
The idea is to first compute a crude estimate of |S|, up to say
a factor two; and according to this estimate choose between
the O(|S| log n

|S| )- and the Õ(log3 n/ε2)-query algorithm. Of
course, for this idea to be any good one must be able to
perform this crude approximation with a very small number
of queries: fortunately, this is the case, as shown in [21]:

Theorem 3 (Theorem 1.2 of [21], restated): There exists
an (adaptive) algorithm which, given conditional access to an
unknown distribution D on U which has minimum non-zero
probability 1/n, makes Õ(log log n) queries to the oracle
and outputs a value ω̃ such that the following holds. With
probability at least 2/3, ω̃ ∈ [ 1

2 ·ω, 2 ·ω], where ω = |suppD|.
Loosely speaking, their algorithm works by performing a

“doubly exponential search” to find a – very – coarse candidate
size, and then improve this estimate by a binary search on
the smaller, narrowed-down range. The crux is to efficiently
determine at each step whether the current guess ω̃ of the size
is precise enough: this is done by making a query on a random
set Rω̃ of cardinality roughly n/ω̃. If ω̃ is good enough, this
set is likely to intersect S on Θ(1) many points; however, if
ω̃ � |S|, then Rω̃ will not intersect S at all, and the search
goes on with the next candidate value.

Now, by applying the above theorem as a black box, we can
(a) get a 2-estimate ω of |S|, and (b) choose which of the two
algorithm apply (depending on whether ω log n

ω �
log3 n
ε2 ).

This gives us the following overall result:

Theorem 4: Provided all non-zero wi’s are guaranteed to be
at least 1/n, one can solve the estimation problem of Section II
with Õ(min(|S| log n

|S| ,
log3 n
ε2 )) adaptive labelled conditional

queries.

VII. LOWER BOUNDS AND DISCUSSION

In this section, we give lower bounds on the query com-
plexity of estimating WS .

We get these lower bounds for the special case of estimating
the support size, i.e. when wi = 1 for all i ∈ S. Without loss
of generality, suppose n is a power of 2. The construction on
which these lower bounds are based is as follows.
• Let t be picked uniformly from {1, 2, . . . , log n},

• S is a random set of size 2t from all such sets,
• Set wi = 1 for i ∈ S, and 0 otherwise.
Before discussing lower bounds on the precise, adaptive,

version of our problem, we consider their counterpart for the
weaker non-adaptive query model.

A. Non-adaptive lower bounds

Suppose, that instead of choosing a new query set at each
stage that is dependent on the output of the previous stage,
we are asked to design queries independently without this
knowledge. Even though this is a weaker model for specifying
the query sets, our querying itself is more powerful than those
considered in group testing and support estimation problems,
namely we are provided not only whether the query set
intersects with S but also provided a random element from
the intersection. This model was considered in [13]; however,
the authors there only provide upper bounds for this particular
problem, leaving lower bounds as an open question.

This problem was partially resolved in [21, Theorem 4.1],
which states that in the construction above, estimating the
support size up to a factor log n requires Ω

(
logn

log logn

)
queries.

By adapting their argument for a smaller (constant) value
of the approximation factor, the same techniques yield the
following:

Theorem 5: Any non-adaptive algorithm for estimating WS

up to a factor 2 requires at least Ω(log n) queries.

Indeed, in the full version of [21] it is shown that, for
the construction described above, the outcomes for values of
|S| differing by a factor of 2 are indistinguishable; because
of the setting of the weight we consider, WS = |S|, which
immediately implies that WS cannot be estimated either.

B. Adaptive lower bound

It is also possible to adapt the algorithms to obtain bounds
on the number of adaptive queries to estimate W . The con-
struction is the same as for the non-adaptive setting. In this
case, the following is a consequence of Lemma 7.3.7 of [2].

Theorem 6: Any algorithm to estimate W up to a factor 2
requires Ω(

√
log log n) queries.

VIII. CONCLUSION

We consider generalizations of the group testing problem
to estimate the total weight of the population. We show that
even in this setting one can design efficient tests, by giving
a procedure that only performs a poly-logarithmic number of
queries; and further also provide a non-trivial lower bound.
An interesting open question that remains is to determine the
precise query complexity, either by designing more efficient
algorithms or establishing stronger lower bounds. Some al-
gorithms very recently proposed in [22] might provide faster
algorithms for this set-up. We believe that, in practical situa-
tions, the extra cost of implementing our more complex query
access can be offset by the significant savings in the number
of queries required, just as in group testing.
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