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Abstract

A Poisson Binomial distribution over n variables
is the distribution of the sum of n independent
Bernoullis. We provide a sample near-optimal algo-
rithm for testing whether a distribution P supported
on {0, . . . , n} to which we have sample access is a
Poisson Binomial distribution, or far from all Poisson
Binomial distributions. The sample complexity of our
algorithm is O(n1/4) to which we provide a matching
lower bound. We note that our sample complexity
improves quadratically upon that of the naive “learn
followed by tolerant-test” approach, while instance
optimal identity testing [VV14] is not applicable since
we are looking to simultaneously test against a whole
family of distributions.

1 Introduction

Given independent samples from an unknown proba-
bility distribution P over {0, . . . , n}, can you explain
P as the distribution of the sum of n independent
Bernoullis? For example, P may be the number of
faculty attending the weekly faculty meeting, and you
may be looking to test whether your observations are
consistent with the different faculty decisions being
independent. It is a problem of testing against a fam-
ily of distributions:

PbdTesting: Given ε > 0 and sample access to an
unknown distribution P over {0, . . . , n}, test whether
P ∈ PBDn, or dTV (P,PBDn) > ε, where PBDn
is the set of Poisson Binomial distributions over n
variables.

∗Supported by grant from MITEI-Shell program.
†Supported by a Sloan Foundation Fellowship, a Microsoft

Research Faculty Fellowship and NSF Award CCF-0953960
(CAREER) and CCF-1101491.

Besides any practical applications, the theoreti-
cal interest in studying PbdTesting, and for that
matter testing membership to other classes of dis-
tributions, stems from the fact that “being a Pois-
son Binomial distribution” is not a symmetric prop-
erty of a distribution; hence the results of [VV11]
cannot be brought to bear. At the same time, “be-
ing a Poisson Binomial Distribution” does not fall
into the shape restrictions to a distribution, such as
uniformity [GR00, BFF+01, Pan08] or monotonic-
ity [BKR04], for which (near-)optimal testing algo-
rithms have been obtained. While there has been a
lot of work on learning distributions from a class of
distributions [CDSS13, FOS05, MV10, BS10], there
is still a large gap in our current knowledge about
the complexity of testing against general families
of distributions, unless both the unknown distri-
bution and the family have been restricted a pri-
ori [DDS+13, DKN14].

An obvious approach to PbdTesting is to learn
a candidate Poisson Binomial distribution Q that
is ε/2-close to P , if P truly is a Poisson Binomial
distribution. This is known to be quite cheap, only
requiring Õ(1/ε2) samples from P [DDS12]. We can
then use a tolerant tester to test dTV (P,Q) ≤ ε/2
vs dTV (P,Q) > ε. Such a tester would allow us to
distinguish P ∈ PBDn vs dTV (P,PBDn) > ε, as
dTV (P,Q) ≤ ε/2⇔ P ∈ PBDn.

Given that any Q ∈ PBDn has effective support
O(
√
n log 1/ε),1 we can easily construct a tolerant

tester that uses Õ(
√
n/ε2) samples, resulting in over-

all sampling complexity of Õ(
√
n/ε2). On the other

hand, we do not see how to substantially improve this

1Effective support is the smallest set of contiguous integers
where the distribution places all but ε of its probability mass.
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approach, given the lower bound of Ω(m/ logm) for
tolerant identity testing distributions of support size
m [VV11].

A somewhat different approach would circum-
vent the use of a tolerant identity tester, by exploit-
ing the small amount of tolerance accommodated by
known (non-tolerant) identity testers. For instance,
[BFF+01] show that, given a distribution Q of sup-
port m and Õ(

√
m) · poly(1/ε) samples from an un-

known distribution P over the same support, one can

distinguish dTV (P,Q) ≤ ε3

4
√
m logm

vs dTV (P,Q) > ε.

Hence, we can try to first find a candidate Q ∈ PBDn
that is ε3

4
√
m logm

-close to P , if P ∈ PBDn, and then

do (non-tolerant) identity testing against Q. In doing
so, we can use m = O(

√
n log 1/ε), since that is the

worst case effective support of P , if P ∈ PBDn.
The testing step of this approach is cheaper,

namely Õ(n1/4) · poly(1/ε) samples, but now the
learning step becomes more expensive, namely
Ω̃(
√
n) · poly(1/ε) samples, as the required learning

accuracy is more extravagant than before.

Is there then a fundamental barrier, imposing
a sample complexity of Ω̃(

√
n)? We show that the

answer is “no,” namely

Theorem 1. For n, ε, δ > 0, there exists an algo-
rithm, Testing PBDs, that uses

O

(
n1/4

√
log(1/ε)

ε2
+

log2.5(1/ε)

ε6

)
· log(1/δ)

independent samples from an unknown distribution
P over {0, . . . , n} and, with probability ≥ 1 − δ,
outputs Yes PBD, if P ∈ PBDn, and No PBD,
if dTV (P,PBDn) > ε. The time complexity of the
algorithm is

O
(
n1/4

√
log(1/ε)/ε2 + (1/ε)O(log2 1/ε)

)
· log (1/δ).

The proof of Theorem 1 can be found in Section 3.
We also show that the dependence of our sample
complexity on n cannot be improved, by providing
a matching lower bound in Section 4 as follows.

Theorem 2. Any algorithm for PbdTesting re-
quires Ω(n1/4/ε2) samples.

One might be tempted to deduce Theorem 2
from the lower bound for identity testing against
Binomial(n, 1/2), which has been shown to require
Ω(n1/4/ε2) samples [Pan08, VV14]. However, test-
ing against a class of distributions may very well
be easier than testing against a specific member of
the class. (As a trivial example consider the class

of all distributions over {0, . . . , n}, which are trivial
to test.) Still, for the class PBDn, we establish the
same lower bound as for Binomial(n, 1/2), deducing
that the dependence of our sample complexity on n
is tight up to constant factors, while the dependence
on ε of the leading term in our sample complexity is
tight up to a logarithmic factor.

1.1 Related work and our approach Our test-
ing problem is intimately related to the following fun-
damental problems:

IdentityTesting: Given a known distribution
Q and independent samples from an unknown
distribution P , which are both supported on
[m] := {0, . . . ,m}, determine whether P = Q Or
dTV (P,Q) > ε. If dTV (P,Q) ∈ (0, ε], then any an-
swer is allowed.

Tolerant-IdentityTesting: Given a known dis-
tribution Q and independent samples from an un-
known distribution P , which are both supported
on [m], determine whether dTV (P,Q) ≤ ε/2 Or
dTV (P,Q) > ε. If dTV (P,Q) ∈ (ε/2, ε], then any
answer is allowed.

It is known that IdentityTesting can be solved
from a near-optimal Õ(

√
m/ε2) number of sam-

ples [BFF+01, Pan08]. The guarantee is obviously
probabilistic: with probability ≥ 2/3, the algo-
rithm outputs “equal,” if P = Q, and “different,”
if dTV (P,Q) > ε. On the other hand, even testing
whether P equals the uniform distribution over [m]
requires Ω(

√
m/ε2) samples.

While the identity tester of [BFF+01] allows in
fact a little bit of tolerance (namely distinguishing

dTV (P,Q) ≤ ε3

4
√
m logm

vs dTV (P,Q) > ε), it does

not accommodate a tolerance of ε/2. Indeed, [VV11]
show that there is a gap in the sample complexity
of tolerant vs non-tolerant testing, showing that the
tolerant version requires Ω(m/ logm) samples.

As discussed earlier, these results on identity test-
ing in conjunction with the algorithm of [DDS12]
for learning Poisson Binomial distributions can be
readily used to solve PbdTesting, albeit with sub-
optimal sample complexity. Moreover, recent work
of Valiant and Valiant [VV14] pins down the opti-
mal sampling complexity of IdentityTesting up
to constant factors for any distribution Q, allowing
sample-optimal testing on an instance to instance ba-
sis. However, their algorithm is not applicable to Pb-
dTesting, as it allows testing whether an unknown
distribution P equals a specific distribution Q vs be-
ing ε-far from Q, but not testing whether P belongs

1830 Copyright © 2015.
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to a class of distributions vs being ε-far from all dis-
tributions in the class.

Our Approach. What we find quite interest-
ing is that our “learning followed by tolerant test-
ing” approach seems optimal: The learning algorithm
of [DDS12] is optimal up to logarithmic factors, and
there is strong evidence that tolerant identity test-
ing a Poisson Binomial distribution requires Ω̃(

√
n)

samples. So where are we losing?
We observe that, even though PbdTesting can

be reduced to tolerant identity testing of the unknown
distribution P to a single Poisson Binomial distribu-
tion Q, we cannot consider the latter problem out of
context, shooting at optimal testers for it. Instead,
we are really trying to solve the following problem:

Tolerant-(Identity+PBD)-Testing:
Given a known Q and independent samples from an
unknown distribution P , which are both supported
on [m], determine whether (dTV (P,Q) ≤ ε1 And
P ∈ PBDn) Or (dTV (P,Q) > ε2). In all other cases,
any answer is allowed.

The subtle difference between Tolerant-
(Identity+PBD)-Testing and Tolerant-
IdentityTesting is the added clause “And
P ∈ PBDn,” which, it turns out, makes a big
difference for certain Q’s. In particular, we would
hope that, when Q and P are Poisson Binomial
distributions with about the same variance, then
the `1 bound dTV (P,Q) ≤ ε1 implies a good enough
`2 bound, so that Tolerant-(Identity+PBD)-
Testing can be reduced to tolerant identity testing
in the `2 norm. We proceed to sketch the steps of
our tester in more detail.

The first step is to run the learning algorithm
of [DDS12] on Õ(1/ε2) samples from P . The result
is some Ppbd ∈ PBDn such that, if P ∈ PBDn
then, with probability ≥ .99, dTV (P, Ppbd) < ε/10.
We then bifurcate depending on the variance of the
learned Ppbd. For some constant C to be decided, we
consider the following cases.

• Case 1: σ2(Ppbd) < C·log4 1/ε
ε8

In this case, Ppbd assigns probability mass of ≥
1− ε/5 to an interval I of size O(log2.5(1/ε)/ε4).
If P ∈ PBDn, then the `1 distance between P
and Ppbd over I is at most ε/5 (with probability
at least 0.99). If dTV (P,PBDn) > ε, then over
the same interval, the `1 distance is at least
4ε/5. We can therefore do tolerant identity
testing restricted to support I, with O(|I|/ε2) =
O(log2.5(1/ε)/ε6) samples. To this end, we use
a simple tolerant identity test whose sample
complexity is tight up to a logarithm in the

support size, and very easy to analyze. Its use
here does not affect the dependence of the overall
sample complexity on n.

• Case 2: σ2(Ppbd) ≥ C·log4 1/ε
ε8

We are looking to reduce this case to
a Tolerant-(Identity+PBD)-Testing task
for an appropriate distribution Q that will make
the reduction to tolerant identity testing in the
`2 norm feasible. First, it follows from [DDS12]
that in this case we can actually assume that
Ppbd is a Binomial distribution. Next, we use
O(n1/4/ε2) samples to obtain estimates µ̂ and
σ̂2 for the mean and variance of P , and consider
the Translated Poisson distribution Ptp(µ̂, σ̂

2)
with parameters µ̂ and σ̂2; see Definition 5.
If P ∈ PBDn, then with good probability (i)
µ̂ and σ̂2 are extremely accurate as character-
ized by Lemma 1, and (ii) using the Trans-
lated Poisson approximation to the Poisson Bi-
nomial distribution, Lemma 4, we can argue that

dTV (P, Ptp(µ̂, σ̂
2)) ≤ ε2

10 .

Before getting to the heart of our test, we per-
form one last check. We calculate an esti-
mate of dTV (Ptp(µ̂, σ̂

2), Ppbd) that is accurate

to within ±ε/5. If our estimate d̂TV (Pb, Ppbd) >
ε/2, we can safely deduce dTV (P,PBDn) > ε.
Indeed, if P ∈ PBDn, we would have seen
d̂TV (Ptp(µ̂, σ̂

2), Ppbd) ≤ dTV (Ptp(µ̂, σ̂
2), Ppbd) +

ε/5 ≤ dTV (Ptp(µ̂, σ̂
2), P )+dTV (P, Ppbd)+ε/5 ≤

ε2

10 + ε
10 + ε

5 < 2ε/5.

If d̂TV (Ptp(µ̂, σ̂
2), Ppbd) ≤ ε/2, then

dTV (P, Ptp(µ̂, σ̂
2))

≥dTV (P, Ppbd)− dTV (Ppbd, Ptp(µ̂, σ̂
2))

≥dTV (P, Ppbd)− 7ε

10
.

At this point, there are two possibilities we need
to distinguish between: either P ∈ PBDn and

dTV (P, Ptp(µ̂, σ̂
2)) ≤ ε2

10 , or dTV (P,PBDn) > ε
and dTV (P, Ptp(µ̂, σ̂

2)) ≥ 3ε
10 .2 We argue that

we can use an `2 test to solve this instance of
Tolerant-(Identity+PBD)-Testing.

Clearly, we can boost the probability of error to
any δ > 0 by repeating the above procedure log(1/δ)
times and outputting the majority. Our algorithm is
provided as Algorithm 2.

2The two cases identified here correspond to Cases 3a
and 3b of Section 3, except that we include some logarithmic
factors in the total variation distance bound in Case 3a for
minute technical reasons.
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2 Preliminaries

We provide some basic definitions, and state results
that will be useful in our analysis.

Definition 1. The truncated logarithm function
tlog is defined as logt(x) = max{1, log x}, for all
x ∈ (0,+∞), where log x represents the natural loga-
rithm of x.

Definition 2. Let P be a distribution over [n] =
{0, . . . ,n}. The ε-effective support of P is the length
of the smallest interval where the distribution places
all but at most ε of its probability mass.

Definition 3. A Poisson Binomial Distribution
(PBD) over [n] is the distribution of X =

∑n
i=1Xi,

where the Xi’s are (mutually) independent Bernoulli
random variables. PBDn is the set of all Poisson
Binomial distributions over [n].

Definition 4. The total variation distance between
two distributions P and Q over a finite set A is

dTV (P,Q)
def
= 1

2

∑
i∈A |P (i)−Q(i)|. The total varia-

tion distance between two sets of distributions P and

Q is dTV (P,Q)
def
= infP∈P,Q∈Q dTV (P,Q).

We make use of the following learning algorithm,
allowing us to learn an unknown Poisson Binomial
distribution over [n] from Õ(1/ε2) samples (indepen-
dent of n). Namely,

Theorem 3. ([DDS12]) For all n, ε > 0, there is
an algorithm that uses Õ(1/ε2) samples from an
unknown P ∈ PBDn and outputs some Ppbd ∈ PBDn
such that

• Ppbd is supported on an interval of length
O(1/ε3),

• or Ppbd is a Binomial distribution.

Moreover, with probability ≥ 0.99, dTV (Ppbd, P ) < ε
and, if the algorithm outputs a Binomial distribution,
the standard deviation of the output distribution Ppbd

is within a factor of 2 of the standard deviation of the
unknown distribution P . Furthermore, the running
time of the algorithm is Õ(log n) · (1/ε)O(log2 1/ε). �

In the same paper the authors show that the
mean and variance of a Poisson Binomial distribution
can be estimated using a few samples. They use the
empirical mean and variance estimates and bound the
means and variances of these estimates.

Lemma 1. ([DDS12]) For all ε′ > 0, there is an
algorithm that, using O(1/ε′2) samples from an un-
known PBD with mean µ and variance σ2, produces

estimates µ′, σ′ such that

|µ− µ′| < ε′ · σ and |σ2 − σ′2| < ε′ · σ2

√
4 +

1

σ2
,

with probability ≥ .99. �

Since Poisson Binomial variables are sums of
indicators, the following bound is also helpful.

Lemma 2. (Chernoff bound for sums of Indicators [Lev])
Let X1, . . . , Xn be independent Bernoulli random
variables, X = X1 + . . . + Xn, and σ2 = Var(X).
Then, for 0 < λ < 2σ,

Prob (|X − E[X]| > λσ) < 2e−λ
2/4.

The following result is a tail bound on Pois-
son random variables obtained from the Chernoff
Bounds [MU05].

Lemma 3. ([ADJ+12]) If X is a Poisson λ random
variable, then for x ≥ λ,

Pr(X ≥ x) ≤ exp

(
− (x− λ)2

2x

)
,

and for x ≤ λ,

Pr(X ≤ x) ≤ exp

(
− (x− λ)2

2λ

)
.

Poisson Binomial distributions are specified by n pa-
rameters, and consequently there has been a great
deal of interest in approximating them via distribu-
tions with only a few parameters. One such class
of distributions are Translated Poisson distributions,
defined next.

Definition 5. ([Rol07]) A Translated Poisson dis-
tribution, denoted Ptp(µ, σ

2), is the distribution of a
random variable Y = bµ − σ2c + Z, where Z is a
random variable distributed according to the Poisson
distribution poi

(
σ2 + {µ− σ2}

)
. Here bxc and {x}

denote respectively the integral and fractional parts
of x respectively.

The following lemma bounds the total variation
and `∞ distance between a Poisson Binomial and a
Translated Poisson distribution with the same mean
and variance. The bound on total variation distance
is taken directly from [Rol07], while the `∞ bound is
obtained via simple substitutions in their `∞ bound.

Lemma 4. ([Rol07]) Let X =
∑
iXi, where the

Xi’s are independent Bernoulli random variables,

1832 Copyright © 2015.
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Xi ∼ B(pi). Also, let qmax = maxk Pr(X = k),
µ =

∑
pi and σ2 =

∑
pi(1− pi). The following hold:

dTV (X,Ptp(µ, σ
2)) ≤

2 +
√∑

p3
i (1− pi)∑

pi(1− pi)
;

`∞
(
X,Ptp(µ, σ

2)
)
≤

2 + 2
√
qmax

∑
p3
i (1− pi)∑

pi(1− pi)
;

qmax ≤ dTV (X,Ptp(µ, σ
2)) +

1

2.3σ
.

Finally, the total variation distance between two
Translated Poisson distributions can be bounded as
follows.

Lemma 5. ([BL07]) Let Ptp1 and Ptp2 be Translated
Poisson distributions with parameters (µ1, σ2

1) and
(µ2, σ2

2) respectively. Then,

dTV (Ptp1, Ptp2) ≤ |µ1 − µ2|
min{σ1, σ2}

+
|σ2

1 − σ2
2 |+ 1

min{σ2
1 , σ

2
2}
.

3 Testing PBD’s

We fill in the details of the outline provided in
Section 1.1. Our algorithm is given in Algorithm 2 in
the appendix.

Our algorithm starts by running the algorithm of
Theorem 3 with accuracy ε/10 to find Ppbd ∈ PBDn.
If the unknown distribution P ∈ PBDn, then with
probability ≥ 0.99, dTV (P, Ppbd) ≤ ε/10.

As in the outline, we next consider two cases,
depending on the variance of Ppbd:3

• Sparse Case: when V ar(Ppbd) < C·logt41/ε
ε8 .

• Heavy case: when V ar(Ppbd) ≥ C·logt41/ε
ε8 .

Clearly, if the distribution Ppbd given by Theo-
rem 3 is supported on an interval of length O(1/ε3),
then we must be in the sparse case. Hence, the only
way we can be in the heavy case is when Ppbd is a
Binomial distribution with variance larger than our
threshold. We treat the two cases separately next.

3.1 Sparse case Our goal is to perform a
simple tolerant identity test to decide whether
dTV (P, Ppbd) ≤ ε/10 or dTV (P, Ppbd) > ε. We first
develop the tolerant identity test.

3Notice that in defining our two cases we use the truncated
logarithm instead of the logarithm function in our threshold
variance. This choice is made for trivial technical reasons.
Namely, this logarithmic factor will appear in denominators
later on, and it is useful to truncate it to avoid singularities.

Simple Tolerant Identity Test: The test is
given in the appendix as Algorithm 1 and is based on
the folklore result described as Lemma 6.

Lemma 6. Let ε > 0, and P be an arbitrary distri-
bution over a finite set A of size |A| = m. With
O(m/ε2) independent samples from P , we can com-
pute a distribution Q over A such that dTV (P,Q) ≤ ε,
with probability at least .99. In fact, the empirical dis-
tribution achieves this bound.

Lemma 6 enables the simple tolerant identity
tester, whose pseudocode is given in Algorithm 1,
which takes O(m/ε2) samples from a distribution P
over m elements and outputs whether it is ≤ ε/10
close or > 2ε/5 far from a known distribution Q. The
simple idea is that with sufficiently many samples, the
empirical distribution P̂ satisfies dTV (P, P̂ ) < ε/10
(by Lemma 6), which allows us to distinguish between
dTV (P,Q) ≤ ε/10 and dTV (P,Q) > 2ε/5.

Finishing the Sparse Case: Lemma 2 im-
plies that there exists an interval I of length
O( 1

ε4 · logt2.5 1
ε ) such that Ppbd(I) ≥ 1 − ε/5. Let

us find such an interval I, and consider the distribu-
tion P ′ that equals P on I and places all remaining
probability on −1. Similarly, let us define P ′pbd from
Ppbd. It is easy to check that:

• if P ∈ PBDn, then dTV (P ′, P ′pbd) ≤ ε/10,
since dTV (P, Ppbd) ≤ ε/10 and P ′, P ′pbd are
coarsenings of P and Ppbd respectively.

• if dTV (P,PBDn) > ε, then dTV (P ′, P ′pbd) >
2ε/5. (This follows easily from the fact that Ppbd

places less than ε/5 mass outside of I.)

Hence, we can use our simple tolerant identity
tester (Algorithm 1) to distinguish between these
cases from O(|I|/ε2) = O( 1

ε6 · logt2.5 1
ε ) samples.

3.2 Heavy case In this case, it must be that

Ppbd = Binomial(n′, p) and n′p(1 − p) ≥ C·logt4 1
ε

ε8 .
The high level plan for this case is the following:

1. First, using Theorem 3, we argue that, if P ∈
PBDn, then its variance is also Ω

(
logt4 1

ε

ε8

)
large.

2. Next, we apply Lemma 1 with O(n1/4/ε2) sam-
ples to get estimates µ̂ and σ̂2 of the mean and
variance of P . If P ∈ PBDn, then these esti-
mates are very accurate, with probability at least
0.99, and, by Lemmas 4 and 5, the correspond-
ing Translated Poisson distribution Ptp(µ̂, σ̂

2) is
ε2

C′
√

logt 1
ε

-close to P , for our choice of C ′ (that

we can tune by choosing C large enough).

1833 Copyright © 2015.
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3. Then, with a little preprocessing, we can get to
a state where we need to distinguish between the
following, for any C ′ ≥ 10 of our choice:

(a) P ∈ PBDn and P is ε2

C′
√

logt 1
ε

-close to

Ptp(µ̂, σ̂
2) OR

(b) dTV (P,PBDn) > ε and P is 3ε/10-far from
Ptp(µ̂, σ̂

2).

4. Finally, using the `∞ bound in Lemma 4, we
show that, if the first case holds, then P is
close to Ptp(µ̂, σ̂

2) even in the `2 distance. Us-
ing this, we show that it suffices to design an
`2 test against Ptp(µ̂, σ̂

2). The computations
of this algorithm are similar to the χ−squared
statistic used for testing closeness of distribu-
tions in [ADJ+12, CDVV14].

We proceed to flesh out these steps:
Step 1: By Theorem 3, if P ∈ PBDn and a

Binomial(n′, p) is output by the algorithm of [DDS12]
then P ’s variance is within a factor of 4 from n′p(1−
p), with probability at least 0.99. Hence, if P ∈
PBDn and we are in the heavy case, then we know
that, with probability ≥ 0.99:

V ar(P ) >
C · logt4 1

ε

4ε8
.(3.1)

Going forward, if P ∈ PBDn, we condition on (3.1),
which happens with good probability.

Step 2: Let us denote by µ and σ2 the mean
and variance of the unknown P . If P ∈ PBDn, then
clearly σ2 ≤ n/4. So let us use ε′ = ε

(n/4)1/8
in

Lemma 1 to compute estimates µ̂ and σ̂2 of µ and
σ2 respectively. Given that σ > 1 for a choice of
C ≥ 4 in (3.1), we get:

Claim 1. If P ∈ PBDn and C ≥ 4, then the outputs
µ̂ and σ̂2 of the algorithm of Lemma 1 computed from
O(n1/4/ε2) samples from P satisfy the following with
probability ≥ 0.99:

|µ− µ̂| < ε

σ1/4
σ and |σ2 − σ̂2| < 3

ε

σ1/4
σ2.

(3.2)

Using these bounds, we show next that Ptp(µ̂, σ̂
2)

is a good approximator of P , if P ∈ PBDn.

Claim 2. If P ∈ PBDn and (3.1), (3.2) hold, then
for any constant C ′ there exists large enough C:

dTV (P, Ptp(µ̂, σ̂
2)) <

3

σ
+

14ε

σ1/4
≤ ε2

C ′
√

logt 1
ε

.(3.3)

Proof. We first note that for large enough C we have

σ > 256 so (3.2) implies that
√

7
2 σ > σ̂ > σ̂ > σ

2 . By
the first bound of Lemma 4 we have that:

dTV (P, Ptp(µ, σ
2)) <

2 + σ

σ2
<

3

σ
.(3.4)

Using (3.2) and σ̂ > σ/2 in Lemma 5 gives

dTV (Ptp(µ, σ
2), Ptp(µ̂, σ̂

2)) < 14
ε

σ1/4
.

So, from triangle inequality, dTV (P, Ptp(µ̂, σ̂
2)) <

3
σ + 14ε

σ1/4 . Plugging (3.1) into this bound gives

dTV (P, Ptp(µ̂, σ̂
2)) ≤ ε2

C′
√

logt 1
ε

, when C is large

enough.

Going forward, for any C ′ of our choice (to be
determined), we choose C to be large enough as
required by Claims 1 and 2. In particular, this choice

ensures σ > 256, and
√

7
2 σ > σ̂ > σ

2 . Moreover, if
P ∈ PBDn, we condition on (3.2) and (3.3), which
hold with good probability.

Step 3: We do some pre-processing that allows
us to reduce our problem to distinguishing between
cases 3a and 3b. Given our work in Steps 1 and 2, if
P ∈ PBDn, then with good probability,

dTV (Ppbd, Ptp(µ̂, σ̂
2)) ≤ ε

10
+

ε2

C ′
√

logt 1
ε

< ε/5,

(3.5)

for C ′ ≥ 10. Given that Ptp(µ̂, σ̂
2) and Ppbd

are explicit distributions we can compute (without

any samples) an estimate d̂TV (Ptp(µ̂, σ̂
2), Ppbd) =

dTV (Ptp(µ̂, σ̂
2), Ppbd) ± ε/5. Based on this estimate

we distinguish the following cases:

• If d̂TV (Ptp(µ̂, σ̂
2), Ppbd) > ε/2, we can safely

deduce dTV (P,PBDn) > ε. Indeed, if P ∈
PBDn, then by (3.5) we would have seen

d̂TV (Ptp(µ̂, σ̂
2), Ppbd)

≤dTV (Ptp(µ̂, σ̂
2), Ppbd) + ε/5 ≤ 2ε/5.

• If σ̂2 > n/2, we can also safely deduce that
dTV (P,PBDn) > ε. Indeed, if P ∈ PBDn, then
σ2 ≤ n/4, hence σ̂2 ≤ n/2 by our assumption

that
√

7
2 σ > σ̂.

• So it remains to consider the case
d̂TV (Ptp(µ̂, σ̂

2), Ppbd) ≤ ε/2. This implies

dTV (P, Ptp(µ̂, σ̂
2))

≥dTV (P, Ppbd)− dTV (Ppbd, Ptp(µ̂, σ̂
2))

≥dTV (P, Ppbd)− 7ε

10
.(3.6)
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Now, if dTV (P,PBDn) > ε, then (3.6) im-
plies dTV (P, Ptp(µ̂, σ̂

2)) > 3ε
10 . On the other

hand, if P ∈ PBDn, then (3.3) implies

dTV (P, Ptp(µ̂, σ̂
2)) ≤ ε2

C′
√

logt 1
ε

, for any C ′ ≥ 10

of our choice. So, it suffices to be able to distin-
guish between cases 3a and 3b.

Step 4: We now show that an `2 test suffices for
distinguishing between Cases 3a and 3b. We start by
bounding the `2 distance between P and Ptp(µ̂, σ̂

2)
in the two cases of interest. We start with the easy
bound, corresponding to Case 3b.

Case 3b: Using Cauchy-Schwarz Inequality, we can
lower bound the `2 distance between P and Ptp(µ̂, σ̂

2)
in this case.

Claim 3. dTV (P, Ptp(µ̂, σ̂
2)) > 3ε/10 implies:

`22(P, Ptp(µ̂, σ̂
2)) >

cε2

σ̂
√

logt(1/ε)
,

for some absolute constant c.

Proof. By Lemma 3, Ptp(µ̂, σ̂
2) assigns ≥ 1− ε/10 of

its mass to an interval I of length O(σ̂
√

log(1/ε)).
Therefore, the `1 distance between P and Ptp(µ̂, σ̂

2)
over I is at least dTV (P, Ptp(µ̂, σ̂

2))− ε/10 > 3ε/10−
ε/10 > 0.2ε. Applying the Cauchy-Schwarz Inequal-
ity, over this interval :

`22(P, Ptp(µ̂, σ̂
2))I ≥

`21(P, Ptp(µ̂, σ̂
2))I

|I|
≥ cε2

σ̂
√

log(1/ε)
,

for some constant c > 0. In the above inequality we
denote by `1(P, Ptp(µ̂, σ̂

2))I and `2(P, Ptp(µ̂, σ̂
2))I

the `1 and `2 norms respectively of the vectors
obtained by listing the probabilities assigned by P
and Ptp(µ̂, σ̂

2) on all points in set I.

Case 3a: Rollin’s result stated in Section 2 provides
bounds on the `1 and `∞ distance between a PBD
and its corresponding translated Poisson distribution.
Using these bounds we can show:

Claim 4. In Case 3a:

`22(P, Ptp(µ̂, σ̂
2)) ≤ 5.3

σ̂
· 2ε2

C ′
√

logt 1
ε

.

Proof. Recall that, by our choice of C, σ > 256,

hence (3.2) implies that
√

7
2 σ > σ̂ > σ

2 > 128. Next,
we recall the following bound on the `2 norm of any
two distributions P and Q:

`22(P,Q) ≤ `∞(P,Q)`1(P,Q).(3.7)

Claim 2 takes care of the `1 term when we substitute
Q = Ptp(µ̂, σ̂

2). We now bound the `∞ term. For
any distributions P and Q it trivially holds that
`∞(P,Q) < max{maxi{P (i)},maxi{Q(i)}}. By the
third part of Lemma 4 and Equation (3.4):

max
i
P (i) ≤ dTV (P, Ptp(µ, σ

2)) +
1

2.3σ
≤ 4

σ
≤ 5.3

σ̂
.

To bound maxiQ(i), a standard Stirling approxima-
tion on the definition of Translated Poisson distribu-
tion shows that the largest probability of Ptp(µ̂, σ̂

2)
is at most 1.5/σ̂. Hence, `∞(P, Ptp(µ̂, σ̂

2)) ≤ 5.3
σ̂ .

Plugging the above bounds into Equation (3.7) with
Q = Ptp(µ̂, σ̂

2) shows the result.

Claims 4 and 3 show that the ratio of the squared
`2 distance between P and Ptp(µ̂, σ̂

2) in Case 3b
versus Case 3a can be made larger than any constant,
by choosing C ′ large enough. To distinguish between
the two cases we employ a tolerant `2 identity test,
based on an unbiased estimator Tn of the squared
`2 distance between P and Ptp(µ̂, σ̂

2) described in
Section 3.2.1. We will see that distinguishing between
Cases 3a and 3b boils down to showing that in the
latter case:

V ar(Tn)� E[Tn]2.

3.2.1 Unbiased `22 Estimator. Throughout this
section we assume that distributions are sampled in
the Poisson sampling framework, where the num-
ber of samples K drawn from a distribution are dis-
tributed as a Poisson random variable of some mean
k of our choice, instead of being a fixed number k of
our choice. This simplifies the variance computations
by inducing independence among the number of times
each symbol appears, as we discuss next. Due to the
sharp concentration of the Poisson distribution, the
number of samples we draw satisfies K ≤ 2k, with
probability at least 1− ( e4 )k.

Suppose K ∼ poi (k) samples XK
1 are generated

from a distribution P1 over [n]. Let Ki be the
random variable denoting the number of appearances
of symbol i. Then Ki is distributed according to

poi (λi), where λi
def
= kP1(i), independently of all

other Kj ’s. Let also λ′i
def
= kP2(i), and define:

Tn = Tn(XK
1 , P2) =

1

k2

∑
i∈[n]

[
(Ki − λ′i)2 −Ki

]
.

(3.8)

A straightforward, albeit somewhat tedious, compu-
tation involving Poisson moments shows that
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Lemma 7.

E[Tn] = `22(P1, P2) =
1

k2

n∑
i=1

(λi − λ′i)2

and

V ar(Tn) =
2

k4

n∑
i=1

[
λ2
i + 2λi(λi − λ′i)2

]
.

We use Lemma 7 with P1 = P and P2 = Ptp(µ̂, σ̂
2) to

bound the variance of Tn in terms of its squared ex-
pected value in Case 3b, where dTV (P, Ptp(µ̂, σ̂

2)) >
0.3ε.

Lemma 8. There is an absolute constant C1 such
that if

k ≥ C1

√
σ̂ · logt(1/ε)

ε2
,

and dTV (P, Ptp(µ̂, σ̂
2)) > 0.3ε, then

Var(Tn) <
1

20
E[Tn]2.

Proof. From Lemma 7:

V ar(Tn) =
2

k4

n∑
i=1

λ2
i +

4

k4

n∑
i=1

λi(λi − λ′i)2.(3.9)

We will show that each term on the right hand side
is less than E[Tn]2/40:

• The second term can be bounded by using the
following:

∑
i

λi(λ
′
i − λi)2

(a)

≤
[∑

i

λ2
i

] 1
2
[∑

i

(λ′i − λi)4
] 1

2

(b)

≤
[∑

i

λ2
i

] 1
2
[∑

i

(λ′i − λi)2
]
,

where (a) uses the Cauchy-Schwarz inequality
and (b) follows from the fact that, for positive
reals a1, . . . an, (

∑
i ai)

2 ≥
∑
a2
i . Therefore, to

bound the second term of the right hand side
of (3.9) by E[Tn]2/40 it suffices to show that

4
[∑

i

λ2
i

] 1
2
[∑

i

(λ′i−λi)2
]
<

1

40

[∑
i

(λ′i − λi)2
]2
,

which holds if[∑
i

λ2
i

]
<

1

1602

[∑
i

(λ′i − λi)2
]2
.(3.10)

• To bound the first term of the right hand side
of (3.9) by E[Tn]2/40 it suffices to show that[∑

i

λ2
i

]
<

1

80

[∑
i

(λ′i − λi)2
]2
.(3.11)

Note that (3.10) is stronger than (3.11). Therefore,
we only prove (3.10). Recall, from the proof of
Claim 4, that maxi Ptp(µ̂, σ̂

2)(i) ≤ 1.5
σ̂ . Using λ′i =

kPtp(µ̂, σ̂
2)(i) and

∑
λi = k,∑

i

(λ′i − λi)2 >
∑
i

λ2
i − 2

∑
i

λiλ
′
i

≥
∑
i

λ2
i −

3k

σ̂

∑
i

λi

=
∑
i

λ2
i −

3k2

σ̂
,

and hence ∑
i

(λ′i − λi)2 +
3k2

σ̂
>
∑
i

λ2
i .

Let y
def
=
∑
i(λ
′
i − λi)2. It suffices to show that

1

1602
y2 > y +

3k2

σ̂
,

which holds if the following conditions are satisfied:

y > 2 · 1602 and y2 > 6 · 1602 k2

σ̂ . By Claim 3,

y =
∑
i

(λ′i − λi)2 >
k2cε2

σ̂
√

logt(1/ε)
,

so the conditions hold as long as:

k ≥ C1

√
σ̂ · logt(1/ε)

ε2
,

and C1 is a large enough constant.

3.2.2 Finishing the Heavy Case. Recall that
the ratio of the squared `2 distance between P
and Ptp(µ̂, σ̂

2) in Case 3b versus Case 3a can be
made larger than any constant, by choosing C ′ large
enough. This follows from Claims 3 and 4. Let
us choose C ′ so that this ratio is > 100. Now let
us draw K ∼ poi (k) samples from the unknown

distribution P , where k ≥ C1

√
σ̂·logt(1/ε)

ε2 and C1 is
determined by Lemma 8, and compute Tn using (3.8)
with P1 = P and P2 = Ptp(µ̂, σ̂

2).
By Lemma 7, E[Tn] = `22(P, Ptp(µ̂, σ̂

2)). More-
over:
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• In Case 3a, by Markov’s Inequality, Tn does
not exceed 10 times its expected value with
probability at least 0.9.

• In Case 3b, from Chebychev’s Inequality and
Lemma 8 it follows that

Prob

(
|Tn − E[Tn]| > E[Tn]√

2

)
<

1

10
.

It follows that we can distinguish between the two
cases with probability at least 0.9 by appropriately
thresholding Tn. One possible value for the threshold
is one quarter of the bound of Claim 3. This is the
threshold used in Algorithm 2. This concludes the
proof of correctness of the heavy case algorithm.

3.3 Correctness and Sample Complexity of
Overall Algorithm. We have argued the correct-
ness of our algorithm conditioning on various events.
The overall probability of correctness is at least
0.992 · 0.9 ≥ 0.75. Indeed, one 0.99 factor accounts
for the success of Theorem 3, if P ∈ PBDn. If the al-
gorithm continues in the sparse case, the second 0.99
factor accounts for the success of the Simple Toler-
ant Identity Test, and we don’t need to pay the
factor of 0.9. If the algorithm continues in the heavy
case, the second 0.99 factor accounts for the success of
Lemma 1, if P ∈ PBDn, and the 0.9 factor accounts
for the success of the `2 test. (In this analysis, we
have assumed that we use fresh samples, each time
our algorithm needs samples from P .) Clearly, run-
ning the algorithm O(log(1/δ)) times and outputting
the majority of answers drives the probability of er-
ror down to any desired δ, at a cost of a factor of
O(log(1/δ)) in the overall sample complexity.

Let us now bound the sample complexity of
our algorithm. It is easy to see that the ex-
pected number of samples is as desired, namely:

O

(
n1/4
√

logt(1/ε)

ε2 + logt2.5(1/ε)
ε6

)
times a factor of

O(log 1/δ) from repeating O(log 1/δ) times. (It is
easy to convert this to a worst-case bound on the sam-
ple complexity, by adding an extra check to our algo-
rithm that aborts computation whenever K ≥ Ω(k).)

4 Lower Bound

We now show that any algorithm for PbdTesting
requires Ω(n1/4/ε2) samples, in the spirit of [Pan04,
ADJ+12].

Our lower bound will be based on constructing
two classes of distributions P ′ and Q′ such that

(a) P ′ consists of the single distribution P0
def
=

Binomial(n, 1/2).

(b) a uniformly chosen Q from Q′ satisfies
dTV (Q,PBDn) > ε with probability > 0.99.

(c) any algorithm that succeeds in distinguishing P0

from a uniformly chosen distribution from Q′
with probability > 0.6 requires ≥ c · n1/4/ε2

samples, for an absolute constant c > 0.

Suppose kmin is the least number of samples
required for PbdTesting with success probability
> 2/3. We show that if the conditions above are
satisfied then

kmin ≥ c · n1/4/ε2.

The argument is straight-forward as we can use the
PbdTesting algorithm with kmin samples to distin-
guish P0 from a uniformly chosen Q ∈ Q′, by just
checking whether Q ∈ PBDn or dTV (Q,PBDn) > ε.
The success probability of the algorithm is at least
2/3 · 0.99 > 0.6. Indeed, by (b) a uniformly chosen
distribution from Q′ is at least ε away from PBDn
with probability > 0.99, and the PbdTesting al-
gorithm succeeds with probability > 2/3 on those
distributions. Along with (c) this proves the lower
bound on kmin.

We now construct Q′. Since P0 is
Binomial(n, 1/2),

P0(i) =

(
n

i

)(
1

2

)n
,

and P0(i) = P0(n− i).
Without loss of generality assume n is even. For

each of the 2n/2 vectors z0z1 . . . zn/2−1 ∈ {−1, 1}n/2,
define a distribution Q over {0, 1, . . . , n} as follows,
where c is an absolute constant specified later.

Q(i) =


(1− cεzi)P0(i) if i < n/2,

P0(n/2) if i = n/2,

(1 + cεzn−i)P0(i) otherwise.

The class Q′ is the collection of these 2n/2 distribu-
tions. We proceed to prove (b) and (c).

Proof of Item (b): We need to prove that a uni-
formly picked distribution in Q′ is ε−far from PBDn
with probability > 0.99. Since Poisson Binomials are
log-concave, and hence unimodal, it will suffice to
show that in fact distributions in Q′ are ε−far from
all unimodal distributions. The intuition for this is
that when a distribution is picked at random from
Q′ it is equally likely to be above P0 or under P0 at
any point i of its support. Since P0 is a well behaved
function, namely it varies smoothly around its mean,
we expect then that typical distributions in Q′ with
have a lot of modes.
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We say that a distribution Q ∈ Q′ has a mode at
i if

Q(i−1) < Q(i) > Q(i+1) or Q(i−1) > Q(i) < Q(i+1).

We consider i ∈ Il
def
= [n/2 − 4

√
n, n/2 + 4

√
n].

Then by Lemma 2 for P0,

P0(Il) ≥ 1− 2e−8 > 0.99.

Note that for i ∈ Il,

P0(i+ 1)

P0(i)
=
n− i
i+ 1

∈
[
1− 18√

n
, 1 +

18√
n

]
.(4.12)

We need the following simple result to show that
most distributions in Q′ are ε−far from all unimodal
distributions.

Claim 5. Suppose a1 ≥ a2 and b1 ≤ b2, then

|a1 − b1|+ |a2 − b2| ≥ |a1 − a2|

Proof. By the triangle inequality,

|a1 − b1|+ |b2 − a2| ≥ |a1 − a2 + b2 − b1| ≥ a1 − a2.

Using a1 ≥ a2 proves the result.

Consider any unimodal distribution R over [n].
Suppose its unique mode is at j. Suppose j≥n/2
(the other possibility is treated symmetrically) and
R is increasing until j. Then for Q ∈ Q′, let
Il 3 i < j be such that Q(i) = P0(i) · (1 + c · ε)
and Q(i + 1) = P0(i + 1) · (1 − c · ε). If c > 200 and
ε > 100/

√
n, then by (4.12), Q(i + 1) < Q(i) (for

large enough n), and therefore

|Q(i+ 1)−R(i+ 1)|+ |Q(i)−R(i)|
≥Q(i)−Q(i+ 1)

=P0(i) · (1 + c · ε)− P0(i+ 1) · (1− c · ε)
≥P0(i) · cε.

This can be used to lower bound the `1 distance
from a typical distribution Q ∈ Q′ to any unimodal
distribution. Simple Chernoff bounds show that
a randomly chosen string of length Θ(

√
n) over

{+1,−1} has Θ(
√
n) occurrences of +1-1 and -

1+1 in consecutive locations with high probability.
Moreover, note that in the interval Il, P0(i) =
Θ(1/

√
n). Using this along with the bound above

shows that taking c large enough proves that a
random distribution in Q′ is ε−far from all unimodal
distributions with high probability.

Proof of Item (c): We consider the distribution
obtained by picking a distribution uniformly from Q′

and generating K = poi (k) samples from it. (By the
concentration of the Poisson distribution, it suffices
to prove a lower bound w.r.t. the mean k of the
Poisson.) Let Q̄k denote the distribution over poi (k)
length samples thus generated. Since a distribution
is chosen at random, the zi’s are independent of each
other. Therefore, Ki, the number of occurrences of
symbol i is independent of all Kj ’s except j = n− i.
Using this we get the following decomposition

Q̄k(K0 = k0, . . . ,Kn = kn)

=

n/2∏
i=0

Q̄k(Ki = ki,Kn−i = kn−i).

Now Ki and Kn−i are generated either by poi
(
λ−i
)
,

where λ−i
def
= k(1− cε)P0(i), or by poi

(
λ+
i

)
, where

λ+
i

def
= k(1 + cε)P0(i) with equal probability. There-

fore:

Q̄k(Ki = ki,Kn−i = kn−i)

=
1

2
[poi(λ+

i , ki)poi(λ−i , kn−i) + poi(λ−i , ki)poi(λ+
i , kn−i)]

=
1

2

e−2kP0(i)

ki!kn−i!
(kP0(i))ki+kn−i ·

(4.13)

[
(1 + cε)ki(1− cε)kn−i + (1− cε)ki(1 + cε)kn−i)

]
.

Let P k0 denote distribution over poi (k) samples from
the Binomial P0. By independence of multiplicities,

P k0 (K1 = k1, . . . ,Kn = kn)

=
n∏
i=1

poi(kP0(i), ki)

=
e−kP0(i)

ki!
(kP0(i))ki .

Our objective is to bound dTV (P k0 , Q̄
k). We use the

following.

Lemma 9. ([DL01]) For any distributions P and Q

2dTV (P,Q)2 ≤ logEQ
[
Q

P

]
.

Proof. By Pinsker’s Inequality [CT06], and concavity
of logarithms,

2dTV (P,Q)2 ≤ KL(Q,P ) = EQ
[
log

Q

P

]
≤ log

[
EQ

Q

P

]
.
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We consider the ratio of Q̄k to P k0 , and obtain

Q̄k(K0 = k0, . . . ,Kn = kn)

P k0 (K0 = k0, . . . ,Kn = kn)

=

n
2−1∏
i=0

Q̄k(Ki = ki,Kn−i = kn−i)

P k0 (Ki = ki)P k0 (Kn−i = kn−i)

=

n
2−1∏
i=0

(1 + cε)ki(1− cε)kn−i + (1− cε)ki(1 + cε)kn−i

2

where we used (4.13). We can use this now to
calculate the following expectation

EQ̄k
[
Q̄k

P k0

]

=

n/2−1∏
i=0

 ∑
ki≥0,kn−i≥0

Q̄k(Ki = ki,Kn−i = kn−i)·

1

2

(
(1+cε)ki(1−cε)kn−i+(1−cε)ki(1+cε)kn−i

)]
.

For X ∼ poi (λ), elementary calculus shows that

E[aX ] = eλ(a−1).

Combining with (4.13), and using P0(i) = P0(n− i),
the above expression simplifies to

EQ̄k
[
Q̄k

P k0

]

=

n/2−1∏
i=0

1

2

[
ecεk(1+cε)P0(i)e−cεk(1−cε)P0(i)

+e−cεk(1+cε)P0(i)ecεk(1−cε)P0(i)
]

=

n/2−1∏
i=0

1

2

[
e2c2ε2kP0(i) + e−2c2ε2kP0(i)

]
≤e2c4ε4k2

∑n/2−1
i=0 P0(i)2 ,

where the last step uses, ex + e−x ≤ 2ex
2/2. Using

Stirling’s approximation, we get:

n/2−1∑
i=0

P0(i)2 ≤ max
i
P0(i) ≤ P0

(n
2

)
=

(
n
n
2

)
1

2n
≤ 1√

n
.

Therefore,

dTV (P k0 , Q̄
k)2 ≤ c4ε4k2

√
n

.

Unless k = Ω(n1/4/ε2), there is no test to
distinguish a distribution picked uniformly from Q′
versus P0. This proves item (c).
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[DL01] Luc Devroye and Gábor Lugosi. Combinatorial
methods in density estimation. Springer, 2001. 9

[FOS05] Jon Feldman, Ryan O’Donnell, and Rocco A.
Servedio. Learning mixtures of product distributions
over discrete domains. In FOCS, pages 501–510,
2005. 1

[GR00] Oded Goldreich and Dana Ron. On testing
expansion in bounded-degree graphs. Electronic
Colloquium on Computational Complexity (ECCC),
7(20), 2000. 1

1839 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

05
/0

5/
15

 to
 1

37
.1

10
.8

4.
11

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



[Lev] Kirill Levchenko. Chernoff bound.
http://cseweb.ucsd.edu/klevchen/techniques/chernoff.pdf.
2

[MU05] Michael Mitzenmacher and Eli Upfal. Probability
and computing: Randomized algorithms and proba-
bilistic analysis. Cambridge University Press, 2005.
2

[MV10] Ankur Moitra and Gregory Valiant. Settling the
polynomial learnability of mixtures of gaussians. In
FOCS, pages 93–102, 2010. 1

[Pan04] Liam Paninski. Variational minimax estimation
of discrete distributions under kl loss. In NIPS, 2004.
4

[Pan08] Liam Paninski. A coincidence-based test for
uniformity given very sparsely sampled discrete
data. IEEE Transactions on Information Theory,
54(10):4750–4755, 2008. 1, 1, 1.1

[Rol07] Adrian Rollin. Translated poisson approximation
using exchangeable pair couplings. The Annals of
Applied Probability, 17(5/6):1596–1614, 10 2007. 5,
2, 4

[VV11] Gregory Valiant and Paul Valiant. Estimating
the unseen: an n/log(n)-sample estimator for en-
tropy and support size, shown optimal via new clts.
In STOC. ACM, 2011. 1, 1.1

[VV14] Gregory Valiant and Paul Valiant. An automatic
inequality prover and instance optimal identity test-
ing. FOCS, 2014. (document), 1, 1.1

Algorithm 1: Simple Tolerant Identity

Test

Input: Known Q over finite set A of
cardinality |A| = m, ε > 0, and
independent samples X1, , . . . ,Xk

from unknown P
Output: Close, if dTV (P,Q) ≤ ε/10, and far,

if dTV (P,Q) > 2ε/5
P̂ ← empirical distribution of Xk

1 ;

if dTV (P̂ , Q) < 2.5ε/10 then
output close;

else
output far;

end

Algorithm 2: Testing PBDs

Input: Independent samples from unknown
P over [n], ε, δ > 0

Output: With probability ≥ 0.75, output
Yes PBD, if P ∈ PBDn, and No
PBD, if dTV (P,PBDn) > ε.

Using Õ(1/ε2) samples, run the algorithm of
[DDS12] with accuracy ε/10 to obtain
Ppbd ∈ PBDn;

if σ(Ppbd)2 < C·logt41/ε
ε8 then

Find an interval I of length
O(logt2.5(1/ε)/ε4) such that
Ppbd(I) ≥ 1− ε/5;
Run Simple Tolerant Identity Test to
compare P and Ppbd on I, using

k = O
(

logt2.5(1/ε)
ε6

)
samples;

if Simple Tolerant Identity test

outputs close then
output Yes PBD;

else
output No PBD;

end

else
Use O(n1/4/ε2) samples to estimate the
mean, µ̂, and variance, σ̂2, of P ;
Calculate an estimate
d̂TV (Ptp(µ̂, σ̂

2), Ppbd) of
dTV (Ptp(µ̂, σ̂

2), Ppbd) that is accurate to
within ±ε/5;

if d̂TV (Ptp(µ̂, σ̂
2), Ppbd) > ε/2 OR

σ̂2 > n/2 then
output No PBD;

end
Draw K ∼ poi (k) samples, where

k ≥ C1

√
σ̂·logt(1/ε)

ε2 and C1 is as
determined by Lemma 8;
Let Ki be the number of samples that
equal i;

if 1
k2

∑[
(Ki − kPtp(µ̂, σ̂2)(i))2 −Ki

]
<

0.25 · cε2

σ̂
√

logt(1/ε)
, where c is the constant

from Claim 3, then
output Yes PBD

else
output No PBD

end

end
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