
Tight Bounds for Universal Compression of Large Alphabets

Jayadev Acharya
ECE, UCSD

jacharya@ucsd.edu

Hirakendu Das
Yahoo!

hdas@yahoo-inc.com

Ashkan Jafarpour
ECE, UCSD

ashkan@ucsd.edu

Alon Orlitsky
ECE & CSE, UCSD

alon@ucsd.edu

Ananda Theertha Suresh
ECE, UCSD

asuresh@ucsd.edu

Abstract—Over the past decade, several papers, e.g., [1–7]
and references therein, have considered universal compression
of sources over large alphabets, often using patterns to avoid
infinite redundancy. Improving on previous results, we prove
tight bounds on expected- and worst-case pattern redundancy, in
particular closing a decade-long gap and showing that the worst-
case pattern redundancy of i.i.d. distributions is Θ̃(n1/3)†.

I. INTRODUCTION

Every distribution P can be compressed to its entropy H(P )
and no further. This optimal compression rate is achieved by
assigning to each symbol x a codeword of length ∼ log 1

P (x) .
Yet in most cases, the source distribution is unknown, except

that it can be assumed to belong to a known distribution class
P . For example the class of all i.i.d., or Markov, distributions.

Compression schemes designed for all distributions in a
class are called universal. Their performance is measured
in terms of redundancy, the largest number of bits beyond
log 1

P (x) , or H(P ), that they use to compress distributions
in P . The lowest possible redundancy of any compression
scheme is the redundancy of P and determines how well
unknown distributions in P can be universally compressed.

More concretely, observe that every compression scheme for
an alphabet X corresponds to a distribution Q over X where
the number of bits the scheme assigns to x ∈ X is roughly
log 1

Q(x) . The extra number of bits the scheme uses to encode

x when the underlying distribution is P is therefore log P (x)
Q(x) .

Let P be a class of distributions over X . Two measures for
the redundancy of P have been extensively studied [8, 9], and
both play an important role in compression algorithms.

The expected-case redundancy of P is

R(P)
def
= min

Q
max
P∈P

∑
x∈X

P (x) log
P (x)

Q(x)

= min
Q

max
P∈P

(
EP log

1

Q(X)
−H(P )

)
,

the lowest possible increase, over all compression schemes Q,
of the extra number of bits beyond the entropy, that Q uses
to compress the worst distribution P ∈ P .

Similarly, the worst-case redundancy of P is

R̂(P)
def
= min

Q
max
P∈P

max
x∈X

log
P (x)

Q(x)
,

the lowest possible increase, over all compression schemes Q,
of the extra number of bits above log 1

P (x) that Q uses for the
worst distribution P ∈ P and the worst symbol x ∈ X .

†f(n) = Θ̃(g(n)) if the functions differ by a poly-logarithmic factor.

As evident from the definition, R̂(P) ≥ R(P), hence low
worst-case redundancy is a stronger performance guarantee
than low expected-case redundancy. It ensures that a universal-
compression scheme will be close to optimal not only on
average, but for all possible outcomes.

Another interpretation, and strong motivation, for redun-
dancy is as a measure for the quality of prediction al-
gorithms [10, 11]. A prediction algorithm Q observes the
output X1, X2, . . . of an unknown random process P , and
at each time i, having observed Xi def

= X1, . . . ,Xi, outputs
a distribution Q(xi+1|Xi) over the possible values of Xi+1.
The most common measure for the performance of prediction
algorithms is their cumulative log loss,

n∑
i=1

log
P (Xi+1|Xi)

Q(Xi+1|Xi)
.

It is not difficult to see that for every n, the expected- and
worst-case redundancy are exactly the expected and worst-case
cumulative log-loss of the best prediction algorithm.

The most extensively studied classes of distributions are
Ink , the collections of all length-n i.i.d. distributions over an
alphabet of size k. A string of works [12–18] determined
the redundancy of Ink up to a diminishing additive term, in
particular showing that

R(Ink ) + C1(k) = R̂(Ink ) + C2(k) =
k − 1

2
log n+ on(1),

where C1(k) and C2(k) are known functions of k, independent
of n. In particular this shows that while R(Ink ) and R̂(Ink )
grow with the block-length n, they are always within a (very
small) constant from each other.

As the above equation shows, while the redundancy of Ink
grows logarithmically with the length n, it grows linearly with
the alphabet size k. In many practical applications, including
those involving natural language processing [19, 20], the
alphabet size is very large, often even larger than the block
length. Hence the redundancy may be correspondingly high.

To address this fast increase in redundancy with the alphabet
size, a new approach was proposed for compression and
estimation over large alphabets. The pattern [1] of a sequence
represents the relative order in which its symbols appear.
For example, the pattern of abracadabra is 12314151231.
A natural method for compressing a sequence over a large
alphabet is to compress its pattern as well as the dictionary
that maps the order to the original symbols. For example, for
abracadabra, 1→ a, 2→ b, 3→ r, 4→ c, 5→ d.



Let In
ψ̄

be the class of all distributions over length-n patterns
induced by all i.i.d. distributions, over any number of symbols.
It was shown in [1, 21] that(3

2
log2 e

)
n1/3 ≤ R̂(Inψ̄) ≤

(
π

√
2

3

)
n1/2. (1)

It follows that patterns can be compressed with ≤ 1√
n

per-
symbol, hence diminishing redundancy, regardless of the al-
phabet size.

This result also upper bounds expected redundancy. Sub-
sequently, [22] described a proof-outline that could poten-
tially show the following tighter upper bound on expected
redundancy, and [23] proved the following lower bound,
strengthening one in [6], and extensions appeared in [4],

1.84

(
n

log n

)1/3

≤ R(Inψ̄) ≤ n0.4.

Recently, [24] improved these results and determined the
polynomial growth rate of expected pattern redundancy,

0.3 · n1/3 ≤ R(Inψ̄) ≤ n1/3(log n)2.

II. RESULTS

As we saw, for i.i.d. distributions, expected- and worst-case
redundancies are very close. Yet for general distributions they
may differ greatly. Example 1 shows a distribution class P
where R(P) is very small while R̂(P) is infinite.

We therefore consider the worst-case pattern redundancy of
i.i.d. distributions. Improving on (1), we establish a tight upper
bound on the polynomial growth rate,

R̂(Inψ̄) ≤ n1/3(log n)4.

Combined with the lower bound in (1), this determines R̂(In
ψ̄

)
up to a poly-logarithmic factor,

R̂(Inψ̄) = Θ̃(n1/3).

We also improve on [24] and show that R(In
ψ̄

) ≤
n1/3(log n)4/3. Due to lack of space, we only prove the bound
on worst case pattern redundancy.

The paper is organized as follows. In Section III-A we state
a few general properties of worst-case redundancy. In sec-
tion III-B we define patterns and profiles, and in Section III-C
we consider the method of Poisson sampling that is used to
simplify the analyses. In Section IV-A we provide an overview
of the proof and give the details in the final section.

III. PRELIMINARIES
A. Worst-Case Redundancy

Let P be a class of distributions over X . For x ∈ X , let
P̂ (x) = supP∈P P (x), and let

S(P)
def
=
∑
x∈X

P̂ (x)

be the Shtarkov sum of P . It can be shown [25] that

R̂(P) = log(S(P)).

The following example presents a class of distributions over
the natural numbers, such that R is finite but R̂ is infinite.

Example 1. Let X = N and P = {P1, P2, . . . , }, where Pj is
a distribution over {1, j} assigning probability 1− 1

j to 1 and
1
j to j. Then, S(P) =

∑
j≥1

1
j =∞, and hence R̂(P) =∞.

Let Q = s
i2 be a distribution over N, where s = 6

π2 . Then for

any j, D(Pj ||Q) = (1 − 1
j ) log

1− 1
j

s + 1
j log j

s < log 1
s + 1.

Hence, R(P) < 1− log s.

We now state a few properties of R̂(P). For a distribution
P over X and a function f : X → Y , let f(P ) be the
distribution over Y = f(X ) that assigns to y ∈ Y the
probability P (f−1(y)). For a collection P of distributions over
X , let f(P) = {f(P ) : P ∈ P}.

Lemma 2 (Redundancy of functions). R̂(f(P)) ≤ R̂(P).

Proof: S(P) =
∑
x∈X

P̂ (x) =
∑
y∈Y

∑
x∈f−1(y)

P̂ (x)

≥
∑
y∈Y

sup
P∈f(P)

P (y) = S(f(P)).

Taking logarithm yields the result.
For a class P consisting of product (independent) distribu-

tions over X × Y , let PX and PY be the class of marginals.
The redundancy of P is at most the sum of the marginal
redundancies.

Lemma 3 (Redundancy of products). For a collection P of
product distributions over X × Y ,

R̂(P) ≤ R̂(PX ) + R̂(PY).

Proof: S(P) =
∑

(x,y)∈X×Y

sup
(P,Q)∈P

P (x)Q(y)

≤
∑

(x,y)∈X×Y

sup
P∈PX

P (x) sup
Q∈PY

Q(y)

≤
∑
x∈X

sup
P∈PX

P (x)
∑
y∈Y

sup
Q∈PY

Q(y) ≤ S(PX )S(PY). �

The next lemma relates the redundancy of union of classes of
distributions to the individual redundancies.
Lemma 4 (Redundancy of unions). If P1, . . . ,PT are distri-
bution collections, then

R̂(
⋃

1≤i≤k

Pi) ≤ max
1≤i≤T

R̂(Pi) + log T.

Proof:
∑
x sup∪Pi

P (x)≤T ×maxi∈[T ]

∑
x supPi

P (x).

B. Patterns and Profiles

Recall that the pattern ψ̄ of a sequence is the sequence
of integers obtained by replacing each symbol by its order
of appearance. For example, the length 4 sequence isit has
pattern 1213. The probability of a pattern ψ̄ is the probabilities
of all sequences whose pattern is ψ̄,

P (ψ̄) =
∑

x:ψ̄(x)=ψ̄

P (x).

For example, P (1213) = P (isit) + P (alan) + . . ..
The multiplicity µ(x) of a symbol x in a sequence is the

number of times it appears. The profile ϕ of a sequence is



the multiset of multiplicities of all symbols appearing [1, 26].
For example, the sequence ababcde has multiplicities µ(a) =
µ(b) = 2, µ(c) = µ(d) = µ(e) = 1, and profile {1, 1, 1, 2, 2}.
The length of a profile is the length of sequence generating it
(hence the sum of all the multiplicities). Each profile of length
n, is a partition of n. Let Φn denote all profiles of length n,
and Φ = ∪nΦn. Similar to patterns, the probability of a profile
is the sum of probabilities of sequences with that profile.

Similar to In
ψ̄

, let Inϕ be the class of all distributions over
length-n profiles induced by all i.i.d. distributions, sampled n
times. Since any i.i.d. distribution assigns the same probability
to all patterns with the same profile, it can be shown [1] that

R̂(Inψ̄) = R̂(Inϕ). (2)

C. Poisson Sampling and Profile Probability
When a distribution is sampled i.i.d. exactly n times, the

multiplicities are dependent, e.g., they add up to n. A standard
approach [27] to overcome the dependence is to sample the
distribution poi(n) times, where poi(n) is a Poisson random
variable with parameter n. With high probability, the result-
ing sequences have their random length close to n. We let
poi(λ, µ)

def
= e−λλµ/µ! denote the probability that a poi(λ)

random variable equals µ.
The following basic properties of Poisson sampling help

simplify the analysis and relate it to fixed-length sampling.

Lemma 5. [27] If a discrete distribution is sampled poi(n)
times then: (1) the number of appearances of different symbols
are independent; (2) a symbol with probability p appears
poi(np) times; (3) for any fixed n0, conditioned on the length
poi(n) ≥ n0, the first n0 elements are distributed identically
to sampling P exactly n0 times.

We now express profile probabilities and redundancy under
Poisson sampling. The probability multiset of a distribution
over X is the collection {P (x) : x ∈ X} of probabilities.
For example, the probability multiset of P (a) = P (c) =
.4, P (b) = .2 is {.4, .4, .2}. Since relabeling symbols in a
sequence does not change its profile, distributions with the
same probability multiset assign the same probability to any
profile [26].

For a distribution P with multiset {p1, p2, . . .}, let λi
def
=

npi, and Λ
def
= {λ1, λ2, . . .}. The profile generated by poi(n)

sampling of P is a multiset ϕ = {µ1, µ2, . . .}, where each µi
is generated independently according to poi(λi).

Similarly, it is useful to consider profiles (set of multiplici-
ties) generated by Λ′ ⊆ Λ. For example, see IV-B. Henceforth,
distributions are denoted by the multiset Λ instead of P .

The probability that Λ generates ϕ is [1, 28],

Λ(ϕ) =
1∏∞

µ=0 fµ!

∑
σ

∏
i

poi(λσ(i), µi). (3)

where the summation is over permutations of the support set,
and fµ is the number of elements with multiplicity µ in ϕ.

For example, for Λ = {λ1, λ2, λ3}, the profile ϕ = {2, 2, 3}
has f2 = 2, and f3 = 1, and and there are three possible ways
to assign the multiplicities to the symbols. This is reflected by

the f2! terms in the denominator, ensuring that only three out
of the six permutation terms are taken into account.

Let Ipoi(n)
ϕ be the class of all distributions induced on

profiles (of all lengths, denoted Φ) by i.i.d. distributions
under poi(n) sampling. Using Lemma 5 and the fact that
poi(n, n) ∼ 1√

n

R̂(Ipoi(n)
ϕ ) > R̂(Inϕ)− 1

2
log n.

Hence, upper bounds on R̂(Ipoi(n)
ϕ ) provide bounds for

R̂(Inϕ). Henceforth, we consider only Poisson sampling. Also,
note that R̂(Ipoi(n)

ψ̄
) = R̂(Ipoi(n)

ϕ ) and hence considering
profiles suffices.

IV. PROOF
A. Overview

We strengthen the arguments in [24] to show the main
result. Notice that a distribution in Ipoi(n)

ϕ is a collection of
positive reals that sum to n. For each distribution we divide
the collection of λ’s into three sub-collections, those ≤ n1/3,
between n1/3 and n2/3, and those > n2/3. In Lemma 6 we
show that it suffices to consider distributions that have all λ’s
in the middle range, namely in (n1/3, n2/3].

We then partition such distributions into Tn classes
I(1), . . . , I(Tn). The classes are designed such that log(Tn) <
Õ(n1/3), and the redundancy of each class is at most Õ(n1/3).
The result then follows by Lemma 4.
B. Details

Each distribution Λ in Ipoi(n)
ϕ is a collection of λ’s that sum

to n. For any such distribution, let

Λlow
def
= {λ ∈ Λ : λ ≤ n1/3},

Λmed
def
= {λ ∈ Λ : n1/3 < λ ≤ n2/3},

Λhigh
def
= {λ ∈ Λ : λ > n2/3},

and let ϕlow, ϕmed, ϕhigh denote the corresponding profile
each subset generates. Let Iϕlow

, Iϕmed
and Iϕhigh

be the
collection of all Λlow, Λmed, and Λhigh’s respectively, for all
Λ ∈ Ipoi(n)

ϕ .
By Poisson sampling, ϕlow, ϕmed and ϕhigh are indepen-

dent, and ϕ = ϕlow ∪ ϕmed ∪ ϕhigh. By Lemmas 2 and 3,

R̂(Ipoi(n)
ϕ ) ≤ R̂(Iϕlow

) + R̂(Iϕmed
) + R̂(Iϕhigh

). (4)

The following lemma bounds R̂(Iϕlow
) and R̂(Iϕhigh

).

Lemma 6. Both R̂(Iϕlow
), R̂(Iϕhigh

) < 4n1/3 log n.

Proof: Any distribution in Iϕhigh
is a collection of λ’s, each

at least n2/3 that sum to at most n. Hence, any distribution in
Iϕhigh

consists of at most n1/3 elements. For a profile ϕhigh,
let µmax be the largest multiplicity in it. Elias coding [29]
encodes every positive integer j using at most 2 log(j+1) bits.
Hence, ϕhigh can be encoded using ≤ n1/3 × 2 log(µmax +
1) bits. Since redundancy is the extra number of bits needed
to encode a profile, it is upper bounded by the code-length.
Hence,



log
( ∑
ϕ:µmax=µ

P̂ (ϕ)
)
≤ 2n1/3 log(µ+ 1).

Since every distribution in Λhigh has all λ ≤ n, probability
of profiles with µmax > n falls exponentially with µmax.
Using this argument, it can then be shown that, R̂(Iϕhigh

) ≤
4n1/3 log n. R̂(Iϕlow

) can be bounded similarly.
We bound R̂(Iϕmed

) by dividing Iϕmed
into classes

I(1), . . . , I(Tn) and bounding the redundancy of each class.
Consider any partition of (n1/3, n2/3] into b

def
=

n1/3 consecutive intervals (bins) B1, B2, . . . , Bb of lengths
∆1, . . . ,∆b. For each distribution Λ ∈ Iϕmed

, let Λj
def
= Λ∩Bj

be the set of elements of Λ in Bj , let mj
def
= mj(Λ)

def
= |Λj |

be the number of elements of Λ in Bj and let sj
def
= sj(Λ)

def
=∑

λ∈Λj
λ be the sum of all elements in Λj . m(Λ) and s(Λ)

denote the b-tuples of mj’s and sj’s respectively.

Lemma 7. Iϕmed
can be partitioned into Tn ≤ n100b classes

such that in each class, all Λ’s have the same m(Λ) and all
the s(Λ)’s are within `1 distance < 1/n99 from each other.

Proof Sketch: Each m(Λ) is a b−tuple of natural numbers,
each at most n2/3. Hence, the number of possible m(Λ)’s is
at most (n2/3)b. Similarly, quantizing s(Λ) in units of 1

n99

proves the lemma.
By Lemma 4,

R̂(Iϕmed
) ≤ max

1≤i≤Tn

R̂(I(i)) + 100b log n. (5)

We now bound the redundancy of each class. Let I ∈
{I(i) : 1 ≤ i ≤ Tn} be any one of the classes, and
let m = m(Λ) for all Λ ∈ I. Let Bj = (λj−1, λj ] be
the jth interval. The following theorem, which holds when
∆j ≤

√
λj log n, bounds the redundancy as a function of m,

and the intervals. The proof is deferred to Section IV-C.

Theorem 8. R̂(I) ≤ 3b
2 + 2(log n)2

(∑b
j=1

mj∆2
j

λj

)
.

Using this theorem we bound R̂ of profiles by choosing Bj’s
that bound the expression in the theorem. The interval size
∆j’s are chosen to be geometrically growing, namely ∆j =
n1/3c(1 + c)j−1, where c is chosen to ensure that the sum of
the b intervals is n2/3−n1/3. Summing this geometric series,
n2/3 = n1/3+∆1+. . .+∆b = n1/3(1+c)b ⇒ (1+c)b = n1/3.
Since b = n1/3, the condition b log(1 + c) = log n/3 yields
c < 0.4 log n/b. By the construction of the geometric series,
∆j = λj−1c. Since λj ≤ n2/3, ∆j ≤

√
λj log n holds for all

j, and the theorem holds. Plugging the expression for ∆j ,
b∑
j=1

mj∆
2
j

λj
=

b∑
j=1

mjc
2λ2
j

λj
= c2

∑
mjλj < nc2,

where we use the fact that n is the sum of all λ’s and hence
is an upper bound on

∑
mjλj .

Using the bound of c in Equation (5), and Lemma 6 in
Equation (4), for large n,

R̂(Ipoi(n)
ϕ )≤108n1/3 log n+2nc2(log n)2+1.5n1/3<n1/3 log4 n.

C. Proof of Theorem 8
Recall that I was one of the classes of distributions obtained

by Lemma 7. Hence, there exists m = (m1, . . . ,mb) and s =
(s1, . . . , sb), such that for all Λ ∈ I, m(Λ) = m and |s(Λ)−
s| < 1

n99 . Also, for a distribution Λ, Λj = Λ ∩Bj Let Bj
def
=

{Λj : Λ ∈ I}, be the Λj’s for all distributions in I, and
1 ≤ j ≤ b. Each element in Bj is a collection of mj elements
in Bj and their sum ∈ [sj − 1

n99 , sj + 1
n99 ].

Let ϕj be the profile generated by Λj , i.e., λ’s in the jth
interval. Then, ϕmed = ϕ1 ∪ . . . ∪ ϕb = f(ϕ1, . . . , ϕb). By
Poisson sampling, ϕj’s are independent. By Lemmas 2 and 3,

R̂(I) ≤
b∑
j=1

R̂(Bj).

We will prove Theorem 8 by showing that for all j,

R̂(Bj) ≤
3

2
+ 2(log n)2

mj∆
2
j

λj
. (6)

Recall that, Bj = (λj−1, λj ] and S(Bj) =∑
ϕj∈Φ supΛ∈Bj

Λ(ϕj). Hence, ∆j = λj − λj−1.
Let Φnear

j be the set of all profiles with all multiplicities in
[λj−1− 2

√
λj log n, λj + 2

√
λj log n]. In other words, Φnear

j

consists of all {µ1, . . . , µmj
}, where each µr ∈ [λj−1 −

2
√
λj log n, λj + 2

√
λj log n] By Poisson tail bounds, a

poi(λ) random variable lies in λ±2
√
λ log n with probability

at least 1−1/n4, and the probability falls exponentially beyond
this range. By the union bound, a profile generated by any Λj
is in Φnear

j with probability > 1− 1
n3 . Using this along with the

fact that λ ≥ n1/3, the following lemma states that it suffices
to consider Φnear

j . The proof is omitted due to lack of space.

Lemma 9.
∑
ϕj∈Φ

sup
Λ∈Bj

Λ(ϕj)<2
∑

ϕj∈Φnear
j

sup
Λ∈Bj

Λ(ϕj).

Let Λj0 = {mj × λ0 : λ0
def
=

sj
mj
}, be the element in Bj

that has mj Poisson parameters, all equal to λ0 that add to
sj . In other words, Λj0 is a uniform distribution in Bj .

Note that the profiles in Φnear
j have bounded multiplicities.

We show that for any ϕj ∈ Φnear
j , the uniform distribution

Λj0 does not underestimate supBj
Λj(ϕj). More precisely,

Theorem 10. For any Θj > 0, and any ϕj with all multiplic-
ities in [λ0 − Θj

2 , λ0 +
Θj

2 ], and any Λ∗j ∈ Bj ,

Λ∗j (ϕj)

Λj0(ϕj)
≤
√

2 exp
[
m
(∆jΘj

λ0

)2]
.

This provides a direct bound on S(Bj), and hence on R̂(Bj).
Proof: Let ϕj = {µ1, . . . , µmj} and Λ∗j = {λ1, . . . , λmj}. Let
s∗j = λ1 + . . .+ λmj

. By Equation (3),

Λ∗j (ϕj) = N(ϕj)
exp(−s∗j )∏

µi!

 ∑
σ∈Smj

mi∏
l=1

λµl

jσ(l)

 .



Taking the ratio with Λj0,

Λ∗j (ϕj)

Λj0(ϕj)
=

1

mj !
exp(s∗j − sj)

 ∑
σ∈Smj

mj∏
l=1

(
λjσ(l)

λ0

)µl

 .

Since, |s∗j−sj | < 1
n99 , the term exp(s∗j−sj) is inconsequential

to our calculations and is ignored. Let δi
def
= λi−λ0. Let µ =∑

µi

mj
be the average multiplicity of ϕj , and θj

def
= µj−µ. Then,∑mj

l=1 θl = 0, and |
∑mj

l=1 δj | = |s∗j−sj | <
1
n99 . Plugging these

in the equation above and using 1 + x ≤ exp(x),

Λ∗j (ϕj)

Λj0(ϕj)
=

1

mj !

 ∑
σ∈Smj

mj∏
l=1

(
1 +

δσ(l)

λ0

)µl


≤ 1

mj !

∑
σ∈Smj

exp

(
mj∑
l=1

δσ(l)µl

λ0

)

=
1

mj !

∑
σ∈Smj

exp

(
mj∑
l=1

δσ(l)θl

λ0

)
,

where the last step used the fact that
∑
θl = 0. Since,

|
∑
δl| ≤ 1

n99 , it suffices to consider δl’s that sum to zero.
This reduces to maximizing the function

f({δl}, {θl}) =
1

m!

∑
σ

[
exp

(
m∑
l=1

δlθσl

λ0

)]
,

subject to
∑
θl =

∑
δl = 0, and |θl| ≤ Θj , |δl| ≤ ∆j . Note

that for convenience we have replaced mj with m.
f is a sum of exponentials, hence it is convex. Therefore,

f is maximized when all δ’s are ±∆j , and all θl’s are ±Θj .
Plugging these values and collecting equal terms,

f({δl}, {θl})

≤
(
m
2 !
)2

m!

m/2∑
k=0

(m
2

k

)2

exp

(
(m− 4k)

∆jΘj

λ0

)
≤

(
m
2 !
)2(m

2
m
4

)
m!

exp

(
m∆jΘj

λ0

) m
2∑

k=0

(m
2

k

)
exp

(
−4k∆jΘj

λ0

)

≤
√

2

2m/2

(
1 + exp

(
−4∆jΘj

λ0

))m
2

exp

(
2∆jΘj

λ0

)m
2

=

√
2

2m/2

(
exp

(
−2∆jΘj

λ0

)
+ exp

(
2∆jΘj

λ0

))m
2

.

By Taylor series, e
x+e−x

2 ≤ e x2

2 , proving the theorem.
If ∆j ≤

√
λj log n, profiles in Φnear

j satisfy the conditions
of the theorem above for Θj =

√
λj log n + 4

√
λj log n <√

2λ log n. Hence S(Bj) can be bounded using Lemma 9,

S(Bj) ≤ 2
∑

Φnear
j

sup
Λ∈Bj

Λ(ϕj) ≤ 2
3
2 exp

(mj∆
2
j log2n

λ0

)
.

Taking logarithms proves Equation (6), and summing over 1 ≤
j ≤ b proves Theorem 8.
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