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Abstract

Many important distributions are high dimensional, and often they can be modeled
as Gaussian mixtures. We derive the first sample-efficient polynomial-time esti-
mator for high-dimensional spherical Gaussian mixtures. Based on intuitive spec-
tral reasoning, it approximates mixtures of k spherical Gaussians in d-dimensions
to within `1 distance ε using O(dk9(log2 d)/ε4) samples and Ok,ε(d3 log5 d)

computation time. Conversely, we show that any estimator requires Ω(dk/ε2)
samples, hence the algorithm’s sample complexity is nearly optimal in the di-
mension. The implied time-complexity factor Ok,ε is exponential in k, but much
smaller than previously known.
We also construct a simple estimator for one-dimensional Gaussian mixtures that
uses Õ(k/ε2) samples and Õ((k/ε)3k+1) computation time.

1 Introduction

1.1 Background

Meaningful information often resides in high-dimensional spaces: voice signals are expressed in
many frequency bands, credit ratings are influenced by multiple parameters, and document topics
are manifested in the prevalence of numerous words. Some applications, such as topic modeling
and genomic analysis consider data in over 1000 dimensions [31, 14]. Typically, information can
be generated by different types of sources: voice is spoken by men or women, credit parameters
correspond to wealthy or poor individuals, and documents address topics such as sports or politics.
In such cases the overall data follow a mixture distribution [26, 27]. Mixtures of high-dimensional
distributions are therefore central to the understanding and processing of many natural phenomena.
Methods for recovering the mixture components from the data have consequently been extensively
studied by statisticians, engineers, and computer scientists.

Initially, heuristic methods such as expectation-maximization were developed [25, 21]. Over the
past decade, rigorous algorithms were derived to recover mixtures of d-dimensional spherical Gaus-
sians [10, 18, 4, 8, 29] and general Gaussians [9, 2, 5, 19, 22, 3]. Many of these algorithms consider
mixtures where the `1 distance between the mixture components is 2 − od(1), namely approaches
the maximum of 2 as d increases. They identify the distribution components in time and samples
that grow polynomially in d. Recently, [5, 19, 22] showed that the parameters of any k-component
d-dimensional Gaussian mixture can be recovered in time and samples that grow as a high-degree
polynomial in d and exponentially in k.

A different approach that avoids the large component-distance requirement and the high time and
sample complexity, considers a slightly relaxed notion of approximation, sometimes called PAC
learning [20], or proper learning, that does not approximate each mixture component, but instead
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derives a mixture distribution that is close to the original one. Specifically, given a distance bound
ε > 0, error probability δ > 0, and samples from the underlying mixture f , where we use boldface
letters for d-dimensional objects, PAC learning seeks a mixture estimate f̂ with at most k components
such that D(f , f̂) ≤ ε with probability ≥ 1 − δ, where D(⋅, ⋅) is some given distance measure, for
example `1 distance or KL divergence.

An important and extensively studied special case of Gaussian mixtures is mixture of spherical-
Gaussians [10, 18, 4, 8, 29], where for each component the d coordinates are distributed indepen-
dently with the same variance, though possibly with different means. Note that different components
can have different variances. Due to their simple structure, spherical-Gaussian mixtures are easier to
analyze and under a minimum-separation assumption have provably-practical algorithms for clus-
tering and parameter estimation. We consider spherical-Gaussian mixtures as they are important on
their own and form a natural first step towards learning general Gaussian mixtures.

1.2 Sample complexity

Reducing the number of samples required for learning is of great practical significance. For example,
in topic modeling every sample is a whole document, in credit analysis every sample is a person’s
credit history, and in genetics, every sample is a human DNA. Hence samples can be very scarce
and obtaining them can be very costly. By contrast, current CPUs run at several Giga Hertz, hence
samples are typically much more scarce of a resource than time.

For one-dimensional distributions, the need for sample-efficient algorithms has been broadly recog-
nized. The sample complexity of many problems is known quite accurately, often to within a con-
stant factor. For example, for discrete distributions over {1, . . . ,s}, an approach was proposed in [23]
and its modifications were used in [28] to estimate the probability multiset using Θ(s/ log s) sam-
ples. Learning one-dimensional m-modal distributions over {1, . . . ,s} requires Θ(m log(s/m)/ε3)
samples [11]. Similarly, one-dimensional mixtures of k structured distributions (log-concave, mono-
tone hazard rate, and unimodal) over {1, . . . ,s} can be learned withO(k/ε4),O(k log(s/ε)/ε4), and
O(k log(s)/ε4) samples, respectively, and these bounds are tight up to a factor of ε [6].

Unlike the 1-dimensional case, in high dimensions, sample complexity bounds are quite weak. For
example, to learn a mixture of k = 2 spherical Gaussians, existing estimators use O(d12) samples,
and this number increases exponentially with k [16]. We close this gap by constructing estimators
with near-linear sample complexity.

1.3 Previous and new results

Our main contribution is PAC learning d-dimensional spherical Gaussian mixtures with near-linear
samples. In the process of deriving these results we also prove results for learning one-dimensional
Gaussians and for finding which distribution in a class is closest to the one generating samples.

d-dimensional Gaussian mixtures
Several papers considered PAC learning of discrete- and Gaussian-product mixtures. [17] considered
mixtures of two d-dimensional Bernoulli products where all probabilities are bounded away from 0.
They showed that this class is PAC learnable in Õ(d2/ε4) time and samples, where the Õ notation
hides logarithmic factors. [15] eliminated the probability constraints and generalized the results
from binary to arbitrary discrete alphabets and from 2 to k mixture components, showing that these
mixtures are PAC learnable in Õ((d/ε)2k

2
(k+1)) time. Although they did not explicitly mention

sample complexity, their algorithm uses Õ((d/ε)4(k+1)) samples. [16] generalized these results
to Gaussian products and showed that mixtures of k Gaussians, where the difference between the
means is bounded byB times the standard deviation, are PAC learnable in Õ((dB/ε)2k

2
(k+1)) time,

and can be shown to use Õ((dB/ε)4(k+1)) samples. These algorithms consider the KL divergence
between the distribution and its estimate, but it can be shown that the `1 distance would result in
similar complexities. It can also be shown that these algorithms or their simple modifications have
similar time and sample complexities for spherical Gaussians as well.

Our main contribution for this problem is to provide an algorithm that PAC learns mixtures of
spherical-Gaussians in `1 distance with number of samples nearly-linear, and running time polyno-
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mial in the dimension d. Specifically, in Theorem 11 we show that mixtures of k spherical-Gaussian
distributions can be learned using

n = O (
dk9

ε4
log2 d

δ
) = Ok,ε (d log2 d

δ
)

samples and in time

O(n2d logn + d(
k7

ε3
log2 d

δ
)

k2

2

) = Õk,ε(d
3
).

Recall that for similar problems, previous algorithms used Õ((d/ε)4(k+1)) samples. Furthermore,
recent algorithms typically construct the covariance matrix [29, 16], hence require ≥ nd2 time.
In that sense, for small k, the time complexity we derive is comparable to the best such algo-
rithms one can hope for. Additionally, the exponential dependence on k in the time complexity
is d(k

7

ε3
log2 d

δ
)k

2
/2, significantly lower than the dO(k3) dependence in previous results.

Conversely, Theorem 2 shows that any algorithm for PAC learning a mixture of k spherical Gaus-
sians requires Ω(dk/ε2) samples, hence our algorithms are nearly sample optimal in the dimension.
In addition, their time complexity significantly improves on previously known ones.

One-dimensional Gaussian mixtures
To prove the above results we derive two simpler results that are interesting on their own. We
construct a simple estimator that learns mixtures of k one-dimensional Gaussians using Õ(kε−2)

samples and in time Õ((k/ε)3k+1). We note that independently and concurrently with this work [12]
showed that mixtures of two one-dimensional Gaussians can be learnt with Õ(ε−2) samples and in
time O(ε−5). Combining with some of the techniques in this paper, they extend their algorithm to
mixtures of k Gaussians, and reduce the exponent to 3k − 1.

Let d(f ,F) be the smallest `1 distance between a distribution f and any distribution in a collection
F . The popular SCHEFFE estimator [13] takes a surprisingly smallO(log ∣F ∣) independent samples
from an unknown distribution f and time O(∣F ∣2) to find a distribution in F whose distance from f
is at most a constant factor larger than d(f ,F). In Lemma 1, we reduce the time complexity of the
Scheffe algorithm from O(∣F ∣2) to Õ(∣F ∣), helping us reduce the running time of our algorithms.
A detailed analysis of several such estimators are provided in [1] and here we outline a proof for one
particular estimator for completeness.

1.4 The approach and technical contributions

Given the above, our goal is to construct a small class of distributions such that one of them is ε-close
to the underlying distribution.

Consider for example mixtures of k components in one dimension with means and variances
bounded by B. Take the collection of all mixtures derived by quantizing the means and variances of
all components to εm accuracy, and quantizing the weights to εw accuracy. It can be shown that if
εm, εw ≤ ε/k2 then one of these candidate mixtures would be O(ε)-close to any mixture, and hence
to the underlying one. There are at most (B/εm)2k ⋅ (1/εw)

k = (B/ε)Õ(k) candidates and running
SCHEFFE on these mixtures would lead to an estimate. However, this approach requires a bound on
the means and variances. We remove this requirement on the bound, by selecting the quantizations
based on samples and we describe it in Section 3.

In d dimensions, consider spherical Gaussians with the same variance and means bounded by B.
Again, take the collection of all distributions derived by quantizing the means of all components
in all coordinates to εm accuracy, and quantizing the weights to εw accuracy. It can be shown that
for d-dimensional Gaussian to get distance ε from the underlying distribution, it suffices to take
εm, εw ≤ ε2/poly(dk). There are at most (B/εm)dk ⋅ (1/εw)

k = 2Õε(dk) possible combinations of
the kmean vectors and weights. Hence SCHEFFE implies an exponential-time algorithm with sample
complexity Õ(dk). To reduce the dependence on d, one can approximate the span of the k mean
vectors. This reduces the problem from d to k dimensions, allowing us to consider a distribution
collection of size 2O(k2), with SCHEFFE sample complexity of just O(k2). [15, 16] constructs the
sample correlation matrix and uses k of its columns to approximate the span of mean vectors. This
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approach requires the k columns of the sample correlation matrix to be very close to the actual
correlation matrix, requiring a lot more samples.

We derive a spectral algorithm that approximates the span of the k mean vectors using the top k
eigenvectors of the sample covariance matrix. Since we use the entire covariance matrix instead of
just k columns, a weaker concentration suffices and the sample complexity can be reduced.

Using recent tools from non-asymptotic random matrix theory [30], we show that the span of the
means can be approximated with Õ(d) samples. This result allows us to address most “reasonable”
distributions, but still there are some “corner cases” that need to be analyzed separately. To address
them, we modify some known clustering algorithms such as single-linkage, and spectral projections.
While the basic algorithms were known before, our contribution here, which takes a fair bit of effort
and space, is to show that judicious modifications of the algorithms and rigorous statistical analysis
yield polynomial time algorithms with near-linear sample complexity. We provide a simple and
practical spectral algorithm that estimates all such mixtures in Ok,ε(d log2 d) samples.

The paper is organized as follows. In Section 2, we introduce notations, describe results on the
Scheffe estimator, and state a lower bound. In Sections 3 and 4, we present the algorithms for one-
dimensional and d-dimensional Gaussian mixtures respectively. Due to space constraints, most of
the technical details and proofs are given in the appendix.

2 Preliminaries

2.1 Notation

For arbitrary product distributions p1, . . . ,pk over a d dimensional space let pj,i be the distribution
of pj over coordinate i, and let µj,i and σj,i be the mean and variance of pj,i respectively. Let
f = (w1, . . . ,wk,p1, . . . ,pk) be the mixture of these distributions with mixing weights w1, . . . ,wk.
We denote estimates of a quantity x by x̂. It can be empirical mean or a more complex estimate. ∣∣⋅∣∣
denotes the spectral norm of a matrix and ∣∣⋅∣∣2 is the `2 norm of a vector. We use D(⋅, ⋅) to denote
the `1 distance between two distributions.

2.2 Selection from a pool of distributions

Many algorithms for learning mixtures over the domain X first obtain a small collection F of mix-
tures and then perform Maximum Likelihood test using the samples to output a distribution [15, 17].
Our algorithm also obtains a set of distributions containing at least one that is close to the underlying
in `1 distance. The estimation problem now reduces to the following. Given a class F of distribu-
tions and samples from an unknown distribution f , find a distribution in F that is close to f . Let
D(f ,F)

def
= minfi∈F D(f , fi).

The well-known Scheffe’s method [13] usesO(ε−2 log ∣F ∣) samples from the underlying distribution
f , and in time O(ε−2∣F ∣2T log ∣F ∣) outputs a distribution in F with `1 distance of at most 9.1 ⋅
max(D(f ,F), ε) from f , where T is the time required to compute the probability of an x ∈ X by
a distribution in F . A naive application of this algorithm requires time quadratic in the number of
distributions in F . We propose a variant of this, that works in near linear time. More precisely,

Lemma 1 (Appendix B). Let ε > 0. For some constant c, given c
ε2

log( ∣F ∣

δ
) independent samples

from a distribution f , with probability ≥ 1−δ, the output f̂ of MODIFIED SCHEFFE satisfiesD(f̂ , f) ≤

1000 ⋅max(D(f ,F), ε). Furthermore, the algorithm runs in time O(
∣F ∣T log(∣F ∣/δ)

ε2
).

Several such estimators have been proposed in the past [11, 12]. A detailed analysis of the estimator
presented here was studied in [1]. We outline a proof in Appendix B for completeness. Note that
the constant 1000 in the above lemma has not been optimized. For our problem of estimating k
component mixtures in d-dimensions, T = O(dk) and ∣F ∣ = Õk,ε(d

2).

2.3 Lower bound

Using Fano’s inequality, we show an information theoretic lower bound of Ω(dk/ε2) samples to
learn k-component d-dimensional spherical Gaussian mixtures for any algorithm. More precisely,
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Theorem 2 (Appendix C). Any algorithm that learns all k-component d-dimensional spherical
Gaussian mixtures to `1 distance ε with probability ≥ 1/2 requires Ω(dk/ε2) samples.

3 Mixtures in one dimension

Over the past decade estimation of one dimensional distributions has gained significant atten-
tion [24, 28, 11, 6, 12, 7]. We provide a simple estimator for learning one dimensional Gaussian
mixtures using the MODIFIED SCHEFFE estimator. Formally, given samples from f , a mixture of
Gaussian distributions pi

def
= N(µi, σ

2
i ) with weights w1,w2, . . .wk, our goal is to find a mixture

f̂ = (ŵ1, ŵ2, . . . ŵk, p̂1, p̂2, . . . p̂k) such that D(f, f̂) ≤ ε. We make no assumption on the weights,
means or the variances of the components. While we do not use the one dimensional algorithm in
the d-dimensional setting, it provides insight to the usage of the MODIFIED SCHEFFE estimator and
may be of independent interest. As stated in Section 1.4, our quantizations are based on samples and
is an immediate consequence of the following observation for samples from a Gaussian distribution.
Lemma 3 (Appendix D.1). Given n independent samples x1, . . . , xn fromN(µ,σ2), with probabil-
ity ≥ 1− δ there are two samples xj , xk such that ∣xj −µ∣ ≤ σ

7 log 2/δ
2n

and ∣xj −xk −σ∣ ≤ 2σ 7 log 2/δ
2n

.

The above lemma states that given samples from a Gaussian distribution, there would be a sample
close to the mean and there would be two samples that are about a standard deviation apart. Hence,
if we consider the set of all Gaussians N(xj , (xj − xk)

2) ∶ 1 ≤ j, k ≤ n, then that set would contain
a Gaussian close to the underlying one. The same holds for mixtures and for a Gaussian mixture
and we can create the set of candidate mixtures as follows.
Lemma 4 (Appendix D.2). Given n ≥

120k log(4k/δ)
ε

samples from a mixture f of k Gaussians. Let
S = {N(xj , (xj − xk)

2) ∶ 1 ≤ j, k ≤ n} and W = {0, ε
2k
, 2ε
2k
. . . ,1} be a set of weights. Let

F
def
= {(ŵ1, ŵ2, . . . , ŵk, p̂1, p̂2, . . . p̂k) ∶ p̂i ∈ S, ∀1 ≤ i ≤ k−1, ŵi ∈W, ŵk = 1−(ŵ1+. . . ŵk−1) ≥ 0}

be a set of n2k(2k/ε)k−1 ≤ n3k−1 candidate distributions. There exists f̂ ∈ F such that D(f, f̂) ≤ ε.

Running the MODIFIED SCHEFFE algorithm on the above set of candidates F yields a mixture that
is close to the underlying one. By Lemma 1 and the above lemma we obtain

Corollary 5 (Appendix D.3). Let n ≥ c ⋅ k
ε2

log k
εδ

for some constant c. There is an algorithm that

runs in time O ((
k log(k/εδ)

ε
)
3k−1

k2 log(k/εδ)
ε2

) , and returns a mixture f̂ such that D(f, f̂) ≤ 1000ε

with probability ≥ 1 − 2δ.

[12] considered the one dimensional Gaussian mixture problem for two component mixtures. While
the process of identifying the candidate means is same for both the papers, the process of identifying
the variances and proof techniques are different.

4 Mixtures in d dimensions

Algorithm LEARN k-SPHERE learns mixtures of k spherical Gaussians using near-linear samples.
For clarity and simplicity of proofs, we first prove the result when all components have the same
variance σ2, i.e., pi = N(µi, σ

2Id) for 1 ≤ i ≤ k. A modification of this algorithm works for com-
ponents with different variances. The core ideas are same and we discuss the changes in Section 4.3.
The algorithm starts out by estimating σ2 and we discuss this step later. We estimate the means in
three steps, a coarse single-linkage clustering, recursive spectral clustering and search over span of
means. We now discuss the necessity of these steps.

4.1 Estimating the span of means

A simple modification of the one dimensional algorithm can be used to learn mixtures in d di-
mensions, however, the number of candidate mixtures would be exponential in d, the number of
dimensions. As stated in Section 1.4, given the span of the mean vectors µi, we can grid the k
dimensional span to the required accuracy εg and use MODIFIED SCHEFFE, to obtain a polynomial
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time algorithm. One of the natural and well-used methods to estimate the span of mean vectors is
using the correlation matrix [29]. Consider the correlation-type matrix,

S =
1

n

n

∑
i=1

X(i)X(i)t − σ2Id.

For a sample X from a particular component j, E[XXt] = σ2Id +µjµj
t, and the expected fraction

of samples from pj is wj . Hence

E[S] =
k

∑
j=1

wjµjµj
t.

Therefore, as n→∞, S converges to ∑kj=1wjµjµj
t, and its top k eigenvectors span the means.

While the above intuition is well understood, the number of samples necessary for convergence
is not well studied. We wish Õ(d) samples to be sufficient for the convergence irrespective of the
values of the means. However this is not true when the means are far apart. In the following example
we demonstrate that the convergence of averages can depend on their separation.
Example 6. Consider the special case, d = 1, k = 2, σ2 = 1, w1 = w2 = 1/2, and mean differences
∣µ1 − µ2∣ = L ≫ 1. Given this prior information, one can estimate the average of the mixture, that
yields (µ1 + µ2)/2. Solving equations obtained by µ1 + µ2 and µ1 − µ2 = L yields µ1 and µ2. The
variance of the mixture is 1 + L2/4 > L2/4. With additional Chernoff type bounds, one can show
that given n samples the error in estimating the average is

∣µ1 + µ2 − µ̂1 − µ̂2∣ ≈ Θ (L/
√
n) .

Hence, estimating the means to high precision requires n ≥ L2, i.e., the higher separation, the more
samples are necessary if we use the sample mean.

A similar phenomenon happens in the convergence of the correlation matrices, where the variances
of quantities of interest increase with separation. In other words, for the span to be accurate the
number of samples necessary increases with the separation. To overcome this, a natural idea is to
cluster the Gaussians such that the component means in the same cluster are close and then estimate
the span of means, and apply SCHEFFE on the span within each cluster.

For clustering, we use another spectral algorithm. Even though spectral clustering algorithms are
studied in [29, 2], they assume that the weights are strictly bounded away from 0, which does
not hold here. We use a simple recursive clustering algorithm that takes a cluster C with average
µ(C). If there is a component in the cluster such that

√
wi ∣∣µi −µ(C)∣∣2 is Ω(log(n/δ)σ), then the

algorithm divides the cluster into two nonempty clusters without any mis-clustering. For technical
reasons similar to the above example, we first use a coarse clustering algorithm that ensures that the
mean separation of any two components within each cluster is Õ(d1/4σ).

Our algorithm thus comprises of (i) variance estimation (ii) a coarse clustering ensuring that means
are within Õ(d1/4σ) of each other in each cluster (iii) a recursive spectral clustering that reduces
the mean separation to O(

√
k3 log(n/δ)σ) (iv) estimating the span of mean within each cluster,

and (v) quantizing the means and running MODIFIED SCHFEE on the resulting candidate mixtures.

4.2 Sketch of correctness

We now describe the steps stating the performance of each step of Algorithm LEARN k-SPHERE.
To simplify the bounds and expressions, we assume that d > 1000 and δ ≥ min(2n2e−d/10,1/3).
For smaller values of δ, we run the algorithm with error 1/3 and repeat it O(log 1

δ
) times to choose

a set of candidate mixtures Fδ . By the Chernoff-bound with error ≤ δ, Fδ contains a mixture ε-close
to f . Finally, we run MODIFIED SCHEFFE on Fδ to obtain a mixture that is close to f . By the union
bound and Lemma 1, the error of the new algorithm is ≤ 2δ.

Variance estimation: Let σ̂ be the variance estimate from step 1. If X(1) and X(2) are two samples
from the components i and j respectively, then X(1)−X(2) is distributedN(µi−µj ,2σ

2Id). Hence

for large d, ∣∣X(1) −X(2)∣∣
2
2 concentrates around 2dσ2 + ∣∣µi −µj ∣∣

2

2
. By the pigeon-hole principle,

given k + 1 samples, two of them are from the same component. Therefore, the minimum pairwise
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distance between k + 1 samples is close to 2dσ2. This is made precise in the next lemma which
states that σ̂2 is a good estimate of the variance.
Lemma 7 (Appendix E.1). Given n samples from the k-component mixture, with probability 1−2δ,
∣σ̂2 − σ2∣ ≤ 2.5σ2

√
log(n2/δ)/d.

Coarse single-linkage clustering: The second step is a single-linkage routine that clusters mixture
components with far means. Single-linkage is a simple clustering scheme that starts out with each
data point as a cluster, and at each step merges the two nearest clusters to form a larger cluster. The
algorithm stops when the distance between clusters is larger than a pre-specified threshold.

Suppose the samples are generated by a one-dimensional mixture of k components that are far,
then with high probability, when the algorithm generates k clusters all the samples within a cluster
are generated by a single component. More precisely, if ∀i, j ∈ [k], ∣µi − µj ∣ = Ω(σ logn), then
all the n samples concentrate around their respective means and the separation between any two
samples from different components would be larger than the largest separation between any two
samples from the same component. Hence for a suitable value of threshold, single-linkage correctly
identifies the clusters. For d-dimensional Gaussian mixtures a similar property holds, with minimum
separation Ω((d log n

δ
)1/4σ). More precisely,

Lemma 8 (Appendix E.2). After Step 2 of LEARN k-SPHERE, with probability ≥ 1−2δ, all samples
from each component will be in the same cluster and the maximum distance between two components

within each cluster is ≤ 10kσ(d log n2

δ
)
1/4

.

Algorithm LEARN k-SPHERE
Input: n samples x(1),x(2), . . . ,x(n) from f and ε.

1. Sample variance: σ̂2 = mina≠b∶a,b∈[k+1] ∣∣x(a) − x(b)∣∣
2
2 /2d.

2. Coarse single-linkage clustering: Start with each sample as a cluster,

• While ∃ two clusters with squared-distance ≤ 2dσ̂2 + 23σ̂2
√
d log(n2/δ), merge them.

3. Recursive spectral-clustering: While there is a cluster C with ∣C ∣ ≥ nε/5k and spectral
norm of its sample covariance matrix ≥ 12k2σ̂2 logn3/δ,

• Use nε/8k2 of the samples to find the largest eigenvector and discard these samples.
• Project the remaining samples on the largest eigenvector.
• Perform single-linkage in the projected space (as before) till the distance between clusters

is > 3σ̂
√

log(n2k/δ) creating new clusters.

4. Exhaustive search: Let εg = ε/(16k3/2), L = 200
√

k4ε−1 log n2

δ
, L′ = 32k

√

logn2/δ

ε
, and

G = {−L, . . . ,−εg,0, εg,2εg, . . . L}. Let W = {0, ε/(4k),2ε/(4k), . . .1} and Σ
def
= {σ2 ∶

σ2 = σ̂2(1 + iε/d
√

128dk2),∀ −L′ < i ≤ L′}.

• For each cluster C find its top k − 1 eigenvectors u1, . . .uk−1. Let Span(C) = {µ̂(C) +

∑
k−1
i=1 giσ̂ui ∶ gi ∈ G}.

• Let Span = ∪C∶∣C∣≥
nε
5k

Span(C).

• For all w′

i ∈W , σ′2 ∈ Σ, µ̂i ∈ Span,
add {(w′

1, . . . ,w
′

k−1,1 −∑
k−1
i=1 w

′

i,N(µ̂1, σ
′2), . . . ,N(µ̂k, σ

′2)} to F .

5. Run MODIFIED SCHEFFE on F and output the resulting distribution.

Recursive spectral-clustering: The clusters formed at the beginning of this step consist of com-
ponents with mean separation O(σd1/4 log n

δ
). We now recursively zoom into the clusters formed

and show that it is possible to cluster the components with much smaller mean separation. Note that
since the matrix is symmetric, the largest magnitude of the eigenvalue is the same as the spectral
norm. We first find the largest eigenvector of

S(C)
def
=

1

∣C ∣
( ∑
x∈C

(x − µ̂(C))(x − µ̂(C))
t
) − σ̂2Id,
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which is the sample covariance matrix with its diagonal term reduced by σ̂2. We then project our
samples to this vector and if there are two components with means far apart, then using single-
linkage we divide the cluster into two. The following lemma shows that this step performs accurate
clustering of components with well separated means.

Lemma 9 (Appendix E.3). Let n ≥ c ⋅ dk
4

ε
log n3

δ
. After recursive clustering, with probability

≥ 1 − 4δ, the samples are divided into clusters such that for each component i within a cluster
C,

√
wi ∣∣µi −µ(C)∣∣2 ≤ 25σ

√
k3 log(n3/δ) . Furthermore, all the samples from one component

remain in a single cluster.

Exhaustive search and Scheffe: After step 3, all clusters have a small weighted radius
√
wi ∣∣µi −µ(C)∣∣2 ≤ 25σ

√

k3 log n3

δ
. It can be shown that the eigenvectors give an accurate esti-

mate of the span of µi −µ(C) within each cluster. More precisely,

Lemma 10 (Appendix E.4). Let n ≥ c ⋅ dk
9

ε4
log2 d

δ
for some constant c. After step 3, with probability

≥ 1− 7δ, if ∣C ∣ ≥ nε/5k, then the projection of [µi −µ(C)]/ ∣∣µi −µ(C)∣∣2 on the space orthogonal
to the span of top k − 1 eigenvectors has magnitude ≤ εσ

8
√

2k
√
wi∣∣µi−µ(C)∣∣ 2

.

We now have accurate estimates of the spans of the cluster means and each cluster has components
with close means. It is now possible to grid the set of possibilities in each cluster to obtain a set of
distributions such that one of them is close to the underlying. There is a trade-off between a dense
grid to obtain a good estimation and the computation time required. The final step takes the sparsest
grid possible to ensure an error ≤ ε. This is quantized below.

Theorem 11 (Appendix E.5). Let n ≥ c ⋅ dk
9

ε4
log2 d

δ
for some constant c. Then Algorithm LEARN k-

SPHERE, with probability ≥ 1−9δ, outputs a distribution f̂ such thatD(f̂ , f) ≤ 1000ε. Furthermore,

the algorithm runs in time O(n2d logn + d(k
7

ε3
log2 d

δ
)

k2

2

).

Note that the run time is calculated based on an efficient implementation of single-linkage clustering
and the exponential term is not optimized.

4.3 Mixtures with unequal variances

We generalize the results to mixtures with components having different variances. Let pi =

N(µi, σ
2
i Id) be the ith component. The key differences between LEARN k-SPHERE and the al-

gorithm for learning mixtures with unequal variances are:

1. In LEARN k-SPHERE, we first estimated the component variance σ and divided the samples
into clusters such that within each cluster the means are separated by Õ(d1/4σ). We modify
this step such that the samples are clustered such that within each cluster the components not
only have mean separationO(d1/4σ), but variances are also a factor at most 1+Õ(1/

√
d) apart.

2. Once the variances in each cluster are within a multiplicative factor of 1 + Õ(1/
√
d) of each

other, it can be shown that the performance of the recursive spectral clustering step does not
change more than constants.

3. After obtaining clusters with similar means and variances, the exhaustive search algorithm fol-
lows, though instead of having a single σ′ for all clusters, we can have a different σ′ for each
cluster, which is estimated using the average pair wise distance between samples in the cluster.

The changes in the recursive clustering step and the exhaustive search step are easy to see and we
omit them. The coarse clustering step requires additional tools and we describe them in Appendix F.
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