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Abstract

It was recently shown that estimating the Shannon entropy H(p) of a discrete k-symbol
distribution p requires Θ(k/ log k) samples, a number that grows near-linearly in the support
size. In many applications H(p) can be replaced by the more general Rényi entropy of order α,
Hα(p). We determine the number of samples needed to estimate Hα(p) for all α, showing that
α < 1 requires a super-linear, roughly k1/α samples, noninteger α > 1 requires a near-linear
k samples, but, perhaps surprisingly, integer α > 1 requires only Θ(k1−1/α) samples. Further-
more, developing on a recently established connection between polynomial approximation and
estimation of additive functions of the form

∑
x f(px), we reduce the sample complexity for

noninteger values of α by a factor of log k compared to the empirical estimator. The estimators
achieving these bounds are simple and run in time linear in the number of samples. Our lower
bound provides an explicit construction of distributions with different Rényi entropies that are
hard to distinguish.

∗A part of this paper appeared in ACM-SIAM Symposium on Discrete Algorithms 2015



1 Introduction

1.1 Shannon and Rényi entropies

One of the most commonly used measure of randomness of a distribution p over a discrete set X is
its Shannon entropy

H(p)
def
=
∑
x∈X

px log
1

px
.

The estimation of Shannon entropy has several applications, including measuring genetic diver-
sity [36], quantifying neural activity [31, 28], network anomaly detection [19], and others. It was
recently shown that estimating the Shannon entropy of a discrete distribution p over k elements to
a given additive accuracy requires1 Θ(k/ log k) independent samples from p [32, 39]; see [16, 41] for
subsequent extensions. This number of samples grows near-linearly with the alphabet size and is
only a logarithmic factor smaller than the Θ(k) samples needed to learn p itself to within a small
statistical distance.

A popular generalization of Shannon entropy is the Rényi entropy of order α ≥ 0, defined for
α 6= 1 by

Hα(p)
def
=

1

1− α
log
∑
x∈X

pαx

and for α = 1 by

H1(p)
def
= lim

α→1
Hα(p).

It was shown in the seminal paper [35] that Rényi entropy of order 1 is Shannon entropy, namely
H1(p) = H(p), and for all other orders it is the unique extension of Shannon entropy when of the
four requirements in Shannon entropy’s axiomatic definition, continuity, symmetry, and normaliza-
tion are kept but grouping is restricted to only additivity over independent random variables (cf.
[12]).

Rényi entropy too has many applications. It is often used as a bound on Shannon entropy [25,
28, 11], and in many applications it replaces Shannon entropy as a measure of randomness [6, 23, 2].
It is also of interest in its own right, with diverse applications to unsupervised learning [42, 14],
source adaptation [21], image registration [20, 27], and password guessability [2, 34, 9] among
others. In particular, the Rényi entropy of order 2, H2(p), measures the quality of random number
generators [18, 29], determines the number of unbiased bits that can be extracted from a physical
source of randomness [13, 5], helps test graph expansion [7] and closeness of distributions [4, 33],
and characterizes the number of reads needed to reconstruct a DNA sequence [26].

Motivated by these and other applications, unbiased and heuristic estimators of Rényi entropy
have been studied in the physics literature following [8], and asymptotically consistent and normal
estimates were proposed in [43, 17]. However, no systematic study of the complexity of estimating
Rényi entropy is available. For example, it was hitherto unknown if the number of samples needed
to estimate the Rényi entropy of a given order α differs from that required for Shannon entropy, or
whether it varies with the order α, or how it depends on the alphabet size k.

1.2 Definitions and results

We answer these questions by showing that the number of samples needed to estimate Hα(p) falls
into three different ranges. For α < 1 it grows super-linearly with k, for 1 < α 6∈ Z it grows almost

1f(k) = Θ(g(k)) if there exist constants c and C such that cg(k) ≤ f(k) ≤ Cg(k).
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linearly with k, and most interestingly, for the popular orders 1 < α ∈ Z it grows as Θ(k1−1/α),
which is much less than the sample complexity of estimating Shannon entropy.

To state the results more precisely we need a few definitions. A Rényi-entropy estimator for
distributions over support set X is a function f : X ∗ → R mapping a sequence of samples drawn
from a distribution to an estimate of its entropy. The sample complexity of an estimator f for
distributions over k elements is defined as

Sfα(k, δ, ε)
def
= min

n
{n : p (|Hα(p)− f (Xn) | > δ) < ε,∀p with ‖p‖0 ≤ k} ,

i.e., the minimum number of samples required by f to estimate Hα(p) of any k-symbol distribution
p to a given additive accuracy δ with probability greater than 1 − ε. The sample complexity of
estimating Hα(p) is then

Sα(k, δ, ε)
def
= min

f
Sfα(k, δ, ε),

the least number of samples any estimator needs to estimate Hα(p) for all k-symbol distributions
p, to an additive accuracy δ and with probability greater than 1− ε. This is a min-max definition
where the goal is to obtain the best estimator for the worst distribution.

The desired accuracy δ and confidence 1−ε are typically fixed. We are therefore most interested
in the dependence of Sα(k, δ, ε) on the alphabet size k and omit the dependence of Sα(k, δ, ε) on
δ and ε to write Sα(k). In particular, we are interested in the large alphabet regime and focus on
the essential growth rate of Sα(k) as a function of k for large k. Using the standard asymptotic
notations, let Sα(k) = O(kβ) indicate that for some constant c which may depend on α, δ, and ε, for
all sufficiently large k, Sα(k, δ, ε) ≤ c · kβ. Similarly, Sα(k) = Θ(kβ) adds the corresponding Ω(kβ)
lower bound for Sα(k, δ, ε), for all sufficiently small δ and ε. Finally, extending the Ω̃ notation2,

we let Sα(k) =
∼∼
Ω (kβ) indicate that for every sufficiently small ε and arbitrary η > 0, there exist c

and δ depending on η such that for all k sufficiently large Sα(k, δ, ε) > ckβ−η, namely Sα(k) grows
polynomially in k with exponent not less than β − η for δ ≤ δη.

We show that Sα(k) behaves differently in three ranges of α. For 0 ≤ α < 1,

∼∼
Ω
(
k1/α

)
≤ Sα(k) ≤ O

(
k1/α

log k

)
,

namely the sample complexity grows super-linearly in k and estimating the Rényi entropy of these
orders is even more difficult than estimating the Shannon entropy. In fact, the upper bound
follows from a corresponding result on estimation of power sums considered in [16] (see Section 3.3
for further discussion). For completeness, we show in Theorem 10 that the empirical estimator
requires O(k1/α) samples and in Theorem 13 prove the improvement by a factor of log k with
smaller constants than implied by [16]. The lower bound is proved in Theorem 22.

For 1 < α /∈ N,
∼∼
Ω (k) ≤ Sα(k) ≤ O

(
k

log k

)
,

namely as with Shannon entropy, the sample complexity grows roughly linearly in the alphabet
size. The lower bound is proved in Theorem 21. In the conference version of this paper, a weaker
O(k) upper bound was established using the empirical-frequency estimator. For the sake of com-
pleteness, we include this result as Theorem 9. The tighter upper bound reported here uses the
best polynomial approximation based estimator of [16, 41] and is proved in Theorem 12.

2The notations Õ, Ω̃, and Θ̃ hide poly-logarithmic factors.
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For 1 < α ∈ N,

Sα(k) = Θ
(
k1−1/α

)
,

and in particular, the sample complexity is strictly sublinear in the alphabet size. The upper and
lower bounds are shown in Theorems 11 and 14, respectively. Figure 1.2 illustrates our results for
different ranges of α.
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Figure 1: Exponent of k in Sα(k) as a function of α.

Of the three ranges, the most frequently used, and coincidentally the one for which the results
are most surprising, is the last with α = 2, 3, . . .. Some elaboration is therefore in order.

First, for all integral α > 1, Hα(p) can be estimated with a sublinear number of samples. The
most commonly used Rényi entropy, H2(p), can be estimated using just Θ(

√
k) samples, and hence

Rényi entropy can be estimated much more efficiently than Shannon Entropy, a useful property for
large-alphabet applications such as language processing genetic analysis.

Second, when estimating Shannon entropy using Θ(k/ log k) samples, the implicit constant
factors are fairly high (in the orders of 106). For Rényi entropy of orders α = 2, 3, ..., the constants
implied by Θ(k1−1/α) are shown to be small in Theorem 11. Furthermore, the experiments described
below suggest that they may be even lower.

Finally, note that Rényi entropy is continuous in the order α. Yet the sample complexity
is discontinuous at integer orders. While this makes the estimation of the popular integer-order
entropies easier, it may seem contradictory. For instance, to approximate H2.001(p) one could
approximate H2(p) using significantly fewer samples. The reason for this is that the Rényi entropy,
while continuous in α, is not uniformly continuous. In fact, as shown in Example 2, the difference
between say H2(p) and H2.001(p) may increase to infinity when the alphabet-size increases.

It should also be noted that the estimators achieving the upper bounds are simple and run in
time linear in the number of samples. Furthermore, the estimators are universal in that they do
not require the knowledge of k. On the other hand, the lower bounds on Sα(k) hold even if the
estimator knows k.
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1.3 The estimators

The power sum of order α of a distribution p over X is

Pα(p)
def
=
∑
x∈X

pαx ,

and is related to the Rényi entropy for α 6= 1 via

Hα(p) =
1

1− α
logPα(p).

Hence estimating Hα(p) to an additive accuracy of ±δ is equivalent to estimating Pα(p) to a
multiplicative accuracy of 2±δ·(1−α). Furthermore, if δ(α − 1) ≤ 1/2 then estimating Pα(p) to
multiplicative accuracy of 1± δ(1− α)/2 ensures a ±δ additive accurate estimate of Hα(p).

We construct estimators for the power-sums of distributions with multiplicative-accuracy guar-
antees for and hence obtain additive-accuracy estimators for Rényi entropy. We consider the follow-
ing three different estimators for different ranges of α and with different performance guarantees.

Empirical estimator The empirical, or plug-in, estimator of Pα(p) is given by

P̂ e
α

def
=
∑
x

(
Nx

n

)α
. (1)

For α 6= 1, P̂ e
α is a not an unbiased estimator of Pα(p). However, we prove in Theorem 10 that

for α < 1 the sample complexity of the empirical estimator is O(k1/α), and in Theorem 9 that for
α > 1 the complexity is O(k).

Using the lower bounds in Section 4, we prove that the empirical estimator achieves the optimal
exponent of k for all α /∈ N.

Bias-corrected estimator For integral α > 1, the bias-corrected estimator for Pα(p) is

P̂ u
α

def
=
∑
x

N
α
x

nα
, (2)

where for integers N and r > 0, N r def
= N(N − 1) . . . (N − r + 1). A variation of this estimator

was proposed first in [3] for estimating moments of frequencies in a sequence using random samples
drawn from it.

Theorem 11 show that for 1 < α ∈ Z, P̂ u
α estimates Pα(p) using O(k1−1/α) samples, and

Theorem 14 shows that this number is optimal up to a constant factor.

Polynomial approximation estimator To obtain a logarithmic improvement in Sα(k), we
consider the polynomial approximation estimator proposed in [41, 16] for different problems, con-
currently to an earlier version of this paper. The polynomial approximation estimator first considers
the best polynomial approximation of degree d to yα for the interval y ∈ [0, 1] [37]. Suppose this
polynomial is given by a0 + a1y + a2y

2 + . . . + ady
d. We roughly divide the samples into two

parts. Suppose N ′x and Nx be the multiplicities of x in the first and second parts respectively. The
polynomial approximation estimator uses a polynomial for small N ′x and the empirical estimate for
large N ′x.
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Range of α Empirical Bias-corrected Polynomial Lower bounds

α < 1 O( k1/α

δmax(4,2/α) ) O( k1/α

δ1/α log k
) for all η > 0, Ω(k1/α−η)

α > 1, α /∈ N O( k

min(δ1/(α−1),δ2 )
) O( k

δ1/α log k
) for all η > 0, Ω(k1−η)

α > 1, α ∈ N O( k
δ2

) O(k
1−1/α

δ2
) Ω(k

1−1/α

δ2
)

Table 1: Performance of estimators and lower bounds for estimating Rényi entropy

The estimator is roughly of the form

P̂ d,τα
def
=

∑
x:N ′x≤τ

(
d∑

m=0

am(2τ)α−mN
m
x

nα

)
+

∑
x:N ′x>τ

(
Nx

n

)α
, (3)

where d and τ are both O(log n) and chosen appropriately.
Theorem 12 and Theorem 13 show that for α > 1 and α < 1, respectively, the sample complexity

of P̂ d,τα is O(k/ log k) and O(k
1
α / log k), resulting in a reduction in sample complexity of O(log k)

over the empirical estimator.
Table 1 summarizes the performance of these estimators in terms of their sample complexity.

The last column denote the lower bounds from Section 4.

1.4 Examples and experiments

We demonstrate the performance of the estimators for two popular distributions, uniform and Zipf.
For each, we determine the Rényi entropy of any order and illustrate the performance for integer
and noninteger orders by showing that estimating Rényi entropy of order 2 requires only a small
multiple of

√
k samples, while for order 1.5 the estimators require nearly k samples.

Example 1. The uniform distribution Uk over [k] = {1, . . . , k} is defined by

pi =
1

k
for i ∈ [k].

Its Rényi entropy for every order 1 6= α ≥ 0, and hence for all α ≥ 0, is

Hα(Uk) =
1

1− α
log

k∑
i=1

1

kα
=

1

1− α
log k1−α = log k.

Figure 2 shows the performance of the bias-corrected and the empirical estimators for samples
drawn from a uniform distribution. �

Example 2. The Zipf distribution Zβ,k for β > 0 and k ∈ [k] is defined by

pi =
i−β∑k
j=1 j

−β
for i ∈ [k].
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Figure 2: Estimation of Rényi entropy of order 2 and order 1.5 using the bias-corrected estimator
and empirical estimator, respectively, for samples drawn from a uniform distribution. The box-plots
display the estimated values for 100 independent experiments.

Its Rényi entropy of order α 6= 1 is

Hα(Zβ,k) =
1

1− α
log

k∑
i=1

i−αβ − α

1− α
log

k∑
i=1

i−β.

Table 2 summarizes the leading term g(k) in the approximation3 Hα(Zβ,k) ∼ g(k).

β < 1 β = 1 β > 1

αβ < 1 log k 1−αβ
1−α log k 1−αβ

1−α log k

αβ = 1 α−αβ
α−1 log k 1

2 log k 1
1−α log log k

αβ > 1 α−αβ
α−1 log k α

α−1 log log k constant

Table 2: The leading terms g(k) in the approximations Hα(Zβ,k) ∼ g(k) for different values of αβ
and β. The case αβ = 1 and β = 1 corresponds to the Shannon entropy of Z1,k.

In particular, for α > 1

Hα(Z1,k) =
α

1− α
log log k + Θ

(
1

kα−1

)
+ c(α),

and the difference |H2(p) −H2+ε(p)| is O (ε log log k). Therefore, even for very small ε this differ-
ence is unbounded and approaches infinity in the limit as k goes to infinity. Figure 3 shows the
performance of our estimators for samples drawn from Z1,k. �

3We say f(n) ∼ g(n) to denote limn→∞ f(n)/g(n) = 1.
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Figure 3: Estimation of Rényi entropy of order 2 and order 1.5 using the bias-corrected estimator
and empirical estimator, respectively, for samples drawn from Z1,k. The box-plots display the
estimated values for 100 independent experiments.

Figures 2 and 3 above illustrate the estimation of Rényi entropy for α = 2 and α = 1.5 using
the empirical and the bias-corrected estimators, respectively. As expected, for α = 2 the estimation
works quite well for n =

√
k and requires roughly k samples to work well for α = 1.5. Note that

the empirical estimator is negatively biased for α > 1 and the figures above confirm this. Our goal
in this work is to find the exponent of k in Sα(k), and as our results show, for noninteger α the
empirical estimator attains the optimal exponent; we do not consider the possible improvement in
performance by reducing the bias in the empirical estimator.

1.5 Organization

The rest of the paper is organized as follows. Section 2 presents basic properties of power sums
of distributions and moments of Poisson random variables, which may be of independent interest.
The estimation algorithms are analyzed in Section 3, in Section 3.1 we show results on the empirical
or plug-in estimate, in Section 3.2 we provide optimal results for integral α and finally we provide
an improved estimator for non-integral α > 1. Finally, the lower bounds on the sample complexity
of estimating Rényi entropy are established in Section 4.

2 Technical preliminaries

2.1 Bounds on power sums

Consider a distribution p over [k] = {1, . . . , k}. Since Rényi entropy is a measure of randomness
(see [35] for a detailed discussion), it is maximized by the uniform distribution and the following
inequalities hold:

0 ≤ Hα(p) ≤ log k, α 6= 1,

or equivalently

1 ≤ Pα(p) ≤ k1−α, α < 1 and k1−α ≤ Pα(p) ≤ 1, α > 1. (4)
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Furthermore, for α > 1, Pα+β(p) and Pα−β(p) can be bounded in terms of Pα(p), using the
monotonicity of norms and of Hölder means (see, for instance, [10]).

Lemma 1. For every 0 ≤ α,
P2α(p) ≤ Pα(p)2

Further, for α > 1 and 0 ≤ β ≤ α,

Pα+β(p) ≤ k(α−1)(α−β)/α Pα(p)2,

and
Pα−β(p) ≤ kβ Pα(p).

Proof. By the monotonicity of norms,

Pα+β(p) ≤ Pα(p)
α+β
α ,

which gives
Pα+β(p)

Pα(p)2
≤ Pα(p)

β
α
−1.

The first inequality follows upon choosing β = α. For 1 < α and 0 ≤ β ≤ α, we get the second by
(4). For the final inequality, note that by the monotonicity of Hölder means, we have(

1

k

∑
x

pα−βx

) 1
α−β

≤

(
1

k

∑
x

pαx

) 1
α

.

The final inequality follows upon rearranging the terms and using (4). �

2.2 Bounds on moments of a Poisson random variable

Let Poi(λ) be the Poisson distribution with parameter λ. We consider Poisson sampling where N ∼
Poi(n) samples are drawn from the distribution p and the multiplicities used in the estimation are
based on the sequence XN = X1, ..., XN instead of Xn. Under Poisson sampling, the multiplicities
Nx are distributed as Poi(npx) and are all independent, leading to simpler analysis. To facilitate
our analysis under Poisson sampling, we note a few properties of the moments of a Poisson random
variable.

We start with the expected value and the variance of falling powers of a Poisson random variable.

Lemma 2. Let X ∼ Poi(λ). Then, for all r ∈ N

E[Xr ] = λr

and
Var[Xr ] ≤ λr ((λ+ r)r − λr) .

Proof. The expectation is

E[Xr ] =

∞∑
i=0

Poi(λ, i) · ir

=

∞∑
i=r

e−λ · λ
i

i!
· i!

(i− r)!

= λr
∞∑
i=0

e−λ · λ
i

i!

= λr.
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The variance satisfies

E
[
(Xr)2

]
=
∞∑
i=0

Poi(λ, i) · (ir)2

=
∞∑
i=r

e−λ · λ
i

i!

i!2

(i− r)!2

= λr
∞∑
i=0

e−λ · λ
i

i!
· (i+ r)r

= λr · E[(X + r)r ]

≤ λr · E

 r∑
j=0

(
r

j

)
Xj · rr−j


= λr ·

r∑
j=0

(
r

j

)
· λj · rr−j

= λr(λ+ r)r,

where the inequality follows from

(X + r)r =
r∏
j=1

[(X + 1− j) + r] ≤
r∑
j=0

(
r

j

)
·Xj · rr−j .

Therefore,
Var[Xr ] = E

[
(Xr)2

]
− [EXr ]2 ≤ λr · ((λ+ r)r − λr) . �

The next result establishes a bound on the moments of a Poisson random variable.

Lemma 3. Let X ∼ Poi(λ) and let β be a positive real number. Then,

E
[
Xβ

]
≤ 2β+2 max{λ, λβ}.

Proof. Let Z = max{λ1/β, λ}.

E
[
Xβ

Zβ

]
≤ E

[(
X

Z

)dβe
+

(
X

Z

)bβc ]

=

dβe∑
i=1

(
λ

Z

)dβe(dβe
i

)
+

bβc∑
i=1

(
λ

Z

)bβc(bβc
i

)

≤
dβe∑
i=1

(
dβe
i

)
+

bβc∑
i=1

(
bβc
i

)
≤ 2β+2.

The first inequality follows from the fact that either X/Z > 1 or ≤ 1. The equality follows from the
fact that the integer moments of Poisson distribution are Touchard polynomials in λ. The second
inequality uses the property that λ/Z ≤ 1. Multiplying both sides by Zβ results in the lemma. �
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We close this section with bounds on |E[Xα ] − λα|, which will be used in the next section to
bound the bias of the empirical estimator.

Lemma 4. For X ∼ Poi(λ),

|E[Xα ]− λα| ≤

{
α
(
2αλ+ (2α + 1)λα−1/2

)
α > 1

min(λα, λα−1) α ≤ 1.

Proof. For α ≤ 1, (1 + y)α ≥ 1 + αy − y2 for all y ∈ [−1,∞], hence,

Xα = λα
(

1 +
(X
λ
− 1
))α

≥ λα
(

1 + α
(X
λ
− 1
)
−
(X
λ
− 1
)2
)
.

Taking expectations on both sides,

E[Xα ] ≥ λα
(

1 + αE
[(X

λ
− 1
)]
− E

[(X
λ
− 1
)2
])

= λα
(

1− 1

λ

)
.

Since xα is a concave function and X is nonnegative, the previous bound yields

|E[Xα ]− λα| = λα − E[Xα ]

≤ min(λα, λα−1).

For α > 1,
|xα − yα| ≤ α|x− y|

(
xα−1 + yα−1

)
,

hence by the Cauchy-Schwarz Inequality,

E[|Xα − λα| ] ≤ αE
[
|X − λ|

(
Xα−1 + λα−1

) ]
≤ α

√
E[(X − λ)2 ]

√
E[(X2α−2 + λ2α−2) ]

≤ α
√
λ
√
E[(X2α−2 + λ2α−2) ]

≤ α
√

22α max{λ2, λ2α−1}+ λ2α−1

≤ α
(

2α max{λ, λα−1/2}+ λα−1/2
)
,

where the last-but-one inequality is by Lemma 3. �

2.3 Polynomial approximation of xα

In this section, we review a bound on the error in approximating xα by a d-degree polynomial over
a bounded interval. Let Pd denote the set of all polynomials of degree less than or equal to d over
R. For a continuous function f(x) and λ > 0, let

Ed(f, [0, λ])
def
= inf

q∈Pd
max
x∈[0,λ]

|q(x)− f(x)|.
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Lemma 5 ([37]). There is a constant c′α such that for any d > 0,

Ed(x
α, [0, 1]) ≤ c′α

d2α
.

To obtain an estimator which does not require a knowledge of the support size k, we seek a
polynomial approximation qα(x) of xα with qα(0) = 0. Such a polynomial qα(x) can be obtained by
a minor modification of the polynomial q′α(x) =

∑d
j=0 qjx

j satisfying the error bound in Lemma 5.
Specifically, we use the polynomial qα(x) = q′α(x)−q0 for which the approximation error is bounded
as

max
x∈[0,1]

|qα(x)− xα| ≤ |q0|+ max
x∈[0,1]

|q′α(x)− xα|

= |q′α(0)− 0α|+ max
x∈[0,1]

|q′α(x)− xα|

≤ 2 max
x∈[0,1]

|q′α(x)− xα|

=
2c′α
d2α

def
=

cα
d2α

. (5)

To bound the variance of the proposed polynomial approximation estimator, we require a bound
on the absolute values of the coefficients of qα(x). The following inequality due to Markov serves
this purpose.

Lemma 6 ([22]). Let p(x) =
∑d

j=0 cjx
j be a degree-d polynomial so that |p(x)| ≤ 1 for all x ∈

[−1, 1]. Then for all j = 0, . . . ,m
max
j
|cj | ≤ (

√
2 + 1)d.

Since |xα| ≤ 1 for x ∈ [0, 1], the approximation bound (5) implies |qα(x)| < 1 + cα
d2α

for all
x ∈ [0, 1]. It follows from Lemma 6 that

max
m
|am| <

(
1 +

cα
d2α

)
(
√

2 + 1)d. (6)

3 Upper bounds on sample complexity

In this section, we analyze the performances of the estimators we proposed in Section 1.3. Our
proofs are based on bounding the bias and the variance of the estimators under Poisson sampling.
We first describe our general recipe and then analyze the performance of each estimator separately.

Let X1, ..., Xn be n independent samples drawn from a distribution p over k symbols. Con-
sider an estimate fα (Xn) = 1

1−α log P̂α(n,Xn) of Hα(p) which depends on Xn only through the

multiplicities and the sample size. Here P̂α(n,Xn) is the corresponding estimate of Pα(p) – as
discussed in Section 1, small additive error in the estimate fα (Xn) of Hα(p) is equivalent to small
multiplicative error in the estimate P̂α(n,Xn) of Pα(p). For simplicity, we analyze a randomized
estimator f̃α described as follows:

f̃α (Xn) =

{
constant, N > n,

1
1−α log P̂α(n/2, XN ), N ≤ n.

The following reduction to Poisson sampling is well-known.

11



Lemma 7. (Poisson approximation 1) For n ≥ 8 log(2/ε) and N ∼ Poi(n/2),

P
(
|Hα(p)− f̃α (Xn) | > δ

)
≤ P

(
|Hα(p)− 1

1− α
log P̂α(n/2, XN )| > δ

)
+
ε

2
.

It remains to bound the probability on the right-side above, which can be done provided the bias
and the variance of the estimator are bounded.

Lemma 8. For N ∼ Poi(n), let the power sum estimator P̂α = P̂α(n,XN ) have bias and variance
satisfying ∣∣∣E[P̂α ]− Pα(p)

∣∣∣ ≤ δ

2
Pα(p),

Var
[
P̂α

]
≤ δ2

12
Pα(p)2.

Then, there exists an estimator P̂′α that uses 18n log(1/ε) samples and ensures

P
(∣∣∣P̂′α − Pα(p)

∣∣∣ > δ Pα(p)
)
≤ ε.

Proof. By Chebyshev’s Inequality

P
(∣∣∣P̂α − Pα(p)

∣∣∣ > δ Pα(p)
)
≤ P

(∣∣∣P̂α − E
[
P̂α

]∣∣∣ > δ

2
Pα(p)

)
≤ 1

3
.

To reduce the probability of error to ε, we use the estimate P̂α repeatedly for O(log(1/ε)) indepen-
dent samples XN and take the estimate P̂′α to be the sample median of the resulting estimates.
Specifically, let P̂1, ..., P̂t denote t-estimates of Pα(p) obtained by applying P̂α to independent se-
quences XN , and let 1Ei be the indicator function of the event Ei = {|P̂i − Pα(p)| > δ Pα(p)}. By
the analysis above we have E[1Ei ] ≤ 1/3 and hence by Hoeffding’s inequality

P

(
t∑
i=1

1Ei >
t

2

)
≤ exp(−t/18).

The claimed bound follows on choosing t = 18 log(1/ε) and noting that if more than half of P̂1, ..., P̂t
satisfy |P̂i − Pα(p)| ≤ δ Pα(p), then their median must also satisfy the same condition. �

In the remainder of the section, we bound the bias and the variance for our estimators when
the number of samples n are of the appropriate order. Denote by f e

α, fu
α , and fd,τα , respectively,

the empirical estimator 1
1−α log P̂ e

α, the bias-corrected estimator 1
1−α log P̂ u

α , and the polynomial

approximation estimator 1
1−α log P̂ d,τα . We begin by analyzing the performances of f e

α and fu
α and

build-up on these steps to analyze fd,τα .

3.1 Performance of empirical estimator

The empirical estimator was presented in (1). Using the Poisson sampling recipe given above, we
derive upper bound for the sample complexity of the empirical estimator by bounding its bias and
variance. The resulting bound for α > 1 is given in Theorem 9 and for α < 1 in Theorem 10.

12



Theorem 9. For α > 1, 0 < δ < 1/2, and 0 < ε < 1, the estimator feα satisfies

Sf
e
α
α (k, δ, ε) ≤ Oα

(
k

min(δ1/(α−1), δ2)
log

1

ε

)
,

for all k sufficiently large.

Proof. Denote λx
def
= npx. For α > 1, we bound the bias of the power sum estimator using:∣∣∣∣E[∑xN

α
x

nα

]
− Pα(p)

∣∣∣∣ (a)

≤ 1

nα

∑
x

|E[Nα
x ]− λαx |

(b)

≤ α

nα

∑
x

(
2αλx + (2α + 1)λα−1/2

x

)
=

α2α

nα−1
+
α(2α + 1)√

n
Pα−1/2(p)

(c)

≤ α

(
2α
(
k

n

)α−1

+ (2α + 1)

√
k

n

)
Pα(p)

≤ 2α2α

[(
k

n

)α−1

+

(
k

n

)1/2
]
Pα(p), (7)

where (a) is from the triangle inequality, (b) from Lemma 4, and (c) follows from Lemma 1 and
(4). Thus, the bias of the estimator is less than δ(α− 1)Pα(p)/2 when

n ≥ k ·
(

8α2α

δ(α− 1)

)max(2,1/(α−1))

.

Similarly, to bound the variance, using independence of multiplicities:

Var

[∑
x

Nα
x

nα

]
=

1

n2α

∑
x

Var[Nα
x ]

=
1

n2α

∑
x

E
[
N2α
x

]
− [ENα

x ]2

(a)

≤ 1

n2α

∑
x

E
[
N2α
x

]
− λ2α

x

≤ 1

n2α

∑
x

∣∣E[N2α
x

]
− λ2α

x

∣∣
≤ 2α

n2α

∑
x

(
22αλx + (22α + 1)λ2α−1/2

x

)
(8)

=
2α22α

n2α−1
+

2α(22α + 1)√
n

P2α−1/2(p)

(c)

≤ 2α22α

(
k

n

)2α−1

Pα(p)2 + 2α(22α + 1)

(
k
α−1
α

n

)1/2

Pα(p)2

(a) is from Jensen’s inequality since zα is convex and E[Nx ] = λx, (c) follows from Lemma 1. Thus,
the variance is less than δ2(α− 1)2Pα(p)2/12 when

n ≥ k ·max

((
48α22α

δ2(α− 1)2

)1/(2α−1)

,

(
96α22α

k1/2αδ2(α− 1)2

)2
)

= k ·
(

48α22α

δ2(α− 1)2

)1/(2α−1)

,

13



where the equality holds for k sufficiently large. The theorem follows by using Lemma 8. �

Theorem 10. For α < 1, δ > 0, and 0 < ε < 1, the estimator feα satisfies

Sf
e
α
α (k, δ, ε) ≤ O

(
k1/α

δmax{4, 2/α} log
1

ε

)
.

Proof. For α < 1, once again we take a recourse to Lemma 4 to bound the bias as follows:∣∣∣∣E[∑xN
α
x

nα

]
− Pα(p)

∣∣∣∣ ≤ 1

nα

∑
x

|E[Nα
x ]− λαx |

≤ 1

nα

∑
x

min
(
λαx , λ

α−1
x

)
≤ 1

nα

[∑
x/∈A

λαx +
∑
x∈A

λα−1
x

]
,

for every subset A ⊂ [k]. Upon choosing A = {x : λx ≥ 1}, we get∣∣∣∣E[∑xN
α
x

nα

]
− Pα(p)

∣∣∣∣ ≤ 2

(
k1/α

n

)α

≤ 2Pα(p)

(
k1/α

n

)α
, (9)

where the last inequality uses (4). For bounding the variance, note that

Var

[∑
x

Nα
x

nα

]
=

1

n2α

∑
x

Var[Nα
x ]

=
1

n2α

∑
x

E
[
N2α
x

]
− [ENα

x ]2

≤ 1

n2α

∑
x

E
[
N2α
x

]
− λ2α

x +
1

n2α

∑
x

λ2α
x − [ENα

x ]2 . (10)

Consider the first term on the right-side. For α ≤ 1/2, it is bounded above by 0 since z2α is concave
in z, and for α > 1/2 the bound in (8) and Lemma 1 applies to give

1

n2α

∑
x

E
[
N2α
x

]
− λ2α

x ≤ 2α

(
c

n2α−1
+ (c+ 1)

√
k

n

)
Pα(p)2. (11)

For the second term, we have∑
x

λ2α
x − [ENα

x ]2 =
∑
x

(λαx − E[Nα
x ]) (λαx + E[Nα

x ])

(a)

≤ 2nαPα(p)

(
k1/α

n

)α∑
x

(λαx + E[Nα
x ])

(b)

≤ 4n2αPα(p)2

(
k1/α

n

)α
,

where (a) is from (9) and (b) from the concavity of zα in z. The proof is completed by combining
the two bounds above and using Lemma 8. �
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3.2 Performance of bias-corrected estimator for integral α

To reduce the sample complexity for integer orders α > 1 to below k we follow the path of the
development of Shannon entropy estimators. Traditionally, Shannon entropy was estimated via
an empirical estimator, analyzed in, for instance, [1]. However, with o(k) samples, the bias of the
empirical estimator remains high [32]. This bias is reduced by the Miller-Madow correction [24, 32],
but even then, O(k) samples are needed for a reliable Shannon-entropy estimation [32].

Similarly, we reduce the bias for Rényi entropy estimators using unbiased estimators for pαx
for integral α. We first describe our estimator, and in Theorem 11 we show that for 1 < α ∈ Z,
P̂ u
α estimates Pα(p) using O(k1−1/α) samples. Theorem 14 in Section 4 shows that this number is

optimal up to constant factors.

Bias-corrected estimator Consider the unbiased estimator for Pα(p) given by

P̂ u
α

def
=
∑
x

N
α
x

nα
,

which is unbiased since by Lemma 2,

E
[
P̂ u
α

]
=
∑
x

E
[
N
α
x

nα

]
=
∑
x

pαx = Pα(p).

Our bias-corrected estimator for Hα(p) is

Ĥα =
1

1− α
log P̂ u

α .

Upper bound on sample complexity The next result provides a bound for the number of
samples needed for the bias-corrected estimator.

Theorem 11. For an integer α > 1, any δ > 0, and 0 < ε < 1, the estimator fuα satisfies

Sf
u
α
α (k, δ, ε) ≤ O

(
k(α−1)/α

δ2
log

1

ε

)
.

Proof. Since the bias is 0, we only need to bound the variance to use Lemma 8. To that end, we
have

Var

[∑
xN

α
x

nα

]
=

1

n2α

∑
x

Var[Nα
x ]

≤ 1

n2α

∑
x

(
λαx(λx + α)α − λ2α

x

)
=

1

n2α

α−1∑
r=0

∑
x

(
α

r

)
αα−rλx

α+r

=
1

n2α

α−1∑
r=0

nα+r

(
α

r

)
αα−rPα+r(p), (12)
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where the inequality uses Lemma 2. It follows from Lemma 1 that

1

n2α

Var
[∑

xN
α
x

]
Pα(p)2

≤ 1

n2α

α−1∑
r=0

nα+r

(
α

r

)
αα−r

Pα+r(p)

Pα(p)2

≤
α−1∑
r=0

nr−α
(
α

r

)
αα−rk(α−1)(α−r)/α

≤
α−1∑
r=0

(
α2k(α−1)/α

n

)α−r
.

Applying Lemma 8 completes the proof. �

3.3 The polynomial approximation estimator

Concurrently with an earlier version of this paper, a polynomial approximation based approach
was proposed in [16] and [41] for estimating additive functions of the form

∑
x f(px). As seen in

Theorem 11, polynomials of probabilities have succinct unbiased estimators. Motivated by this
observation, instead of estimating f , these papers consider estimating a polynomial that is a good
approximation to f . The underlying heuristic for this approach is that the difficulty in estimation
arises from small probability symbols since empirical estimation is nearly optimal for symbols with
large probabilities. On the other hand, there is no loss in estimating a polynomial approximation
of the function of interest for symbols with small probabilities.

In particular, [16] considered the problem of estimating power sums Pα(p) up to additive ac-
curacy and showed that O

(
k1/α/ log k

)
samples suffice for α < 1. Since Pα(p) ≥ 1 for α < 1, this

in turn implies a similar sample complexity for estimating Hα(p) for α < 1. On the other hand,
α > 1, the power sum Pα(p) ≤ 1 and can be small (e.g., it is k1−α for the uniform distribution).
In fact, we show in the Appendix that additive accuracy estimation of power sum is easy for α > 1
and has a constant sample complexity. Therefore, additive guarantees for estimating the power
sums are insufficient to estimate the Rényi entropy . Nevertheless, our analysis of the polynomial
estimator below shows that it attains the O(log k) improvement in sample complexity over the
empirical estimator even for the case α > 1.

We first give a brief description of the polynomial estimator of [41] and then in Theorem 12

prove that for α > 1 the sample complexity of P̂ d,τα is O(k/ log k). For completeness, we also include
a proof for the case α < 1.

Polynomial approximation estimator Let N1, N2 be independent Poi(n) random variables.
We consider Poisson sampling with two set of samples drawn from p, first of size N1 and the second
N2. Note that the total number of samples N = N1+N2 ∼ Poi(2n). The polynomial approximation
estimator uses different estimators for different estimated values of symbol probability px. We use
the first N1 samples for comparing the symbol probabilities px with τ/n and the second is used for
estimating pαx . Specifically, denote by Nx and N ′x the number of appearances of x in the N1 and N2

samples, respectively. Note that both Nx and N ′x have the same distribution Poi(npx). Let τ be
a threshold, and d be the degree chosen later. Given a threshold τ , the polynomial approximation
estimator is defined as follows:

N ′x > τ : For all such symbols, estimate pαx using the empirical estimate (Nx/n)α.
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N ′x ≤ τ/n: Suppose q(x) =
∑d

m=0 amx
m is the polynomial satisfying Lemma 5. We estimate

pαx using an unbiased estimate of (τ/n)αq(npx/τ), namely(
d∑

m=0

am(2τ)α−mN
m
x

nα

)
.

Therefore, for a given τ and d the combined estimator P̂ d,τα is

P̂ d,τα
def
=

∑
x:N ′x≤τ

(
d∑

m=0

am(2τ)α−mN
m
x

nα

)
+

∑
x:N ′x>τ

(
Nx

n

)α
.

Denoting by p̂x the estimated probability of the symbol x, note that the polynomial approximation
estimator relies on the empirical estimator for p̂x > τ/n and the bias-corrected estimator for
p̂x ≤ τ/n.

Sample complexity of polynomial estimator We derive upper bounds for the sample com-
plexity of the polynomial approximation estimator.

Theorem 12. For α > 1, δ > 0, 0 < ε < 1, there exist constants c1 and c2 such that the estimator
P̂ d,τα with τ = c1 log n and d = c2 log n satisfies

SP̂
d,τ
α

α (k, δ, ε) ≤ O
(

k

log k

log(1/ε)

δ1/α

)
.

Proof. We follow the approach in [41] closely. Choose τ = c∗log n such that with probability at
least 1− ε the events N ′x > τ and N ′x ≤ τ do not occur for all symbols x satisfying px ≤ τ/(2n) and
px > 2τ/n, respectively. Or equivalently, with probability at least 1 − ε all symbols x such that
N ′x > τ satisfy px > τ/(2n) and all symbols such that N ′x ≤ τ satisfy px ≤ 2τ/n. We condition
on this event throughout the proof. For concreteness, we choose c∗ = 4, which is a valid choice for
n > 20 log(1/ε) by the Poisson tail bound and the union bound.

Let q(x) =
∑d

m=0 amx
m satisfy the polynomial approximation error bound guaranteed by

Lemma 5, i.e.,

max
x∈(0,1)

|q(x)− xα| < cα/d
2α (13)

To bound the bias of P̂ d,τα , note first that for N ′x < τ∣∣∣∣∣E
[

d∑
m=0

am(2τ)α−mN
m
x

nα

]
− pαx

∣∣∣∣∣ =

∣∣∣∣∣
d∑

m=0

am

(
2τ

n

)α−m
pmx − pαx

∣∣∣∣∣
=

(2τ)α

nα

∣∣∣∣∣
d∑

m=0

am

(npx
2τ

)m
−
(npx

2τ

)α∣∣∣∣∣
=

(2τ)α

nα

∣∣∣q (npx
2τ

)
−
(npx

2τ

)α∣∣∣
<

(2τ)αcα
(nd2)α

, (14)

where the last inequality uses (13) and npx/(2τ) ≤ 1, which holds under the assumption N ′x < τ .
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For N ′x > τ , the bias of empirical part of the power sum is bounded as∣∣∣∣E[(Nx

n

)α ]
− pαx

∣∣∣∣ (a)

≤ αc
px
nα−1

+ α(c+ 1)
p
α− 1

2
x√
n

(b)

≤ αc
pαx

(τ/2)α−1
+ α(c+ 1)

pαx√
τ/2

,

and (a) is from Lemma 4 and (b) from px > τ/(2n), which holds when N ′x > τ . Thus, we obtain

the following bound on the bias of P̂ d,τα :

∣∣∣E[P̂α ]− Pα(p)
∣∣∣ (a)

≤ k(2τ)αcα
(nd2)α

+ αPα(p)

[
c

(τ/2)α−1 +
c+ 1√
τ/2

]
(b)

≤ Pα(p)

[
cα

(
k · 2τ
nd2

)α
+

αc

(τ/2)α−1 +
α(c+ 1)√

τ/2

]
, (15)

where (a) is from the triangle inequality and (b) from (4).
For variance, independence of multiplicities under Poisson sampling gives

Var
[
P̂α

]
=

∑
x:N ′x≤τ

Var

(
d∑

m=0

am(2τ)α−mN
m
x

nα

)
+

∑
x:Nx>τ

Var

(
Nx

n

)α
. (16)

Let a = maxm |am|. By Lemma 2, for any x with px ≤ 2τ/n,

Var

(
d∑

m=0

am(2τ)α−mN
m
x

nα

)
≤ a2d2 max

1≤m≤d

{
(2τ)2α−2m

n2α
VarNm

x

}
(a)

≤ a2d2 max
1≤m≤d

{
(2τ)2α−2m

n2α
(npx)m((npx +m)m − npmx )

}
(b)

≤ a2d2(2τ + d)2α

n2α
, (17)

where (a) is from Lemma 2, and (b) from plugging npx ≤ 2τ . Furthermore, using similar steps
as (8) together with Lemma 4, for x with px > τ/(2n) we get

Var

[(
Nx

n

)α ]
≤ 2αc

p2α
x

(τ/2)2α−1
+ 2α(c+ 1)

p2α
x√
τ/2

.

The two bounds above along with Lemma 1 and (4) yield

Var
[
P̂α

]
≤ Pα(p)2

[
a2d2(2τ + d)2α

n

(
k

n

)2α−1

+
2αc

(τ/2)2α−1
+

2α(c+ 1)√
τ/2

]
. (18)

For d = τ/8 = 1
2 log n, the last terms in (15) are o(1) which gives∣∣∣E[P̂α ]− Pα(p)

∣∣∣ = Pα(p)

(
cα

(
32k

(n log n)

)α
+ o(1)

)
.
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Recall from (6) that a < (1 + cα/d
2α)(
√

2 + 1)d, and therefore, a2 = O((
√

2 + 1)logn) = nc0 for
some c0 < 1. Using (18) we get

Var
[
P̂α

]
= O

(
Pα(p)2n

c0 log2α+2 n

n

(
k

n

)2α−1
)
.

Therefore, the result follows from Lemma 8 for k sufficiently large. �

We now prove an analogous result for α < 1.

Theorem 13. For α < 1, δ > 0, 0 < ε < 1, there exist constants c1 and c2 such that the estimator
P̂ d,τα with τ = c1 log n and d = c2 log n satisfies

SP̂
d,τ
α

α (k, δ, ε) ≤ O

(
k1/α

log k

log(1/ε)

α2δ1/α

)
.

Proof. We proceed as in the previous proof and set τ to be 4 log n. The contribution to the bias
of the estimator for a symbol x with N ′x < τ remains bounded as in (14). For a symbol x with
N ′x > τ , the bias contribution of the empirical estimator is bounded as∣∣∣∣E[(Nx

n

)α ]
− pαx

∣∣∣∣ (a)

≤ pα−1
x

n

(b)

≤ 2pαx
τ

and (a) is by Lemma 4 and (b) is by px > τ/(2n), which holds if N ′x > τ . Thus, we obtain the

following bound on the bias of P̂ d,τα :∣∣∣E[P̂α ]− Pα(p)
∣∣∣≤k(2τ)αcα

(nd2)α
+

2

τ
Pα(p)

≤Pα(p)

[
cα

(
k1/α · 2τ
nd2

)α
+

2

τ

]
,

where the last inequaliy is by (4).
To bound the variance, first note that bound (17) still holds for px ≤ 2τ/n. To bound the

contribution to the variance from the terms with npx > τ/2, we borrow steps from the proof of
Theorem 10. In particular, (10) gives

Var

 ∑
x:N ′x>τ

Nα
x

nα

 ≤ 1

n2α

∑
x:N ′x>τ

E
[
N2α
x

]
− λ2α

x +
1

n2α

∑
x:N ′x>τ

λ2α
x − [ENα

x ]2 . (19)

The first term can be bounded in the manner of (11) as

1

n2α

∑
x:N ′x>τ

E
[
N2α
x

]
− λ2α

x ≤2α

(
c

n2α−1
+ (c+ 1)

1√
τ/2

)
Pα(p)2,
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For the second term, we have

1

n2α

∑
x:N ′x>τ

λ2α
x − [ENα

x ]2 =
1

n2α

∑
x:N ′x>τ

(λαx − E[Nα
x ]) (λαx + E[Nα

x ])

(a)

≤ 1

n2α

∑
x:N ′x>τ

(
λα−1
x

)
(2λαx)

=2
∑

x:N ′x>τ

p2α
x

npx

(b)

≤ 4

τ
Pα(p)2,

where (a) follows from Lemma 4 and concavity of zα in z and (b) from npx > τ/2 and Lemma 1.
Thus, the contribution of the terms corresponding to N ′x > τ in the bias and the variance are

Pα(p) ·o(1) and Pα(p)2 ·o(1), respectively, and can be ignored. Choosing d = α
2 log n and combining

the observations above, we get the following bound for the bias:∣∣∣E[P̂α ]− Pα(p)
∣∣∣ = Pα(p)

(
cα

(
32k1/α

n log nα2

)α
+ o(1)

)
,

and, using (17), the following bound for the variance:

Var
[
P̂α

]
≤ ka

2d2(2τ + d)2α

n2α
+ Pα(p)2 · o(1)

≤ Pα(p)2

[(
a2

nα

)
(9 log n)2α+2

(
k1/α

n

)α
+ o(1)

]

Here a2 is the largest squared coefficient of the approximating polynomial and, by (6), is O(22c0d) =
O(nc0α) for some c0 < 1. Thus, a2 = o(nα) and the proof follows by Lemma 8. �

4 Lower bounds on sample complexity

We now establish lower bounds on Sα(k). The proof is based on exhibiting two distributions p and
q, with Hα(p) 6= Hα(q), such that the set of Nx’s have very similar distribution from p and q, if
fewer samples than the claimed lower bound are available. In fact, for integral α, our construction
is very simple, and we describe two such distributions explicitly.

We first prove the lower bound for integers α > 1, matching the upper bound in Theorem 11
up to a constant factor.

Theorem 14. Given an integer α > 1 and any estimator f of Hα(p), for every 0 < ε < 1 there exits
a distribution p with support of size k, δ > 0 and a constant C > 0 such that for n < Ck(α−1)/α/δ2

we have

P (|Hα(p)− f (Xn) | ≥ δ) ≥ 1− ε
2

.

In particular, for every 0 < ε < 1/2 there exists δ > 0 such that

Sα(k, δ, ε) = Ω

(
k(α−1)/α

δ2

)
.
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We will need the following well known result (See e.g., [44]) relating the sample complexity of
a hypothesis test to the Hellinger distance between the distributions.

Lemma 15. Let p and q be two distributions. Then, at least

Ω

(
1

h2(p, q)

)
samples are required to distinguish p and q with probability of error at most 1/3.

Theorem 14. Consider the following distributions p and q over [k]. p1 = 1/k1−1/α, and for x =
2, . . . , k, px = (1 − p1)/(k − 1). q1 = (1 + δ)/k1−1/α, and for x = 2, . . . , k, qx = (1 − q1)/(k − 1).
Then, we have

Pα(p) =
1

kα−1
+ (k − 1) ·

(
1− 1

k1−1/α

k − 1

)α
=

1

kα−1
+

1

kα−1
·
(

1− 1

k1−1/α

)α
=

(2 + ok(1))

kα−1
.

Similarly,

Pα(q) =
(1 + δ)α

kα−1
+(k−1)·

(
1− (1+δ)

k1−1/α

k − 1

)α
=

(1 + δ)α

kα−1
+

1

kα−1
·
(

1− 1

k1−1/α

)α
≥ (2 + αδ + ok(1))

kα−1
.

Therefore, |Hα(p) − Hα(q)| = Ω(δ). We now show that the two distributions cannot be distin-
guished with o(k1−1/α/δ2) samples. We now bound the squared hellinger distance between the two
distributions. For small values of δ, we have (1 + δ)1/2 < 1 + δ. Using this, we obtain

h2(p, q) = O

(
δ2

k1−1/α

)
.

By Lemma 15, the number of samples required to distinguish p and q is at least Ω(k
1−1/α

δ2
). Since

Hα(p) and Hα(q) differ by Ω(δ), by LeCam’s two point method [44], the sample complexity of

estimating Hα(p) is Ω(k
1−1/α

δ2
). �

We now lower bound Sα(k) for noninteger α > 1 and show that it must be almost linear in k.
As before, there is no loss in considering Poisson sampling.

Lemma 16. (Poisson approximation 2) Suppose there exist δ, ε > 0 such that, with N ∼
Poi(2n), for all estimators f̂ we have

max
p∈P

P
(
|Hα(p)− f̂α(XN )| > δ

)
> ε,

where P is a fixed family of distributions. Then, for all fixed length estimators f̃

max
p∈P

P
(
|Hα(p)− f̃α(Xn)| > δ

)
>
ε

2
,

when n > 4 log(2/ε).

Next, denote by Φ = Φ(XN ) the profile of XN [30], i.e., Φ = (Φ1,Φ2, . . .) where Φl is the
number of elements x that appear l times in the sequence XN . The following well-known result
says that for estimating Hα(p), it suffices to consider only the functions of the profile.
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Lemma 17. (Sufficiency of profiles). Consider an estimator f̂ such that

P
(
|Hα(p)− f̂(XN )| > δ

)
≤ ε, for all p.

Then, there exists an estimator f̃(XN ) = f̃(Φ) such that

P
(
|Hα(p)− f̃(Φ)| > δ

)
≤ ε, for all p.

Thus, lower bounds on the sample complexity will follow upon showing a contradiction for the
second inequality above when the number of samples n is sufficiently small. The result below
facilitates such a contradiction.

Lemma 18. If for two distributions p and q on X the variational distance over profiles satisfy
‖p− q‖ < ε, then one of the following holds for every function f̂ :

p

(
|Hα(p)− f̂(X)| ≥ |Hα(p)−Hα(q)|

2

)
≥ 1− ε

2
,

or q

(
|Hα(q)− f̂(X)| ≥ |Hα(p)−Hα(q)|

2

)
≥ 1− ε

2
.

We omit the simple proof. Therefore, the required contradiction, and consequently the lower
bound

Sα(k) > k c(α),

will follow upon showing that there are distributions p and q of support-size k such that the
following hold:

(i) There exists δ > 0 such that

|Hα(p)−Hα(q)| > δ; (20)

(ii) denoting by pΦ and qΦ, respectively, the distributions on the profiles under Poisson sampling
corresponding to underlying distributions p and q, there exist ε > 0 such that

‖pΦ − qΦ‖ < ε, (21)

if n < k c(α).

Therefore, we need to find two distributions p and q with different Rényi entropies and with small
variation distance between the distributions of their profiles, when n is sufficiently small. For the
latter requirement, we recall a result of [40] that allows us to bound the variation distance in (21)
in terms of the differences of power sums |Pa(p)− Pa(q)|.

Theorem 19. [40] Given distributions p and q such that

max
x

max{px; qx} ≤
ε

40n
,

for Poisson sampling with N ∼ Poi(n), it holds that

‖pΦ − qΦ‖ ≤
ε

2
+ 5

∑
a

na|Pa(p)− Pa(q)|.

22



It remains to construct the required distributions p and q, satisfying (20) and (21) above. By
Theorem 19, the variation distance ‖pΦ− qΦ‖ can be made small by ensuring that the power sums
of distributions p and q are matched, that is, we need distributions p and q with different Rényi
entropies and identical power sums for as large an order as possible. To that end, for every positive
integer d and every vector x = (x1, ..., xd) ∈ Rd, associate with x a distribution px of support-size
dk such that

px
ij =

|xi|
k‖x‖1

, 1 ≤ i ≤ d, 1 ≤ j ≤ k.

Note that

Hα(px) = log k +
α

α− 1
log
‖x‖1
‖x‖α

,

and for all a

Pa (px) =
1

ka−1

(
‖x‖a
‖x‖1

)a
.

We choose the required distributions p and q, respectively, as px and py, where the vectors x and
y are given by the next result.

Lemma 20. For every d ∈ N and α not integer, there exist positive vectors x,y ∈ Rd such that

‖x‖r = ‖y‖r, 1 ≤ r ≤ d− 1,

‖x‖d 6= ‖y‖d,
‖x‖α 6= ‖y‖α.

A constructive proof of Lemma 20 will be given at the end of this section. We are now in a position
to prove our converse results.

Theorem 21. Given a nonintegral α > 1, for any fixed 0 < ε < 1/2, we have

Sα(k, δ, ε) =
∼∼
Ω (k).

Proof. For a fixed d, let distributions p and q be as in the previous proof. Then, as in the proof of
Theorem 21, inequality (20) holds by Lemma 20 and (21) holds by Theorem 19 if n < C2k

(d−1)/d.
The theorem follows since d can be arbitrary large. �

Finally, we show that Sα(k) must be super-linear in k for α < 1.

Theorem 22. Given α < 1, for every 0 < ε < 1/2, we have

Sα(k, δ, ε) =
∼∼
Ω
(
k1/α

)
.

Proof. Consider distributions p and q on an alphabet of size kd+ 1, where

pij =
px
ij

kβ
and qij =

px
ij

kβ
, 1 ≤ i ≤ d, 1 ≤ j ≤ k,

where the vectors x and y are given by Lemma 20 and β satisfies α(1 + β) < 1, and

p0 = q0 = 1− 1

kβ
.
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For this choice of p and q, we have

Pa (p) =

(
1− 1

kβ

)a
+

1

ka(1+β)−1

(
‖x‖a
‖x‖1

)a
,

Hα(p) =
1− α(1 + β)

1− α
log k +

α

1− α
log
‖x‖α
‖x‖1

+O(ka(1+β)−1),

and similarly for q, which further yields

|Hα(p)−Hα(q)| = α

1− α

∣∣∣∣log
‖x‖α
‖y‖α

∣∣∣∣+O(ka(1+β)−1).

Therefore, for sufficiently large k, (20) holds by Lemma 20 since α(1 + β) < 1, and for n <
C2k

(1+β−1/d) we get (21) by Theorem 19 as

‖pΦ − qΦ‖ ≤
ε

2
+ 5

∑
a≥d

( n

k1+β−1/a

)a
≤ ε.

The theorem follows since d and β < 1/α− 1 are arbitrary. �

We close with a proof of Lemma 20.
Proof of Lemma 20. Let x = (1, ..., d)). Consider the polynomial

p(z) = (z − x1)...(z − xd),

and q(z) = p(z)−∆, where ∆ is chosen small enough so that q(z) has d positive roots. Let y1, ..., yd
be the roots of the polynomial q(z). By Newton-Girard identities, while the sum of dth power of
roots of a polynomial does depend on the constant term, the sum of first d− 1 powers of roots of
a polynomial do not depend on it. Since p(z) and q(z) differ only by a constant, it holds that

d∑
i=1

xri =
d∑
i=1

yri , 1 ≤ r ≤ d− 1,

and that

d∑
i=1

xdi 6=
d∑
i=1

ydi .

Furthermore, using a first order Taylor approximation, we have

yi − xi =
∆

p′(xi)
+ o(∆),

and for any differentiable function g,

g(yi)− g(xi) = g′(xi)(yi − xi) + o(|yi − xi|).

It follows that

d∑
i=1

g(yi)− g(xi) =

d∑
i=1

g′(xi)

p′(xi)
∆ + o(∆),
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and so, the left side above is nonzero for all ∆ sufficiently small provided

d∑
i=1

g′(xi)

p′(xi)
6= 0.

Upon choosing g(x) = xα, we get

d∑
i=1

g′(xi)

p′(xi)
=
α

d!

d∑
i=1

d
i

 (−1)d−i iα.

Denoting the right side above by h(α), note that h(i) = 0 for i = 1, ..., d − 1. Since h(α) is a
linear combination of d exponentials, it cannot have more than d− 1 zeros (see, for instance, [38]).
Therefore, h(α) 6= 0 for all α /∈ {1, ..., d − 1}; in particular, ‖x‖α 6= ‖y‖α for all ∆ sufficiently
small. �
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Appendix: Estimating power sums

The broader problem of estimating smooth functionals of distributions was considered in [39].
Independently and concurrently with this work, [16] considered estimating more general functionals
and applied their technique to estimating the power sums of a distribution to a given additive
accuracy. Letting SP+

α (k) denote the number of samples needed to estimate Pα(p) to a given
additive accuracy, [16] showed that for α < 1,

Ω

(
k1/α

log3/2 k

)
≤ SP+

α (k) ≤ O

(
k1/α

log k

)
, (22)

and [15] showed that for 1 < α < 2,

SP+
α (k) ≤ O

(
k2/α−1

)
.

In fact, using techniques similar to multiplicative guarantees on Pα(p) we show that for SP+
α (k) is a

constant independent of k for all k > 1. Concurrently with this work, similar results were obtained
in an updated version of [16].

Since Pα(p) > 1 for α < 1, power sum estimation to a fixed additive accuracy implies also a
fixed multiplicative accuracy, and therefore

Sα(k) = Θ(SP×α (k)) ≤ O(SP+
α (k)),

namely for estimation to an additive accuracy, Rényi entropy requires fewer samples than power
sums. Similarly, Pα(p) < 1 for α > 1, and therefore

Sα(k) = Θ(SP×α (k)) ≥ Ω(SP+
α (k)),

namely for an additive accuracy in this range, Rényi entropy requires more samples than power
sums.

It follows that the power sum estimation results in [16, 15] and the Rényi-entropy estimation
results in this paper complement each other in several ways. For example, for α < 1,

∼∼
Ω
(
k1/α

)
≤ Sα(k) = Θ(SP×α (k)) ≤ O(SP+

α (k)) ≤ O

(
k1/α

log k

)
,

where the first inequality follows from Theorem 22 and the last follows from the upper-bound (22)
derived in [16] using a polynomial approximation estimator. Hence, for α < 1, estimating power
sums to additive and multiplicative accuracy require a comparable number of samples.

On the other hand, for α > 1, Theorems 9 and 21 imply that for non integer α,
∼∼
Ω (k) ≤

SP×α (k) ≤ O (k) , while in the Appendix we show that for 1 < α, SP+
α (k) is a constant. Hence in

this range, power sum estimation to a multiplicative accuracy requires considerably more samples
than estimation to an additive accuracy.

We now show that the empirical estimator requires a constant number of samples to estimate
Pα(p) independent of k, i.e., SP+

α (k) = O(1). In view of Lemma 8, it suffices to bound the bias and
variance of the empirical estimator. Concurrently with this work, similar results were obtained in
an updated version of [16].
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As before, we comsider Poisson sampling with N ∼ Poi(n) samples. The empirical or plug-in
estimator of Pα(p) is

P̂ e
α

def
=
∑
x

(
Nx

n

)α
.

The next result shows that the bias and the variance of the empirical estimator are o(1).

Lemma 23. For an appropriately chosen constant c > 0, the bias and the variance of the empirical
estimator are bounded above as∣∣∣P̂ e

α − Pα(p)
∣∣∣ ≤ 2cmax{n−(α−1), n−1/2},

Var[P̂α] ≤ 2cmax{n−(2α−1), n−1/2},

for all n ≥ 1.

Proof. Denoting λx = npx, we get the following bound on the bias for an appropriately chosen
constant c: ∣∣∣P̂ e

α − Pα(p)
∣∣∣ ≤ 1

nα

∑
λx≤1

|E[Nα
x ]− λx|+

1

nα

∑
λx>1

|E[Nα
x ]− λx|

≤ c

nα

∑
λx≤1

λx +
c

nα

∑
λx>1

(
λx + λα−1/2

x

)
where the last inequality holds by Lemma 4 and Lemma 2since xα is convex in x. Noting

∑
i λx = n,

we get ∣∣∣P̂ e
α − Pα(p)

∣∣∣ ≤ c

nα−1
+

c

nα

∑
λx>1

λα−1/2
x .

Similarly, proceeding as in the proof of Theorem 9, the variance of the empirical estimator is
bounded as

Var[P̂α] =
1

n2α

∑
x∈X

E
[
N2α
x

]
− E[Nα

x ]2

≤ 1

n2α

∑
x∈X

∣∣E[N2α
x

]
− λ2α

x

∣∣
≤ c

n2α−1
+

c

n2α

∑
λx>1

λ2α−1/2
x .

The proof is completed upon showing that∑
λx>1

λα−1/2
x ≤ max{n, nα−1/2}, α > 1.

To that end, note that for α < 3/2∑
λx>1

λα−1/2
x ≤

∑
λx>1

λx ≤ n, α < 3/2.
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Further, since xα−1/2 is convex for α ≥ 3/2, the summation above is maximized when one of the
λx’s is n and the remaining equal 0 which yields∑

λx>1

λα−1/2
x ≤ nα−1/2, α ≥ 3/2

and completes the proof. �
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