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Abstract—Outlier detection is the problem of finding a few
different distributions in a set of mostly identical ones. Closeness
testing is the problem of deciding whether two distributions are
identical or different. We relate the two problems, construct a
sub-linear generalized closeness test for unequal sample lengths,
and use this result to derive a sub-linear universal outlier detector.
We also lower bound the sample complexity of both problems.

I. INTRODUCTION

Let p1, p2, . . . , pm be m unknown distributions such that
for some distribution p and δ > 0, pi = p for most i, and
||pi − p||1 ≥ δ for few outliers, where ||·||1 is the `1 distance
between distributions. A sample from these set of distributions
is an m-tuple X

def
= (X1, X2, . . . , Xm). Given i.i.d. samples

from p
def
= p1, p2, . . . , pm, we would like to determine which

are the outlier distributions.
Apart from the inherent theoretical interest to obtain good

algorithms, universal outlier detection has several useful ap-
plications in diverse fields such as sensor networks [1], fraud
detection [2], visual search in humans and animals [3], and target
tracking [4].

We first relate outlier detection to the problem of closeness
testing: given two sequences Xn1 , Y n2 , generated independently
from unknown distributions p and q, closeness test decides if
p = q or p 6= q. Closeness testing is also known as two-sample
problem or homogeneity testing [5].

For both the problems, similar to previous works, we focus
on distributions pi’s being discrete distributions over the same
k symbols. Classical approaches for such a problem are to
use tools such as likelihood ratio test (LRT) or generalized
likelihood ratio test (GLRT) [6]. These tools are typically
studied in the asymptotic regime where the number of samples
tend to infinity or more specifically number of samples is
� k. Here in the asymptotic regime the objective is to show
that the algorithms achieve the optimal error exponent. While
the asymptotic approach characterizes the performance as the
number of samples increases and often lends itself to elegant
and simplistic tests, in many applications k is large and the
number of samples is < k and the asymptotics do not to kick
in. Owing to this reason, in the recent years many researchers
have focused on algorithms for the non-asymptotic regime where
the number of samples is limited and < k. Here rather than the
error exponent, the objective is to design algorithms with good
sample complexities [7]. Statistical problems such as probability
estimation, closeness testing, and classification have received
wide attention in this regime in the recent years see, [7–9] (and
references there in). For outlier detection, we develop the first

algorithm whose sample complexity is sublinear in k, i.e., our
outlier detector need not even see most of the symbols from
most of the distributions.

II. RELATED WORK

A. Universal outlier detection

Universal outlier detection was first studied by [10, 11]. They
considered two scenarios depending on whether p is known or
unknown and proposed a universal test motivated by GLRT.
They studied error exponents and in particular whether the error
probability decays exponentially in the number of samples, also
called as exponential consistency. If p is known, they proved that
their test achieves the optimal error exponent. If p is unknown,
they showed that their test is universally exponentially consistent
and moreover if m → ∞, the error exponent converges to the
optimal error exponent. These works assumed that the number of
outliers were known. The assumption on number of outliers were
removed in [12], where they showed that as long as the number
of outliers is > 0, their test achieves universal exponential
consistency and furthermore the assumption that number of
outliers is > 0 is critical. In our work we focus on the case
when p is unknown and the number of outliers is unknown
beforehand.

As stated before, instead of studying the error exponent in
the asymptotic regime, we consider the problem in the sample-
limited regime where the number of samples < k.

B. Closeness testing

We now discuss recent results on closeness testing in the non-
asymptotic regime. We refer readers to [5] (and references there
in) for results in the asymptotic regime. Over the last decade,
numerous researchers have studied closeness testing when both
the sequences have same length i.e., n1 = n2. We extend the
sublinear closeness tests to handle sequences of unequal lengths
and call it generalized closeness testing. When n1 = n2, [7]
showed that closeness testing in `1 distance requires sub-linear
number of samples. They derived an algorithm that distinguishes
pairs of identical distributions from pairs with `1 distance ≥ δ

with error probability ε using n1 = n2 = O
(
k2/3 log k

δ4 log 1
ε

)
samples. They also showed a lower bound of Ω

(
k2/3

δ2/3

)
samples

for error probability 1/3. [13] removed the logarithmic factors
and found the optimal-sample complexity upto constants when
n1 = n2. Closeness testing restricted to a sub-class of dis-
tributions such as monotone, unimodal, or multi-modal were



considered in [14] and they found optimal sample complexities
upto logarithmic factors.

[8, 15] showed that if the length of sequences are same i.e.,
n1 = n2 = n , then the sample complexity of closeness testing
is similar to that of classification: where given two training
sequences Xn, Y n from two unknown distributions and a test
sequence Zn, one asks which of the two underlying distributions
generated Zn. They constructed tests with sample complexity
O(n

3/2
∗ ), where n∗ is the number of samples required by

the optimal label-invariant test with prior information about
distributions. They also showed that no test can achieve a sample
complexity of O(n

7/6
∗ ) universally over all pairs of distributions.

[9] considered classification when all the probabilities are
Θ
(
1
k

)
, and showed that if the `1 distance between the two

underlying distributions is > 0, then comparing `2 distance
between the empirical frequencies of Xn and Zn to those of
Y n and Zn results in error probability strictly less than 1

2 with
n = O(

√
k) samples.

III. NOTATION AND MATHEMATICAL MODEL

Without loss of generality we assume each pi is distributed
over [k]

def
= 1, 2, . . . k and the probability of symbol j under

distribution p is denoted by p(j). For outlier detection, the set of
all distributions is denoted by p def

= p1, p2, . . . , pm. We use µ(j)
to denote the multiplicity, the number of occurances of symbol
j. The empirical estimate of a symbol is denoted by p̂(j) and is
p̂(j) = µ(j)

n . We use ||p− q||1 , ||p− q||2 , ||p− q||∞ to denote
`1, `2 and `∞ distance between p and q respectively. T denotes
closeness tests, and D denotes outlier detector. E[·] and Var(·)
denote the expectation and variance respectively. We use Xn to
denote a sequence of length n and X∗ to denote sequences of
all lengths. If we have multiple collection of distributions, we
use p1, p2. . . . to differentiate between them. We use poi(λ) to
denote a Poisson random variable with mean λ.

We now define closeness testing and outlier detection. From
now on unless specified, all distributions are over [k].

Closeness testing: Let Pδ(k)
def
= {(p, q) : p =

q or ||p− q||1 ≥ δ}, i.e., Pδ(k) contains pairs of distributions
over [k] that are same or have `1 distance ≥ δ. For an underlying
pair (p, q) ∈ Pδ , let Xn1 ∼ p, Y n2 ∼ q be the two test
sequences. A closeness test is a mapping T : [k]∗ × [k]∗ →
{same, diff}, where T (x∗, y∗) indicates whether x∗ and
y∗ are believed to be generated by the same or by different
distributions. The error probability of T is

max
(p,q)∈Pδ(k)

{
Pr (T (Xn1 , Y n2) = same) if p 6= q,

Pr (T (Xn1 , Y n2) = diff) else.

Outlier detection: Let typical distribution be the one that
is same for most indices in [m]. For p, let p be the typical
distribution and S(p) be the indices of the outlier distributions.
Let Pδ(m, k, b) be

{p : ∃S, p s.t. |S| ≤ b, pi = p for i /∈ S & ||p− pi||1 ≥ δ else}.

Note that for the typical distribution to be unique, we need the
number of outliers is |S(p)| ≤ b < m/2. An outlier detector is
a mapping D :

(
[k]m

)∗ → 2[m], that observes m-tuple samples

and outputs the set indices of the outlier distributions. The error
probability of a outlier detector D is

max
p∈Pδ(m,k,b)

Pr
(
D(X

n
) 6= S(p)

)
.

Similar to [7] and subsequent works on sublinear algorithms for
property testing, we assume that our algorithm knows δ. Note
that without this assumption, for the error probability to go to
0, one needs to know the exact number of outliers [12].

IV. RESULTS

A simple result from [16] states that if we repeat an algorithm
with new set of samples each time and take the majority output,
then the error probability decreases.

Lemma 1 ([16]): Consider an algorithm that outputs cor-
rectly with probability ≥ 2/3. Repeat it 12 log 1

ε times inde-
pendently and output the majority. The new algorithm has error
≤ ε.
Therefore, we restrict our attention to error probability 1/3.
The sample complexity for error ε is 12 log 1

ε times the sample
complexity for error 1/3.

A. Upper bounds

We first propose a closeness test for unequal length samples.
Theorem 2: Let n1 ≥ n2, n2

√
n1 ≥ 512k log3/2 k

δ3 , and n2 ≥
128

√
k log k
δ2 . If the number of samples from p is ≥ 4n1 and the

number of samples from q is ≥ 2n2, then for all (p, q) ∈ Pδ(k)
CLOSENESS TEST has error ≤ 1/4.
We then use closeness test as a sub-routine for outlier detection
and prove the following. The constant 12 in the corollary is for
convenience. In general, our methods work for |S(p)| < m/2.

Corollary 3: If

n ≥ max

(
k2/3b1/3 log k

δ2m1/3
,

√
k log k

δ2

)
6000 log 4m,

then ∀p ∈ Pδ(k,m, b) such that |S(p)| ≤ b ≤ m/12, OUTLIER
DETECTOR with ≥ n samples has error ≤ 1/3.

B. Lower bounds

We show the following lower bounds for closeness testing
and outlier detection.

Theorem 4: Let n1 ≥ n2. There is a constant c such that if
n2 ≤ c ·

√
k
δ2 or n1

√
n2 ≤ c · kδ2 , then for any closeness test has

error ≥ 11/24 for some (p, q) ∈ Pδ(k).
By a simple reduction, we relate closeness testing to outlier
detection and show the following lower bound.

Corollary 5: There is a constant c such that if the number
of samples n ≤ c · max

(√
k
δ2 ,
(

k
mδ2

)2/3)
, then every outlier

detector makes an error of ≥ 11/24 for some p ∈ Pδ(k,m, b).

V. ANCILLARY RESULTS

A. k = 2

We are interested in the regime when the alphabet size k is
large. However, as a toy example we first consider the case
when k = 2, i.e., the underlying distributions are Bernoulli
random variables B(·). More precisely, most distributions are
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Bernoulli random variables with same p and and the remaining
distributions have parameters at least δ/2 away from p. We
outline a proof to show that the sample complexity for this
problem is Θ

(
logm
δ2

)
.

Upper bound: A simple application of Chernoff bound and
union bound shows that for some constant c if n ≥ c · logmδ2 ,
then with probability ≥ 2/3, for all i, the empirical estimate
p̂i satisfies |p̂i − pi| < δ/8. Therefore the empirical estimates
of typical distributions are < δ/4 from each other. Moreover,
the estimates from each outlier is at a distance > δ/4 from
them. Therefore if we cluster points together such that maximum
distance within each cluster is ≤ δ/4, then the S(p) would be
the set of indices that are not in the largest cluster. A simple
Single linkage [17] algorithm can be used for clustering.

Lower bound: We show that no test can detect all possi-
ble outliers with error ≤ 1/2. Let δ ≤ 1/10. Consider the
set of collection of distributions p1 = (p11, p

1
2, . . . p

1
m), p2 =

(p21, p
2
2, . . . p

2
m), . . . pm = (pm1 , p

m
2 , . . . p

m
m) where for j 6= i,

pij = B(1/2) and pii = B(1/2 + δ/2). If a test can detect the
outlier using a certain number of samples, then given samples
from one of p1, p2, . . . , pm, it find the underlying p. We show
that no algorithm can differentiate between p1, p2, . . . , pm using
o
(
logm
δ2

)
samples thus showing a lower bound on outlier detec-

tion. thus showing that there is no test By triangle inequality, The
`1 distance between any two distributions is ≥ δ. KL divergence
between any two distributions is ≤ 4δ2. Therefore by Fano’s
inequality [6] for any outlier detector, the error probability with
n samples is ≥ 1− 4nδ2+log 2

logm . For error probability to be small,
the required number of samples is Ω

(
logm
δ2

)
.

While we have found the optimal sample complexity for
k = 2, the same result does not hold for general k. A
simple extension of the above result yields an upper bound of
O(k logm

δ2 ) samples. However, as we show later a suitable choice
of test yields a much better sample complexity.

B. Poisson sampling
When a distribution p is sampled n times, the symbol mul-

tiplicities are mutually dependent, for example, they add to n.
A standard approach to overcoming the dependence, e.g., [16],
samples the distribution a random number of times: poi(n), the
Poisson distribution with mean n. Some useful properties of
Poisson sampling include: (i) A symbol of probability p appears
poi(np) times. (ii) The numbers of times different symbols
appear are independent of each other. (iii) For any fixed n0,
conditioned on the length poi(n) ≥ n0, the distribution of the
first n0 elements is identical to sampling p i.i.d. exactly n0 times.
We use poi(n) to denote a Poisson random variable with mean
n.

For closeness testing, we assume that the number of samples
from distributions to be poi(2n1) and poi(n2) respectively.
We simulate poi(2n1) samples from 4n1 samples by taking
first poi(2n1) samples from 4n1 samples. Similarly we sim-
ulate poi(n2) from 2n2 samples. An additional error occurs if
poi(2n1) ≥ 4n1 or poi(n2) ≥ 2n2. We relate errors of closeness
tests with poi(2n1),poi(n2) samples to 4n1, 2n2 samples in the
next lemma and it follows from tail bounds on Poisson random
variables.

Lemma 6: Consider a closeness test with error ≤ 1/8 for
poi(2n1),poi(n2) samples. Then there is an algorithm that has
error ≤ 1/8 + 2e−min(2n1,n2)/4 with 4n1, 2n2 samples.

VI. SUB-LINEAR CLOSENESS TEST

Algorithm CLOSENESS TEST

Let n1 ≥ n2, t = log k + 2, and c = 32t2

δ2

Input: Xpoi(2n1), Y poi(n2), δ, and k
Output: same or diff

1) Use first poi(n1) samples of X to divide the symbols
into sets: B = {i : c

n2
≤ p̂(i) or c

n2
≤ q̂(i)}, M = {i :

c
n1
≤ p̂(i) < c

n2
}, and S = {i : p̂(i) < c

n1
}

2) Divide M into Mj for 0 ≤ j ≤ logdn1

n2
e such that i ∈Mj

if p̂(i) ∈
[
c2j

n1
, c2

j+1

n1

)
3) Discard these samples and use the remaining samples to

test:
• C1:

∑
i∈B |p̂(i)− q̂(i)| ≤

δ
2t

• C2: ∀j, L2(Xpoi(n1), Y poi(n2),Mj) ≤ δ2c2j

2n1

• C3: L2(Xpoi(n1), Y poi(n2), S) ≤ δ2

2k

4) If C1, C2, and C3 are satisfied output same, else diff

A. Outline

Without loss of generality we assume n1 ≥ n2. One of the
natural tests would be to estimate the empirical `1 distance
||p̂− q̂||1 and check if it is larger than δ/2 or not. However
if probabilities are smaller than 1/n2, then such a test has large
variance and would not work. So we divide the probabilities
into three sets and conduct different tests on each of the sets.

CLOSENESS TEST uses (poi(2n1),poi(n2)) samples. Using
the first poi(n1) samples of X , it first divides the symbols in
to big B, medium M , and small S depending on the values of
p̂(i). We further divide M into Mjs such that p̂(i) within each
Mj differ at most by a factor of 2. To preserve independence,
we discard these samples. Note that there are at most log n1 +2
sets totally.

If
∑
i |p(i) − q(i)| ≥ δ, then for at least one of these sets

A,
∑
i∈A |p(i) − q(i)| ≥

δ
logn1+2 . Hence, using the remaining

samples, we test on each of the sets B,Mj , S.
Since B contains symbols with high empirical probabilities,

symbols in it are likely to have high probabilities and therefore
we can use empirical `1 test.

Similary, symbols in sets M and S are likely to have small
probabilities. We show that if the symbols have small probabil-
ities, then `2 distance can be estimated efficiently. The estimate
accuracy improves if the symbols have similar probabilities.
Therefore, we using first poi(n1) samples from X we further
divide M into Mjs to ensure better estimation. Note that M
plays an useful role only if i.e., n1 � n2.

For Mjs and S we use the `2 test statistic (an estimate for `2
distance), which is defined as follows:

L2(Xn1 , Y n2 , A)
def
=
∑
i∈A

(p̂(i)− q̂(i))2 − p̂(i)

n1
− q̂(i)

n2
,

where p̂(i) = µ(i,Xn1 )
n1

and q̂(i) = µ(i,Y n2 )
n2

.
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To preserve a good read, most of our proof uses just Cheby-
shev’s inequalities or Markov inequality, instead of stronger
Chernoff-type bounds. We believe few factors of log k can be
removed with stronger bounds. For simplicity of the proof the
algorithm assumes that k ≥ n1 log2 k. If n1 log2 k ≥ k, then
substituting n1 in the equations by min(k log−2 k, n1) gives the
algorithm.

B. Proof of Theorem 2

We first bound the variances and expected values of few of
the test statistics in CLOSENESS TEST.

Lemma 7: Let µ1 ∼ poi(n1α) and µ2 ∼ poi(n2β). If Z =(
µ1

n1
− µ2

n2

)2
− µ1

n2
1
− µ2

n2
2 , then E[Z] = (α− β)2 and

Var (Z) = 2

(
α

n1
+

β

n2

)2

+ 4

(
α

n1
+

β

n2

)
(α− β)2.

Proof: The expectation follows from the fact that µ1, µ2 are
independent random variables with means n1α and n2β and
have E[µ2

1] = n21α
2 + n1α and E[µ2

2] = n2
2β2 + n2β. The

variance calculation uses third and fourth moments of Poisson
random variables. Proof is deferred to the full paper.

Next, we show similar results for `1-test statistic.
Lemma 8: Given poi(n1) samples from p and poi(n2) sam-

ples from q, for every set A

0 ≤ E
[∑
i∈A
|p̂(i)− q̂(i)| − |p(i)− q(i)|

]
≤

√
|A|
n1

+
|A|
n2
,

and
Var(

∑
i∈A
|p̂(i)− q̂(i)|) ≤ 1

n1
+

1

n2
.

Proof: The lower bound on the expectation follows from
Jensen’s inequality and the fact that | · | is a convex function.
For the upper bound, observe that(∑

i∈A
E [|p̂(i)− q̂(i)| − |p(i)− q(i)|]

)2

(a)

≤ |A|
∑
i∈A

E
[
(p̂(i)− q̂(i))2 − (p(i)− q(i))2

]
(b)

≤ |A|
∑
i∈A

(
p(i)

n1
+
q(i)

n2

)
≤ |A|

(
1

n1
+

1

n2

)
.

(a) follows from the Cauchy-Schwartz inequality and the lower
bound on expectation. Lemma 7 implies (b). For the variance,
since the multiplicities are independent

Var(
∑
i∈A
|p̂(i)− q̂(i)|) =

∑
i∈A

Var(|p̂(i)− q̂(i)|).

A calculation similar to that of the upper bound for expectation
can be used to show that for each i, Var(|p̂(i)− q̂(i)|) = p(i)

n1
+

q(i)
n2
. Summing over the symbols yields the result.

The last auxiliary lemma helps us bound p(i) in terms of p̂(i)
within sets S or Mj . It is a simple application of Chernoff-bound
and we omit the proof to conserve space.

Lemma 9: Let t = log k + 2. Given poi(n) samples from p,
let A be the set of symbols such that p̂(i) ≤ c′/n. Then

Pr

(
max
i∈A

p(i) ≥ 4c′ + 8t

n

)
≤ 1

16t
.

We now have all the tools to prove Theorem 2. We break it into
two lemmas, we first show that if p = q, then the algorithm
returns same with probability ≥ 7/8.

Lemma 10: Let t = log k+ 2, c = 32t2δ−2, and n1 ≥ n2. If
p = q, n2

√
n1 ≥ 64k

√
tc

δ2 , and n2 ≥ 64
√
kt
δ2 , then CLOSENESS

TEST returns same with probability ≥ 7/8.
Proof: Let C2j denote the condition C2 restricted to Mj .

As stated before that proof assumes n1 log2 k ≤ k, otherwise
replacing n1 by k log−2 k, yields the results. Observe that there
are at most 2+logdn1

n2
e ≤ 2+log k = t sets, and hence at most

t conditions. We show that each condition fails with probability
≤ 1/(8t), thus showing that the total error probability ≤ 1/8.
C1: Notice that |B| ≤ n2

c . Therefore by Lemma 8 and
Chebyshev’s inequality with probability ≥ 1− 1/(8t),∑
i∈B
|p̂(i)− q̂(i)| ≤

√
2|B|
n2

+

√
16t

n2
≤
√

2

c
+

√
16t

n2
≤ δ

2t
.

The last inequality follows from using the fact that n2 � t3

δ2

and substituting the value of c = 32t2

δ2 .
C2j : Note that

L2(Xpoi(n1), Y poi(n2),Mj)
(a)

≤
√

128t

n2

√
max
i∈Mj

p(i)

(b)

≤
√

128t

n2

√
4c2j+1 + 8t

n1

(c)

≤ δ2c2j

2n1
.

By Lemma 7 and Chebyshev’s inequality, with probability
1 − 1/(16t) (a) follows. By Lemma 9, with probability ≥
1 − 1/(16t) (b) follows. (c) follows from the fact that n2 ≥
64
√
n1

√
t

δ2
√
c

. By the union bound, the total error is ≤ 1/(8t).
C3: Similar to the previous step, by Lemmas 7 and 9, with

probability ≥ 1− 1/(8t),

L2(Xpoi(n1), Y poi(n2), S) ≤
√

128t

n2

√
max
i∈S

p(i)

≤
√

128t

n2

√
4c+ 8t

n1
≤ δ2

2k
.

The last inequality follows from the fact that n2
√
n1 ≥ 64k

√
tc

δ2 .
The two conditions on sample complexity are n2 ≥ 64

√
n1

√
t

δ2
√
c

and n2
√
n1 ≥ 64k

√
tc

δ2 . It can be shown that under the assumption
that n1 log2 k ≤ k, this is equivalent to the conditions n2 ≥
64
√
tk

δ2 and n2
√
n1 ≥ 64k

√
tc

δ2 .
Similarly it can be shown that if ||p− q|| ≥ δ, then the

CLOSENESS TEST returns diff with probability ≥ 7/8.
Lemma 11: Let t = log k + 2, c = 32t2δ−2, and n1 ≥ n2.

If ||p− q||1 ≥ δ, n2
√
n1 ≥ 64k

√
c

δ2 , and n2 ≥ 64
√
k
δ2 , then

CLOSENESS TEST returns diff with probability ≥ 7/8.
The proof is similar to that of Lemma 10 and is omitted to
conserve space. Theorem 2 follows directly from Lemmas 6, 10,
and 11.
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VII. SUBLINEAR OUTLIER DETECTOR

Our outlier detector is a simple extension of CLOSENESS
TEST. Since there are at most b ≤ m/12 outliers, if we choose
b m12bc indices at random, then with probability ≥ 1 − 1/12 all
of them are from the typical distribution p and we can combine
samples from these indices to obtain nb m12bc samples from p.

We run the closeness test described in the previous section
between this set of samples from p and each of the remaining
indices repeatedly (as in Lemma 1) to get error probability ≤
1/4m for each index. Probability that our outlier detector fails
is the sum of probabilities that we chose an index from S(p)
in the first step or closeness tests in one of the m coordinates
fails. By the union bound it is ≤ 1/12 +m/4m = 1/3.

The sample complexity follows from substituting n1 =
nb m12bc and n2 = n in Theorem 2. Note that for each coordinate,
we have to repeat the closeness test 12 log 4m times to get the
error probability to 1/4m, and hence we get an addition factor
of 12 log 4m in sample complexity.

VIII. LOWER BOUNDS

A. Proof of Theorem 4
Without loss of generality let n1 ≥ n2. We first show that

there is some constant c such that, if n2 = c ·
√
k/δ2), then there

is no closeness-test that has error ≤ 1/3 for all (p, q) ∈ Pδ(k).
Suppose n1 = ∞. This condition is equivalent to knowing the
distribution corresponding to n1, i.e., p. The problem reduces to
finding if Y n2 is generated by p or a distribution δ-away from
p. This problem has been well studied as identity testing, and
a lower bound of Ω(

√
k/δ2) is known [18]. Therefore unless

n2 ≥ Ω(
√
k/δ2), there is no closeness test with error ≤ 1/3 for

all (p, q) ∈ Pδ(k).
We now show that if n1

√
n2 ≤ O

(
k
δ2

)
, then are pairs

of distributions that cannot be differentiated by any test.
The proof of this lower bound is similar to that of [13].
Let m+(a, b) =

∑k
i=1(n1p(i))

a(n2p(i))
b and m−(a, b) =∑k

i=1(n1p(i))
a(n2q(i))

b. The second part of the proof uses the
following variant of a result from [19].

Lemma 12: Without loss of generality let n1 ≥ n2. If
max(p(i), q(i)) ≤ 1

1000n1
, and∑

a,b:a+b≥2

|m+(a, b)−m−(a, b)|
ba2 !cb b2c!

√
1 + max(m+(a, b),m−(a, b))

<
1

360
,

then there is no closeness test that differentiates between the
two with 2n1, 2n2 samples with error ≤ 11/24.
We now construct distributions p and q of support k+1000n1 ≤
1001k. Since we are interested in the order, the constant 1001
does not affect our calculation. Let p(i) = q(i) = 1−δ

1000n1
for

1 ≤ i ≤ 1000n1, let p(i) = 2δ
k for 1000n1+1 ≤ i ≤ 1000n1+ k

2

and q(i) = 2δ
k for k

2 + 1000n1 + 1 ≤ i ≤ 1000n1 + k.
First note that if min(a, b) = 0, then m+(a, b) = m−(a, b) as

the distributions are permutations of each other. For min(a, b) ≥
1, a simple calculation shows that m+(a, b) − m−(a, b) =

kna1n2
b
(
2δ
k

)a+b
and m−(a, b) = 1000n1

(
(1−δ)a+bna1n2

b

(1000n1)a+b

)
.

Since
∑
a,b:a+b≥2

1
b a2 !cb

b
2 c!

is a convergent series and the
|m+(a,b)−m−(a,b)|√

m−(a,b)
falls exponentially with a, b, it is sufficient to

show that the first term |m+(1,1)−m−(1,1)|√
m−(1,1)

≤ 1
1000 . Computing

we get

|m+(1, 1)−m−(1, 1)|√
m−(1, 1)

≤ 4

√
n1n2δ

2
√

2000n1
k

.

Therefore there is a constant c such that if n1
√
n2 ≤ c · kδ2 , then

no closeness test can distinguish between p and q.
Thus we have shown that there is a constant c such that if

n2 ≤ c ·
√
k
δ2 or n1

√
n2 ≤ c · kδ2 , then for any closeness test has

error ≥ 11/24 for some (p, q) ∈ Pδ(k).

B. Proof of Corollary 5
The proof follows from a simple reduction. Suppose we are

given that p2 = p3 = . . . = pm = p, then outlier detection
reduces to test if p1 = p or ||p1 − p|| ≥ δ, which is the problem
of closeness testing. The number of samples we have from p is
the sum of samples from all coordinates 2, 3, . . . ,m, i.e., (m−
1)n and the number of samples from p1 is n. We have shown
a lower bound for closeness testing in Theorem 4. Substituting
n1 = (m− 1)n and n2 = n results in the corollary.
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