
Manipulation with Diverse Actions

by

Jennifer L. Barry

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 16, 2013

Certified by. .
Leslie Pack Kaelbling

Panasonic Professor of Computer Science and Engineering
Thesis Supervisor

Certified by. .
Tomás Lozano-Pérez

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses

2

Manipulation with Diverse Actions
by

Jennifer L. Barry

Submitted to the Department of Electrical Engineering and Computer Science
on May 16, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We define the Diverse Action Manipulation (DAMA) problem in which we are given
a mobile robot, a set of movable objects, and a set of diverse, possibly non-prehensile
manipulation actions, and the objective is to find a sequence of actions that moves
each of the objects to a goal configuration. We argue that classic sampling-based
techniques cannot solve DAMA problems because of the need to move through lower-
dimensional subspaces, and we give two sampling-based algorithms for this problem,
DARRT and DARRTConnect, based on the RRT and RRTConnect algorithms
respectively.

We also show that the DAMA problem can be framed as a multi-modal planning
problem [14] and describe a hierarchical algorithm,DARRTH(Connect), that takes
advantage of this multi-modal nature. This algorithm finds a high-level sequence of
transfer manipulations by planning a path only for objects in the domain. It then
attempts to achieve each transfer manipulation individually.

We present experimental results for all four algorithms for a set of nine problems
in two complicated mobile manipulation domains. We show that the bi-directional
algorithms are faster than their forward search counterparts and that the hierarchical
algorithms perform better than the monolithic searches. We also formally define the
conditions under which DARRT is exponentially convergent and prove that these
conditions hold for two example manipulation domains, one of which includes non-
prehensile manipulation.

Thesis Supervisor: Leslie Pack Kaelbling
Title: Panasonic Professor of Computer Science and Engineering

Thesis Supervisor: Tomás Lozano-Pérez
Title: Professor of Computer Science and Engineering

Acknowledgments

I must first thank my thesis advisors, Leslie Kaelbling and Tomás Lozano-Pérez, for
their support and guidance. I am in awe of their ability to listen to half-baked,
incoherently explained ideas (in my case, usually accompanied by a diagram of some
circles connected with lines) and ask precisely the right question. I cannot count
the times I spent hours wrestling with a problem only to have Tomás or Leslie solve
it in under five minutes. They were also unfailingly kind and good humored. In
six years, I think Tomás made at least one joke and Leslie said something cheerful
and encouraging in every single meeting I had with them. They were the ones to
realize that I was unhappy with my previous research direction and suggest I switch
to robotics. I cannot imagine better advisors.

My thesis committee members, David Hsu and Nicholas Roy, gave me some great
comments on my work. Nick met with me several times over the last two years to
discuss ongoing research and interesting new directions. David read the drafts of this
thesis in detail and helped me correct the math.

I am also grateful to everyone at Willow Garage, both for the use of and help with
the PR2 robot and for my internship there. At one point, we had a problem with our
robot that we could not fix on-site but were up against a deadline. They shipped the
robot across the country, fixed it, and shipped it back in a total of ten days. Kaijen
Hsiao mentored me during my internship and then continued watching out for me
even after I left. She has been both a role model and a good friend.

CSAIL and particularly the LIS group were incredibly supportive. Teresa Cataldo
made sure that every presentation or trip I took with the group went smoothly and
included food. The discussions with my lab- and office-mates, both past and present,
ranged from technical to ridiculous, but always provided new insight. I would espe-
cially like to thank Ariel Anders, Patrick Barragan, Sam Davies, Jared Glover, Martin
Levihn, Owen MacIndoe, Alejandro Perez, and Lawson Wong who shared office space
with me and commented only rarely on my propensity to talk to myself. Finale Doshi,
George Konidaris, and Stefanie Tellex answered my endless questions about the pro-
cess of obtaining a Ph.D. Huan Liu and Garratt Gallagher braved my impressive
record of breaking hardware by introducing me to the PR2. Dylan Hadfield-Menell
went above and beyond the call of a labmate’s duty in reading and correcting the
proof in this thesis. Annie Holladay worked with me as a UROP for over two years
and doubled my productivity. She even put up with having MIT news record her
experiments.

My family and friends always knew when to push me to leave the office and when to
leave me alone and let me work. Many of them, including my awesome in-laws Doug,
Karen, and Em German, even got up at the crack of dawn to watch the broadcast
of my thesis defense. Michelle Tomasik dragged me to the gym at least twice a week
for five years. Lily Cohen and Marci Foster-Molina were always willing to listen and
never more than a phone call or a plane, train, or automobile ride away.

My brother Andy has been a graduate student in CSAIL with me for the past
three years. He was always willing to take a break to go running or grab some candy
and listen to whatever was on my mind. The foundation for Chapter 3 of this thesis

was laid during a three-and-a-half mile run with him by the Charles River. He also
entirely changed my thesis and very likely my career by yelling at me that if I thought
robots were so cool I should just take the PR2 class already. The thing I will miss
most about my time here is working only a floor away from my little brother.

My mother Sue and father Dan have always not just encouraged me to follow
my dreams, but provided living examples of how to do that. From math puzzles in
the car and books read aloud to dishes of swamp water and broken Mettler balances
(sorry about that, Mom), they spent my childhood showing me that learning is fun.
If I began to forget that while working on my thesis, my dad would find some crazy
new robot for me to program. My mom has been a source of inspiration, constantly
reminding me that we must examine every dimension of a problem.

My husband David German was my port in a storm. He soothed me through bad
times and laughed with me through good ones. He complained remarkably little about
how infrequently I was home during the last two years, but just brought me dinner
at work and gently reminded me that sleep and food are important to productivity.
Many times I have come back to my desk after a meeting and found a vase full of
flowers, and I have rarely wanted for hot chocolate. I cannot imagine the last six
years without him.

Lastly, I would like to thank Juan and Cindy for just being there.

Contents

1 Introduction 13
1.1 Problem Overview . 13
1.2 Approach . 14
1.3 Thesis Organization . 16

2 Background 17
2.1 Configuration Space and Sampling-Based Search 17
2.2 Rapidly-exploring Random Tree Algorithm 20

2.2.1 General Conditions for Exponential Convergence 22
2.2.2 Exponential Convergence in Holonomic Spaces 25
2.2.3 The RRT Algorithm in Non-Holonomic Spaces 36
2.2.4 RRTConnect Algorithm . 37

2.3 Related Work . 40
2.3.1 Non-Prehensile Manipulation 40
2.3.2 Re-Grasping . 41
2.3.3 Navigation Among Movable Obstacles 43
2.3.4 Sampling and Constrained Motion Planning 44
2.3.5 Multi-Modal Planning . 46

3 Sampling-Based Algorithms for Diverse Action Manipulation 49
3.1 Diverse Action Manipulation Problem 49
3.2 Diverse Action Rapidly-exploring Random Tree Algorithm 54

3.2.1 Motivating Example . 54
3.2.2 Overview . 59
3.2.3 Distance Function . 59
3.2.4 Empty Space Planner . 61
3.2.5 Projection Functions . 64

3.3 DARRTConnect Algorithm . 66
3.3.1 Motivation . 66
3.3.2 Algorithm . 67

4 A Hierarchical Approach to Diverse Action Manipulation 71
4.1 Manipulation as Multi-Modal Planning 71

4.1.1 MM-DAMA Problem . 72
4.1.2 Explicit Multi-Modal Planning 73

7

4.2 DARRTH Algorithm . 75
4.2.1 Finding an Object Path . 77
4.2.2 Manipulation Primitive Subgoals 78
4.2.3 DARRTH(Connect) Algorithm 79

4.3 DARRT as a Multi-Modal Planner 80

5 Diverse Action Manipulation Experiments 81
5.1 Plate Domain . 81

5.1.1 Implementation Details . 81
5.1.2 Results . 87

5.2 Tool Use Domain . 89
5.2.1 Implementation Details . 90
5.2.2 Results . 98

5.3 Discussion . 100
5.3.1 Problem Difficulty . 100
5.3.2 Forward vs Bi-Directional Planners 100
5.3.3 Flat vs Hierarchical Planners 101
5.3.4 Reset Times . 103

6 Exponential Convergence of the Search Algorithms 105
6.1 Exponential Convergence of the DARRT Algorithm 105

6.1.1 DARRT Input . 106
6.1.2 DARRT Analysis . 109

6.2 Examples . 117
6.2.1 Preliminaries: Notation and Cross Product Spaces 117
6.2.2 Point Rigid Transfer . 119
6.2.3 Disc Pushing . 132
6.2.4 In Defense of Projection Functions 157

6.3 Exponential Convergence of DARRTH(Connect) 157

7 Conclusion 161
7.1 Summary of Contributions . 161
7.2 Future Work . 162

A Proofs 167

B Tables 173
B.1 Plate Domain . 174
B.2 Tool Use Domain . 186

8

List of Figures

2.1 A round robot translating in the plane has a two dimensional configu-
ration space . 18

2.2 A robot arm with seven degrees of freedom 19
2.3 The steps of the RRT algorithm. 21
2.4 An example of a situation in which the RRT algorithm is not complete 23
2.5 An illustration of the argument for exponential convergence 24
2.6 A holonomic point robot navigating in a two dimensional plane . . . 26
2.7 The free space must be open for completeness of the RRT algorithm . 27
2.8 Radius of locality . 29
2.9 The necessity of a local path . 30
2.10 A local path . 31
2.11 An empty space planner for a car . 36
2.12 RRTConnect is more efficient than RRT 39
2.13 A one-dimensional pushing world . 43
2.14 Round robot pushing a round object 45
2.15 An example of a problem with continuous modes 47

3.1 An example world in which a robot manipulates a plate. 51
3.2 Holonomic extension fails in manipulation domains 55
3.3 Empty space planner example . 56
3.4 Failure of the RRT for manipulation 57
3.5 Projection functions . 58
3.6 DARRT distance function . 61
3.7 Primitives each define a set of constraints 64
3.8 Narrow passages in manipulation . 67

4.1 We assume the plate can only be grasped at a single position on the
table. 73

4.2 The mode adjacency graph in the Plate World. 74

5.1 Worlds 0-2 in the Plate Domain . 82
5.2 Worlds 3-4 in the Plate Domain . 83
5.3 An example execution in the Plate Domain 88
5.4 Using the spatula to lift the CD in the Tool Use Domain 90
5.5 Worlds 0-1 in the Tool Use Domain 91
5.6 Worlds 2-3 in the Tool Use Domain 92

9

5.7 The use-spatula primitive . 96
5.8 An example execution in the Tool Use Domain 99

6.1 Tubes should be cross products of subspace tubes, not a union of open
balls . 111

6.2 The empty space planner for a point robot and object 120
6.3 The local path for an object when only the robot is moving 123
6.4 The empty space planner for a robot pushing a disc 133
6.5 The local path for a point robot pushing a disc 139
6.6 Projection functions are necessary . 158

7.1 A poor choice for an empty space planner that avoids contact with the
object . 164

10

List of Tables

5.1 Results in the Plate Domain . 87
5.2 Subgoal times in the Plate Domain 89
5.3 Results in the Tool Use Domain . 98
5.4 Subgoal times in the Tool Use Domain 98

B.1 Full results for DARRT and DARRTConnect in Plate Domain
Worlds 0-2. 174

B.2 Full results for DARRT and DARRTConnect in Plate Domain
Worlds 3-4. 175

B.3 Full results for DARRTH in Plate Domain World 0 176
B.4 Full results for DARRTHConnect in Plate Domain World 0 177
B.5 Full results for DARRTH in Plate Domain World 1 178
B.6 Full results for DARRTHConnect in Plate Domain World 1 179
B.7 Full results for DARRTH in Plate Domain World 2 180
B.8 Full results for DARRTHConnect in Plate Domain World 2 181
B.9 Full results for DARRTH in Plate Domain World 3 182
B.10 Full results for DARRTHConnect in Plate Domain World 3 183
B.11 Full results for DARRTH in Plate Domain World 4 184
B.12 Full results for DARRTHConnect in Plate Domain World 4 185
B.13 Full results for DARRT and DARRTConnect in Tool Use Domain

Worlds 0-1. 186
B.14 Full results for DARRT and DARRTConnect in Tool Use Domain

Worlds 2-3. 187
B.15 Full results for DARRTH in Tool Use Domain World 0 188
B.16 Full results for DARRTHConnect in Tool Use Domain World 0 . . 189
B.17 Full results for DARRTH in Tool Use Domain World 1 190
B.18 Full results for DARRTHConnect in Tool Use Domain World 1 . . 191
B.19 Full results for DARRTH in Tool Use Domain World 2 192
B.20 Full results for DARRTHConnect in Tool Use Domain World 2 . . 193
B.21 Full results for DARRTH in Tool Use Domain World 3 194
B.22 Full results for DARRTHConnect in Tool Use Domain World 3 . . 195

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

Chapter 1

Introduction

Consider a personal robot performing chores in a home. This robot will manipulate
many different types of objects in many different ways. To put a book away in a
bookcase, it must consider the placement of the book when planning to pick it up. A
bad choice of grasp could prevent the robot from being able to slide the book onto
the shelf. To clear a table, the robot needs to manipulate plates and platters that are
too flat for grippers to slide under. If the robot cannot reach a toy under a couch, it
could find a yardstick to use as a tool to sweep the toy to a position where it can be
grasped.

These are all examples of manipulation with diverse actions. The robot has many
actions available to it (grasp, push, place, sweep, etc) and it must sequence them to
accomplish a complicated task. The different actions all constrain the robot differ-
ently, but later actions in the sequence may depend upon earlier actions. For instance,
in order to grasp a plate, the robot may first need to slide it to the edge of the table.

As humans, we use many different types of manipulation to accomplish daily tasks.
We routinely slide flat books on tables, sweep papers into piles, and use common ob-
jects as tools. Robots, with much less dexterous hands than humans, should use these
strategies even more often. However, these actions are also fraught with challenges in
control, perception, and planning. Here, we focus on planning; we outline methods
for understanding which actions are appropriate in which circumstances and how to
sequence them.

1.1 Problem Overview

We study manipulation problems in which we have a robot manipulating some num-
ber of objects. In this context, “manipulation” means any interaction with the object:
the robot might be pushing, pulling, shoving, or throwing the object. We usually as-
sume that the task is to use the robot to re-position some of the objects.

We are interested in problems with three characteristics:

• Diverse actions: There are multiple actions available to the robot for manipu-
lating objects.

13

• Multiple actions per object: In order to accomplish the task, the robot must
manipulate the same object more than once.

• Non-prehensile actions: There are some manipulation actions in which the robot
is not rigidly attached to the object.

The problem of pushing a plate to the edge of a table to grasp it fulfills these
characteristics. There are diverse manipulation actions (push and grasp), the robot
must push and grasp the same object, and push is a non-prehensile action. We use
variations of this problem as examples throughout the thesis.

Another problem of interest is tool use. A robot should be able to use objects in the
environment as tools to manipulate other objects. For instance, in the introduction
we talked about a robot sweeping a toy out from under a couch using a yardstick as
a tool. A robot could use tweezers to pick up a small object or push two objects by
using one object to push the other. Tool use is almost always non-prehensile because
there are at least two objects, and the robot is rigidly attached to at most one of
them.

There is a large body of work on the dynamics and control of non-prehensile actions
like pushing, pulling, throwing, and striking [7, 9, 18, 26, 32, 42]. Previous work in
non-prehensile manipulation tends to focus, however, on a single manipulation action
rather than on finding sequences of manipulation actions. Additionally, many of these
actions introduce uncertainty into the execution because the robot does not control
all of the degrees of freedom of the object it is manipulating. Here, we assume that
we can use the techniques discussed in prior work to treat the outcomes of actions
as deterministic. Incorporating planning for uncertain actions is beyond the scope of
this thesis.

The navigation among movable obstacles problem [36, 46, 47, 48, 52] and the re-
grasping task [30, 43] both require using multiple manipulation actions, and the focus
is on properly sequencing these actions. However, these approaches both assume the
manipulated object is rigidly attached to the robot and leverage that in planning.
Our algorithm can plan for both prehensile and non-prehensile actions.

Other frameworks for robotic motion planning have not focused explicitly on the
type of manipulation, but have taken a more general approach of finding a framework
for motion planning. Berenson and Srinivasa [4, 5] developed a planner for a broad set
of end-effector constraints while Hauser and Ng-Throw-Hing [14, 15] discuss planning
in non-expansive spaces. Our work builds on these ideas, but can solve problems out
of the scope of both of these algorithms.

We expand upon this discussion of related work in Chapter 2.

1.2 Approach

The types of problems described in Section 1.1 are challenging because they require
making long plans in which early choices in the plan affect later ones. For instance,
when placing a book on a shelf, the book must be grasped in such a way that the

14

gripper does not keep the book from sitting stably. If we break the problem into sub-
problems, we have to be careful to carry these constraints through all sub-problems.

Additionally, the space in which manipulation occurs is continuous and high-
dimensional. For instance, in our experiments, we plan for a robot with a seven
degree of freedom arm mounted on a three degree of freedom base. Objects are
usually rigid with six degrees of freedom. This gives us a continuous search space
with at least sixteen dimensions.

Moreover, manipulation usually requires specific relative configurations of the
robot and object. For instance, the robot may need to be grasping or pushing an
object. These configurations occur in low-dimensional subspaces of the full sixteen
dimensional search space. Thus we must search a very large space for a plan while
also ensuring that we find configurations in these small, constrained subspaces.

We approach the problem using sampling-based search. This type of search starts
from a given initial position or “configuration” of the robot and objects and samples
a new configuration for the robot and objects randomly from the space of all possible
configurations. It then tries to connect the initial configuration to the new config-
uration, truncating the path at the first collision with an obstacle. The algorithm
repeats these steps until a path to the goal is found.

When connecting one configuration to another, we must be careful to use a path
that the robot can actually execute. In some mobile manipulation domains, this
path can be a straight line. For instance, a disc-shaped robot translating in the two-
dimensional plane can move along any line in the plane. In our case, however, we have
objects in the domain. A “straight line” path in these domains would require that
the objects move on their own, which is not possible. To plan paths in these domains,
we use an “empty space planner”. This planner plans a path from one configuration
of the robot and objects to another that is executable by the robot. For instance, to
move the robot and a graspable object, it would plan a path to move the robot to
the object, pick the object up, move the object to its new position, place it there,
and then finally move the robot to the robot’s new position. This planner operates
in “empty space” because it ignores any collisions with obstacles.

In Chapter 2, we give an overview of sampling-based planning and in Chapter 3
we discuss two sampling-based algorithms for manipulation. The first, based on the
Rapidly-exploring Random Tree (RRT) algorithm [28], starts from an initial configu-
ration and extends in random directions using the empty space planner until it reaches
a goal configuration. The second, based on the RRTConnect algorithm [23], runs
two searches, one forwards from the initial configuration and one backwards from the
goal configurations and attempts to meet them in the middle.

These sampling-based searches are “flat” in that they search in the entire space
without attempting to break it into smaller spaces. However, spaces for manipula-
tion have a structure that can be used to approach the problem hierarchically. For
instance, in most manipulation problems the first step is to move the robot somewhere
near the object it is manipulating. Ideally, we would define this as a sub-problem and
solve it separately from planning, for instance, how to push the object. We show that
the specific structure of the manipulation space is multi-modal [14]. A multi-modal
problem has a set of (usually) low-dimensional subspaces or “modes” amongst which

15

the system must transition. In our case, the modes correspond to different ways in
which the robot can manipulate the object. For instance, the robot pushing an ob-
ject is one mode while the robot grasping the object is a different mode. We use this
structure to define a good set of sub-problems for a manipulation problem and then
solve each sub-problem separately using the flat planners.

1.3 Thesis Organization

In the next chapter, we give a more thorough overview of the work related to this
thesis. We also present sampling-based planning in detail and discuss the algorithms
most related to our work.

In Chapter 3, we formally define a manipulation problem and present the Di-
verse Action Rapidly-exploring Random Tree (DARRT) and DARRTConnect
sampling-based algorithms for solving these problems.

In Chapter 4, we show how to take advantage of the structure of manipulation
problems to create hierarchical algorithms, DARRTH and DARRTHConnect,
that use the sampling-based planners as subroutines. In this chapter, we also present
a characterization of general manipulation problems as multi-modal problems.

In Chapter 5, we give results for DARRT, DARRTConnect, DARRTH, and
DARRTHConnect on a set of problems in two complicated mobile manipulation
domains. We show that DARRTConnect is usually much more efficient than
DARRT and that the hierarchical planners usually perform better than their flat
counterparts.

In Chapter 6, we present the theoretical results for the sampling-based and hi-
erarchical planners. We show that under certain assumptions, both planners should
converge quickly to a solution.

This thesis makes three contributions:

1. We formally define the diverse action manipulation problem (Chapter 3) and
show that all diverse action manipulation problems have a multi-modal struc-
ture (Chapter 4).

2. We present two sampling-based algorithms (Chapter 3) and two hierarchical
algorithms (Chapter 4) for the diverse action manipulation problem, and show
that they are able to plan in a variety of problems in two mobile manipulation
domains (Chapter 5).

3. We prove the exponential convergence of DARRT and DARRTH(Connect)
under a set of carefully stated assumptions and show there are at least two
manipulation domains that fulfill the assumptions for DARRT (Chapter 6).

16

Chapter 2

Background

In this chapter, we discuss the previous work upon which this thesis builds. We
begin by describing the space we search and then discussing common methods used
to search this space. We close with a review of the literature.

2.1 Configuration Space and Sampling-Based Search

In this thesis, we plan for robots manipulating objects. Planning a path for a robot
is usually done in the robot’s configuration space [29]. The configuration space is the
coordinate space in which assigning a value to every coordinate determines the loca-
tion of every point on the robot. This space has dimensionality equal to the number
of degrees of freedom of the robot and represents the robot as a point. The work
space is the space in which the robot and obstacles are defined. This is usually the
six dimensional space of translation along three axes, roll, pitch, and yaw. Obstacles
in the configuration space are configurations for the robot in which some point on the
robot would be in collision with some obstacle.

Consider, for instance, the round robot translating in the two dimensional plane
shown in Figure 2.1. The work space for this robot, shown in Figure 2.1a, is two
dimensional because we restrict the robot to the plane. In this work space there are a
number of obstacles with which the robot should not collide. Specifically, the robot’s
center must be at least a distance of the robot’s radius from any obstacle. This gives
us a set of points for the robot’s center in which the robot is not in collision with
an obstacle, the free space, and a set of points in which the robot is in collision with
an obstacle, the configuration space obstacle as shown in Figure 2.1b. We can plan a
path for the robot by planning a path for just its center point such that the center
point is never inside the configuration space obstacle. In other words, specifying only
the coordinates of the robot’s center point allows us to determine whether any point
on the robot is in collision. Therefore, the configuration space for the round robot is
also two dimensional as shown in Figure 2.1b.

Planning for the robot’s center is an example of planning in configuration space.
In the case of the round robot translating in the plane, the configuration space is
two dimensional because the robot has two degrees of freedom: it can translate in

17

(a) (b)

Figure 2.1: A round robot translating in the plane has a two dimensional configuration
space. (a) The work space of the robot. The robot is the round red disc while the
obstacles are shown as filled black rectangles. (b) The configuration space of the
robot. In this space, the robot is represented as a point (red) and the obstacles have
all been “grown” by the radius of the robot. The configuration space obstacle is
shown in gray superimposed on the work space obstacles.

the x direction or it can translate in the y direction. Therefore, in order to specify
the robot’s configuration, we have to specify two numbers: the coordinate of its
center point in x and the coordinate of its center point in y. In general, however,
the configuration space is of higher dimensionality than the work space. Assume we
make the robot triangular. Now it can translate in the plane or rotate. To specify
its configuration we need both its x and y coordinates and its angle. Therefore, the
configuration space is three dimensional. The position of every point on the robot
depends on its orientation as well as its position.

Now consider a robot arm with seven joints like the one shown in Figure 2.2. To
specify the position for all points on this arm, we have to specify an angle for every
joint. This configuration space is seven dimensional and transforming an obstacle
from the work space into the configuration space is hard. If we mount the arm on
a mobile base, the configuration space becomes ten dimensional: we must specify an
angle for every arm joint and an x and y coordinate and an angle for the base. If there
are obstacles, we must be able to decide for every ten dimensional point whether the
robot is in collision with an obstacle or not. In our case, we plan not only for a robot
arm on a mobile base, but also for some objects in the environment. These objects
are rigid bodies so they each have six degrees of freedom (x, y, z, roll, pitch, yaw).
This gives us configuration spaces with upwards of sixteen dimensions. Converting
a work space description of a set of obstacles into the configuration space obstacle
is not, in general, an easy problem and becomes harder as the dimensionality of the
configuration space increases. We omit the discussion here and refer the reader to

18

Figure 2.2: A robot arm with seven joints has seven degrees of freedom (wrist rotate,
wrist lift, elbow rotate, elbow lift, shoulder rotate, shoulder lift, shoulder pan) and a
seven dimensional configuration space.

LaValle [27].
The goal is to find collision free paths for the robot and objects. We do this by

searching in their configuration space, which is both continuous and high-dimensional.
It is difficult to plan in such spaces because it is hard to discretize them. The high
dimensionality of the space means the discretization is either extremely coarse or
extremely large. Therefore, we cannot use classic deterministic search techniques like
A* that require an a priori discretization of the space.

A common strategy is to adaptively discretize the space as we search. Sampling-
based search algorithms are one method for this. These are non-deterministic search
algorithms that try to explore the connectivity properties of the space. There are
many such algorithms [17, 20, 22, 23, 27, 28] and we discuss one in more detail
in Section 2.2, but in general they build a structure of configuration space points
connected by lines. At each iteration, they sample a new point from the space and
attempt to connect it to the current structure with a collision free path. The method
used for sampling and for connecting a point to the structure is specific to each
algorithm.

These methods have the advantage that it is not necessary to create a full descrip-
tion of a configuration space obstacle, but just a method for testing whether paths
are collision free. Additionally, they require no a priori discretization of the space.
However, these algorithms must also carefully balance exploration of the space with
exploitation of their current structure. For instance, given a point in free space, the
algorithm could try to grow paths from that point as far as possible until they hit an
obstacle. This is an “exploitation” of the structure because the algorithm is using its
current knowledge about the space to find a path. Once a path does hit an obstacle,
however, the algorithm must choose how to move around this obstacle. This cannot

19

Algorithm 2.1
Input: X, Configuration space; x0, Starting configuration; XG, Goal set; ρ, Distance
function; Extend, Extend function
Output: A path from x0 into XG.

RRT(X, x0, XG, ρ,Extend)

1 V0 ← {x0}, k ← 1
2 while Vk−1 ∩XG = ∅
3 x← uniformRandomConfiguration(X)
4 x′ ← argminv∈Vk−1

ρ(v, x)
5 Vk ← Vk−1 ∪ Extend(x′, x)
6 k ← k + 1
7 return ExtractPath(Vk−1)

be done without a method for exploring the space. If the algorithm spends too much
time on exploitation, it may be unable to move around complicated obstacles. If it
spends too much time on exploration, it may never find paths to points that are far
from its initial configuration.

The algorithms we discuss in this thesis are based on a particular sampling-based
algorithm, the Rapidly-exploring Random Tree (RRT) algorithm. In the next section,
we discuss this algorithm in detail.

2.2 Rapidly-exploring Random Tree Algorithm

The Rapidly-exploring Random Tree (RRT) algorithm [28] is one choice for the bal-
ance of exploration and exploitation in sampling-based search. The RRT algorithm
explores the space by moving in a random direction at each iteration. It exploits its
current structure by choosing the piece of the structure to expand greedily.

Pseudo-code for the RRT algorithm is shown in Algorithm 2.1 and an illustration
of the algorithm is shown in Figure 2.3. The input is a configuration space X,
a starting configuration x0, a non-zero measure goal set XG, a distance metric ρ,
and an extend function Extend(x′, x) : X × X → 2X . Extend(x′, x) returns a
collision free path from x′ towards x. For simplicity, we treat the Extend function
as returning a set of configurations although in practice there needs to be information
about the connectivity of these configurations to later recover the path. Additionally,
in most applications, the Extend function returns a finite set of configurations that
represent a discretization of some path. However, it is also possible for the Extend
function to return a representation of an infinite set of configurations. For instance,
in Section 2.2.2, the Extend function returns a line segment in configuration space.

The RRT algorithm works by building a tree that explores the space. It be-
gins with only the initial configuration in the tree (Figure 2.3a). It then samples a
configuration uniformly at random from the space (Figure 2.3b) and locates the con-

20

(a) (b)

(c) (d)

(e)

Figure 2.3: The steps of the RRT algorithm. The initial configuration is shown in
blue, the goal set is shown in green, and obstacles are black rectangles. (a) The
search begins with only the initial configuration (blue dot) in the tree. (b) A random
configuration (orange) is sampled from the space. (c) The nearest configuration in
the tree (red) to the sampled configuration (orange) is found. (d) This configuration
(red) is extended to the sampled configuration (orange). The extension (solid black
line) is truncated to the first obstacle added to the tree. (e) If these steps are repeated
an infinite number of times, we can guarantee a path (green solid line) to the goal
will be found.

figuration in the tree nearest this sample (Figure 2.3c). Note that if the sets returned
from Extend are infinite in size, there must be an analytical method for finding the
nearest configuration. For instance, in Section 2.2.2, Extend returns a line segment
in configuration space and we use Euclidean distance as the distance metric. We can
find the nearest configuration on a line segment to a given configuration analytically
in Euclidean space. Once the nearest configuration in the current tree is determined,
the RRT algorithm extends this configuration towards the sampled configuration us-

21

ing the Extend function (Figure 2.3d). If the set returned from Extend includes
a configuration in the goal set, the algorithm terminates and returns the path to the
goal set (Figure 2.3e).

With some restrictions on the extend and distance functions, we can guarantee
that after k iterations the probability that the algorithm has not added a configuration
in XG to the tree (provided XG has non-zero measure in X) is O(2−ak) for positive
constant a. We first provide a sketch of this argument in the general case and then
give a formal proof for a holonomic configuration space.

2.2.1 General Conditions for Exponential Convergence

In this section, we give an overview of the types of extend and distance functions
and configuration spaces for which the RRT algorithm is exponentially convergent.
Because our algorithm is based on the RRT algorithm, understanding these properties
at a high level is important.

We begin by formally defining two main properties of interest to us.

Definition 2.1 (Probabilistic Completeness): A sampling algorithm is proba-
bilistically complete if the probability that the algorithm returns a solution when one
exists approaches 1 as the number of samples approaches infinity.

Definition 2.2 (Exponential Convergence): A sampling algorithm converges
exponentially if the probability that the algorithm returns a solution when one exists
is 1−O(2−ak) after k samples for some positive constant a. Exponential convergence
implies probabilistic completeness.

The RRT algorithm is not necessarily either complete or exponentially convergent,
because these properties depend on the configuration space and the choice of the ex-
tend and distance functions. For example, the extend function Extend(x′, x) = {x′}
clearly leads to an incomplete algorithm. However, for any given configuration space,
extend function, and distance function, we can decide whether the RRT algorithm is
complete and exponentially convergent.

The main requirement on the configuration space is that there is no “important”
measure-zero set. Because the RRT algorithm samples the space uniformly at random,
there is zero probability that any configuration in a measure-zero set is sampled from
the space. Therefore, the RRT algorithm is incomplete if the path from start to
goal requires moving through some measure-zero set. For example, consider the
situation shown in Figure 2.4, in which the space is divided by an obstacle into two
halves connected by two “wormhole” configurations. If the robot is in either of these
configurations, it enters the wormhole and comes out in the other half of the space.
Because an obstacle divides the two halves of the space, the robot cannot reach the
other half in any other way. Assume the robot starts in the bottom half of the
space and that the goal set is in the top half of the space. A path from the initial
configuration into the goal set exists so a solution exists. However, there is zero

22

Figure 2.4: In this world, the round robot (red disc) moves in the plane. Obstacles
are filled black rectangles. The plane is divided in half by an obstacle; the only way
for the robot to move between the two halves of the plane is to enter the “wormhole”.
This wormhole can be entered at exactly two configurations in space. For instance,
the robot can move from its initial configuration in the bottom half of the space to
the goal region in the top half (filled green oval) using the path shown (blue dashed
line). However, an algorithm that samples uniformly at random from the space never
samples the wormhole (or a line that crosses the wormhole) and has zero probability
of finding a path like this. The problem is that the wormhole configurations have
very different reachability properties than any of the configurations near them.

probability that the RRT algorithm samples the wormhole configuration or even a
line that crosses the wormhole configuration because it is a zero-measure subset of the
two dimensional configuration space. Therefore, the RRT algorithm never returns a
solution to the problem shown in Figure 2.4, and is not complete is this space.

To avoid situations like the one shown in Figure 2.4, we put a condition on the
configuration space. The exact statement of this condition depends on the Extend
and distance functions, but it is usually the assumption that the space is open. Here
we give an intuition for why that condition is important. In Section 2.2.2, we state
it formally for the case in which the configuration space is Euclidean and Extend
returns a line segment.

We require that all configurations “act” like the configurations near them, where
near is defined by the distance function ρ. Let x ∈ X be a configuration in the space
and let B(x) be the set of configurations close to x. The exact definition of “act like”
depends on the configuration space and the Extend function, but, in essence, if the
robot is not in contact with any obstacles in configuration x then the robot should
also not be in contact with any obstacles in any configuration in B(x). Additionally,
if x can be extended to x′, all configurations in B(x) should be able to extend to all
configurations in B(x′).

Consider a collision free path in the space from some configuration xs ∈ X to

23

B(x0)
If a state in
here is in
the tree

Should be constant
probability of adding
a state in here

x1

x2 x3 x4 x5 x6 x7 x8 x9

x0
Path

Figure 2.5: This figure illustrates the main argument behind exponential convergence.
The path shown (thick black line) is a path that could be taken by a point robot
navigating in a two dimensional plane. Obstacles are shown as black rectangles. The
RRT algorithm converges exponentially if we can discretize the path as shown into a
sequence of configurations {x0, ..., x9} such that, if we have a configuration in the tree
in the open ball around xj, we have a constant probability (with respect to iteration
number) of adding a configuration in the open ball around xj+1.

some configuration xg ∈ X. Since all configurations close to any configuration are
interchangeable with their near neighbors, we can expand this path into a “tube” by
considering the configurations close to the path. As shown in Figure 2.8, every path
through this tube is a collision free path from B(xs) into B(xg). While the RRT
algorithm could not have found the single path from xs to xg (since this path is a
zero-measure set), it can find some path in the tube. Note that if there are infinitely
narrow passages in the space that prevent the expansion of every path in the space
into a tube, as shown in Figures 2.4 and 2.7, then the RRT algorithm is not complete
in this space.

The condition that all configurations act like their near neighbors is sufficient to
guarantee that there is some non-zero probability of sampling a set of configurations
that could be connected to form a path from a starting configuration to a configuration
in the goal set. More specifically, let there be a collision free path from xs ∈ X to
xg ∈ X. Then for some sequence of sets {B0, ..., Bm} with non-zero measures in X,
and for all i ∈ {0, ...,m}, all configurations in Bi−1 can be directly extended to all
configurations in Bi. Now if the algorithm samples a configuration in each Bi in order
and connects it to the configuration sampled in Bi−1, it finds a path into Bm, which
is the set of configurations near xg. This is shown in Figure 2.5. The probability of
sampling from each Bi in order is greater than zero.

However, while we can guarantee the algorithm can sample from each Bi in order,
there is no guarantee that the algorithm tries to extend the configuration sampled in
Bi−1 to the configuration sampled in Bi. When a configuration x is sampled from Bi,
the algorithm chooses to extend the configuration x′ in the tree nearest to x. This
configuration may not be in Bi−1 as shown in Figure 2.9. Thus we need another
condition that ensures that the greediness of the RRT algorithm does not preclude

24

exponential convergence: If a path exists from a configuration xs to a configuration
xg, then there must be a way to discretize this path {x0, ..., xn} such that if any
configuration near xj is in the tree and we sample a configuration near xj+1, then a
configuration near xj+1 is added to the tree. This is shown in Figure 2.5.

For exponential convergence, we require that the definition of “near” does not
depend on the size of the tree. In other words, if there is a configuration near xj

in the tree then there is a non-zero probability that we add a configuration near
xj+1 to the tree on the next iteration and this probability is independent of iteration.
The result is that at every iteration there is some constant chance that the tree
progresses along the path. The laws of probability give us that, as the number of
iterations increases, the probability that the tree has not progressed along the path
must decrease exponentially. We make this argument formally in Theorem 2.7.

In the next section we show how to prove exponential convergence for a specific
choice of configuration space, Extend function, and distance function.

2.2.2 Exponential Convergence in Holonomic Spaces

To ground the arguments we made in Section 2.2.1, we formally prove exponential
convergence of the RRT algorithm for a holonomic robot. For our purposes, a robot
is holonomic if it can execute any straight line path in its configuration space. For
instance, a round robot translating in the plane is holonomic because it can move
along any straight line path. A car, however, is non-holonomic because it cannot
move sideways.

Previously, Kuffner and LaValle [23] proved probabilistic completeness for the
RRT algorithm in holonomic spaces and Kavraki et al. [21] showed exponential con-
vergence for the related probabilistic roadmap algorithm. LaValle and Kuffner [28]
gave general conditions on exponential for the RRT algorithm. Here, we show that
the RRT algorithm in holonomic spaces fulfills these conditions and then use LaValle
and Kuffner’s proof to complete the proof of exponential convergence. We structure
the proof given here to be analogous to the proof for exponential convergence for
the DARRT algorithm that we give in Chapter 6. Throughout this section, we use
a point robot navigating in the plane as an example of a holonomic robot. This is
shown in Figure 2.6.

The proof we give in this section may also be useful in that it identifies the
constants that are important in the convergence rate of the algorithm.

We assume we are given the configuration space X and some subset Xfree ⊆ X
that represents the free space. Xfree is defined implicitly by a function, collision :
X → {True,False}, that tests if a configuration is in Xfree. A path is collision free
if and only if it is a continuous piecewise linear path contained entirely in Xfree. We
use the RRT algorithm to find collision free paths.

In holonomic spaces, two configurations are close to each other if the Euclidean
distance between them is small so we use Euclidean distance as our metric. (In this
case, this metric is also the distance the robot must travel between two configurations
in the absence of obstacles, but that is not the reason it is a reasonable choice for a
distance metric in the space.)

25

Point robot Goal set

Obstacles

Figure 2.6: A point robot navigating in a two dimensional plane. The robot point
is shown in red, its goal set in green, and obstacles as filled black rectangles. Xfree

is the set of points not contained in an obstacle or on the boundary of an obstacle
(Xfree is an open set). The robot can move instantaneously in any direction.

Algorithm 2.2
Input: x′, Configuration to extend from; x, Configuration to extend towards, colli-
sion: Function to check a configuration for collision
Output: The collision free part of the line segment from x′ to x.

ExtendHolonomic(x′, x)

1 for α ∈ [0, 1] // Often discretized in practice
2 if collision(x′ + α(x− x′))

// Line segment from x′ to α(x− x′) including x′ but not α(x− x′)
3 return Line

[

x′, α(x− x′)
)

4 return Line
[

x′, x
]

// Line segment from x′ to x including both endpoints

Given two configurations, x′, x ∈ X, we extend x′ towards x using a straight line
path from x′ to x. For notational simplicity, we treat x′ and x as vectors, writing the
point at fraction α along the line from x′ to x as x′ + α(x − x′). This straight line
path may not be collision free. The return from the Extend function is the straight
line path truncated to the first collision. This is shown in Algorithm 2.2.

For x′, x ∈ X, we let

π(x′, x) =
1
⋃

α=0

(x′ + α(x− x′)) (2.1)

be the set of configurations on the line segment from x′ to x. The set of configurations
a given configuration can reach with a straight line is the locally reachable set:

Definition 2.3 (Locally Reachable): For x′ ∈ X, the locally reachable set of

26

Figure 2.7: The gap between the two obstacles is exactly the width of the robot. If we
allow the robot to contact, but not overlap, the obstacles, there is a path (blue dashed
line) through free space from the starting configuration (red) to the goal configuration
(green). However, this path must include the line segment exactly in the middle of
the two obstacles. We have zero probability of sampling along this line. Therefore
the RRT algorithm cannot find a path and is incomplete in this space. The problem
is that the free space is not open because it includes points on the boundaries of the
obstacles. For a configuration x in free space in the gap, there is no δ > 0 with Bδ(x)
in the free space.

configurations from x′,

U(x′) =
{

x ∈ X
∣

∣π(x′, x) ⊆ Xfree

}

, (2.2)

is the set of configurations for which the straight line path from x′ is collision free.
Note that x ∈ ExtendHolonomic(x′, x) if and only if x ∈ U(x′).

Recall from Section 2.2.1 that we consider nearby configurations interchangeable.
The configurations “near” a configuration x are the ones within some small radius or
“ball” of x. The open ball of radius δ around x is

Bδ(x) =
{

x′ ∈ X
∣

∣ρ(x, x′) < δ
}

. (2.3)

Smaller balls are contained in larger balls:

Lemma 2.1: For all x ∈ X, for all ζ > 0, for all δ ≤ ζ, Bδ(x) ⊆ Bζ(x).

Proof: We have that

Bδ(x) =
{

x′ ∈ X
∣

∣ρ(x, x′) < δ
}

⊆
{

x′ ∈ X
∣

∣ρ(x, x′) < ζ
}

= Bζ(x). (2.4)

�

Now we need a way of ensuring that all configurations in Bδ(x) are interchangeable
with x for some δ. Certainly we must at least have that if x ∈ Xfree then for some
δ > 0, Bδ(x) ⊆ Xfree. This is not always the case. Figure 2.7 shows an example of

27

a free space where such a δ does not exist for every configuration. In order to prove
exponential convergence of the RRT algorithm in a holonomic space, we must assume
that such a δ exists:

Assumption 2.1: For all x ∈ Xfree, for some δ > 0, Bδ(x) ⊆ Xfree.

This is actually the assumption that Xfree is open. We state it in this way because
we make an analogous assumption about our configuration space when proving the
exponential convergence of the DARRT algorithm.

In the holonomic case, Assumption 2.1 is enough to ensure exponential conver-
gence because we have exactly defined the Extend and distance functions. When
proving the exponential convergence of the DARRT algorithm, we will need to make
assumptions about these functions as well.

As we have said, considering the configurations near a particular configuration as
interchangeable allows us to make a tube out of a single path:

Definition 2.4 (Tube): Let x′, x ∈ X. The tube of radius δ from x′ to x,

Tδ(x
′, x) =

⋃

y∈π(x′,x)

Bδ(y), (2.5)

is the set of configurations closer than δ to some configuration on the line from x′ to
x.

Just as larger balls contain smaller balls, larger tubes contain smaller tubes.

Lemma 2.2: For all x′, x ∈ X, for all ζ > 0, for all δ ≤ ζ, Tδ(x
′, x) ⊆ Tζ(x

′, x).
Proof:

Tδ(x
′, x) =

⋃

y∈π(x′,x)

Bδ(y) ⊆
⋃

y∈π(x′,x)

Bζ(y) = Tζ(x
′, x) (2.6)

using Lemma 2.1.
�

Now, because Xfree is open, we can expand any line in Xfree into a tube. We
define the maximum radius of this tube as the radius of locality. This is shown in
Figure 2.8.

Definition 2.5 (Radius of Locality): For all x′ ∈ Xfree, for all x ∈ U(x′),
η(x′, x) is the radius of locality from x′ to x if and only if Tη(x′,x)(x

′, x) ⊆ Xfree and
Tζ(x

′, x) 6⊂ Xfree for all ζ > η(x′, x).

Since we can create an open ball around every configuration that lies entirely in
free space, we have η(x′, x) > 0 for all x′ ∈ Xfree and x ∈ U(x):

Lemma 2.3: For all x′ ∈ Xfree and all x ∈ U(x′), η(x′, x) > 0.
Proof: By definition of U(x′), π(x′, x) ⊆ Xfree. For all y ∈ π(x′, x) let δy be the

28

Figure 2.8: Assume we have a point robot navigating in a two dimensional plane.
Obstacles are shown as filled black rectangles. If the robot starts at x′, it can reach
x with a single collision free line segment. The radius of locality, η(x′, x), between x′

and x is the shortest distance from that line segment to any obstacle. Because we can
draw an open ball around any configuration and guarantee that all configurations
within this ball are in free space, η(x′, x) > 0. This allows us to expand the line
segment into a convex tube (green solid line). All configurations in this tube are
collision free so any path through the tube is collision free. Specifically, if we draw
open balls (short dashed) around x′ and x of radius η(x′, x) then a straight line (long
dashed) from any configuration in the ball around x′ to any configuration in the ball
around x is collision free. Therefore any configuration in the ball around x′ can reach
any configuration in the ball around x with a single straight line segment. This allows
us to treat the configurations in the ball of radius η(x′, x) around x′ as interchangeable
with x′.

largest number such that Bδy(y) ⊆ Xfree. By Assumption 2.1, δy > 0 for all y.
Choose

δ = inf
y∈π(x′,x)

δy > 0. (2.7)

Then let

Tδ(x
′, x) =

⋃

y∈π(x′,x)

Bδ(y) (2.8)

⊆
⋃

y∈π(x′,x)

Bδy(y) (2.9)

⊆ Xfree (2.10)

using Lemma 2.1. Since η(x′, x) is the largest number with Tη(x′,x) ⊆ Xfree, we have
η(x′, x) ≥ δ > 0 by Lemma 2.2.

�

The eventual goal is to show that if any path from x′ to x exists, for some dis-
cretization {x0, ..., xm} and some δ, if a configuration in Bδ(xj) is in the tree, we can
guarantee a constant non-zero probability of adding a configuration in Bδ(xj+1) to

29

x' x
y' y z

ε

δ

Figure 2.9: Assume we have open balls of radius δ around x′ and x and that the
straight line path from x′ to x is collision free. We would like to be able to specify a
distance ǫ > 0 between x′ and x and a ball radius δ > 0 that ensures that if there is
a configuration y′ in the ball around x′ in the tree and we sample any configuration
y in the ball around x, y′ will be the closest configuration in the tree to y. However,
such an ǫ and δ cannot be chosen without reference to the current tree. As shown
here, if we choose y near the perimeter of the ball around x, there is always some
configuration z just outside the perimeter that is closer to y than any configuration in
the ball around x′. This configuration might be in the tree and, if there is an obstacle
between z and y, then z is not be able to extend all the way to y. Thus we cannot
guarantee that y is added to the tree even if y′ is already in the tree.

the tree at each iteration as shown in Figure 2.5. This allows us to show that the
algorithm should converge exponentially in the number of iterations.

We begin by showing that if the straight line from x′ to x is collision free then we
can create some discretization of that line {x0, ..., xm} such that if we have a configu-
ration in Bδ(xj) in the tree, we have a constant probability of adding a configuration
in Bδ(xj+1). Firstly note that there is no δ that we can choose without reference to
the current tree, V , that guarantees that if there is a configuration in y′ ∈ Bδ(x

′), and
the algorithm samples y ∈ Bδ(x), then y′ = argminv∈V ρ(v, y). For any y′ ∈ Bδ(x

′),
we can always create a configuration z 6∈ Bδ(x

′) and a subset of S ⊆ Bδ(x) such that
if y is chosen from S, z is closer to y than y′. This is shown in Figure 2.9. Since
z 6∈ Bδ(x

′) we may not be able to guarantee that the path from z to y is collision free.
Thus despite sampling in Bδ(x) and having a configuration in Bδ(x

′) in the tree, we
may not add a configuration in Bδ(x) to the tree.

As an aside, note that this problem arises because the RRT algorithm is greedy
in its choice of nearest neighbor. If we tested every configuration in the tree for
a collision free path to the sampled configuration, as in the case of a probabilistic
roadmap [22], we could always guarantee that a configuration sampled from Bδ(x)
would be added to any tree containing a configuration in Bδ(x

′).

We solve this problem by not trying to guarantee that y′ = argminv∈V ρ(v, y).
Instead, we bound how far z = argminv∈V ρ(v, y) is from the path using that y′ is
in V and the triangle inequality. Specifically, we discretize the straight line segment
from x′ to x into a sequence {x0, ..., xm}. We then define an inner radius δ and a

30

xj
ε

xj+1
y' y z

δ

ζ

x' x

δ

Figure 2.10: The discretization of the straight line path from x′ to x. Assume we
have open balls of radius δ, the inner radius, around xj and xj+1, and that xj and
xj+1 are a distance ǫ apart. Let y′ ∈ Bδ(xj) be in the tree and assume we sample
y ∈ Bδ(xj+1). Let z be the closest configuration in the tree to y. Although we cannot
guarantee that z is within δ of xj or xj+1, we can put an upper bound, the outer
radius ζ, on the distance from xj+1 to z. With a good choice of δ and ζ, we can
ensure that z ∈ Tη(x′,x)(x) so the path from z to y is collision free. Therefore, we add
y to the tree although the path may go through z and not y′.

outer radius ζ as shown in Figure 2.10. Assume there is some configuration y′ in
the tree V in Bδ(xj) (the open ball of inner radius δ around xj). Now assume that
we sample y from Bδ(xj+1) and let z = argminv∈V ρ(v, y). As we said, we cannot
guarantee that z ∈ Bδ(xj). However, if the {xj} are close enough together, we can
guarantee that z ∈ Tζ(x

′, x) where ζ is the outer radius. If we choose ζ ≤ η(x′, x)
then z is a collision free configuration. Not only that, but Tζ(x

′, x) is convex and we
have z ∈ Tζ(x

′, x) and y ∈ Tζ(x
′, x). Therefore, the straight line path, π(z, y), lies

within Tζ(x
′, x) ⊆ Xfree. Thus, even though z may not be in Bδ(xj), we still add y

to the tree.
We now formally define this discretized path from x′ to x and then prove it exists

for every set of configurations.

Definition 2.6 (Local Path): For x′, x ∈ X and ζ > 0, a sequence of configurations
{x0, ..., xm} is a local path from x′ to x of outer radius ζ > 0 and inner radius δ ∈ (0, ζ)
if and only if x0 = x′, xm = x and, for all j < m, for all y′ ∈ Bδ(xj), for all

31

y ∈ Bδ(xj+1), for all z ∈ X, if ρ(z, y) ≤ ρ(y′, y) then π(z, y) ⊆ Tζ(x
′, x).

Lemma 2.4: For all x′, x ∈ X and all ζ > 0, a local path from x′ to x of outer radius
ζ and some associated inner radius δ exists.

Proof: Choose

jmax =

⌈

ρ(x′, x)

ζ/4

⌉

(2.11)

δ =
ρ(x′, x)

jmax

≤
ζ

4
, (2.12)

and choose {x0, ..., xjmax} such that for j ∈ {0, ..., jmax},

xj = x′ +
j

jmax

(x− x′). (2.13)

This is the line segment from x′ to x discretized at intervals of δ so x0 = x′, xjmax = x,
xj ∈ π(x′, x), and ρ(xj, xj+1) = δ. Additionally, Bδ(xj) ⊆ Tδ(x

′, x) ⊂ Tζ(x
′, x) using

Lemma 2.2.

For any j < jmax, choose y′ ∈ Bδ(xj) and y ∈ Bδ(xj+1). Consider any z such that

ρ(z, y) ≤ ρ(y′, y) (2.14)

≤ ρ(y′, xj) + ρ(xj, xj+1) + ρ(xj+1, y) (2.15)

< δ + ρ(xj, xj+1) + δ (2.16)

= 3δ. (2.17)

We show z ∈ Tζ(x
′, x):

ρ(xj+1, z) ≤ ρ(xj+1, y) + ρ(y, z) (2.18)

< 4δ (2.19)

≤ ζ. (2.20)

Now j < jmax so xj+1 ∈ π(x′, x), giving

z ∈ Bζ(xj+1) ⊆ Tζ(x
′, x). (2.21)

Therefore z ∈ Tζ(x
′, x) and y ∈ Bδ(xj+1) ∈ Tζ(x

′, x). Now Tζ(x
′, x) is the tube

around the straight line segment from x′ to x. Figure 2.8 shows that this is convex
(see Lemma 6.15 for a formal proof) so all configurations on the straight line segment
from z to y must also be in Tζ(x

′, x). Thus π(z, y) ⊆ Tζ(x
′, x) and {x0, ..., xjmax} is a

local path from x′ to x.

�

From Lemma 2.4, it is a short step to see that if x′ can reach x with a collision free
straight line path, then we can discretize that path into a sequence of configurations

32

{x0, ..., xm} such that, for some δ > 0, if the tree contains a configuration in Bδ(xj),
there is a constant probability of adding a configuration in Bδ(xj+1).

Lemma 2.5: For all x′ ∈ X, for all x ∈ U(x′), for any ζ ∈ (0, η(x′, x)], let {x0, ..., xm}
be a local path from x′ to x with outer radius ζ and let δ be the associated inner
radius. For all j < m, if Vk−1 contains a configuration in Bδ(xj) at iteration k − 1,
the probability of adding a configuration in Bδ(xj+1) to Vk at iteration k is at least
µ(Bδ(xj+1))

µ(X)
.

Proof: Assume we have y′ ∈ Bδ(xj)∩ Vk−1 and we choose y ∈ Bδ(xj+1). The proba-

bility of such a choice is
µ(Bδ(xj+1))

µ(X)
. Let z = minv∈Vk−1

ρ(v, y). Then ρ(z, y) ≤ ρ(y′, y)

since y′ ∈ Vk−1 so by definition of local path π(z, y) ⊆ Tζ(x
′, x) ⊆ Tη(x′,x)(x

′, x) ⊆
Xfree using Lemma 2.2 and the definition of η(x′, x). Thus y ∈ ExtendHolonomic(z, y)
and y is added to Vk on iteration k.

�

Now let x be some configuration that x′ can reach with some collision free path,
but not necessarily a straight line one. We need to extend Lemma 2.5 to apply to
whole paths rather than just straight lines. We begin by formally defining a path
from x′ to x.

Definition 2.7 (Path): For all x′, x ∈ X, the sequence of configurations {x0, ..., xt}
is a path from x′ to x if and only if x0 = x′, xt = x, and for all j ∈ {0, ..., t − 1},
xj+1 ∈ U(xj).

Now we can formally define what is meant when we say a configuration is “reach-
able” from another configuration.

Definition 2.8 (Reachable): For all x′, x ∈ Xfree, x is reachable from x′, denoted
x ∈ R(x′), if and only if there is a path from x′ to x.

We showed in Lemma 2.5 that a single straight line can be discretized into a
sequence of configurations {x0, ..., xt} such that for some δ > 0 if the tree has a
configuration in Bδ(xj), there is a constant probability of adding a configuration in
Bδ(xj+1). We now use induction to show this for an entire path. Note that each line
segment along the path requires a different outer and inner radius depending on the
distance of obstacles from that segment.

Lemma 2.6: For all x′ ∈ X, for all x ∈ R(x′), for any ζ > 0, for some {δ0, ..., δr} ∈
(0, ζ], and some sequence {x0, ..., xr}, x0 = x′, xr = x, and for all j < r, if a
configuration in Bδj(xj) is in the tree Vk−1 at iteration k−1, the probability of adding

a configuration in Bδj+1
(xj+1) to the tree at iteration k is at least

µ(Bδj+1
(xj+1))

µ(X)
.

Proof: Let {p0, .., pt} be a path from x′ to x. Some path exists because x ∈ R(x′).
We proceed by induction on the length of the path.

Base Case (t = 1): If t = 1, then the path is {p0, p1}. Let χ = min (ζ, η(p0, p1)).
Let Wχ(p0, p1) = {x0, ..., xm} be a local path from p0 to p1 of outer radius χ and let

33

δ ∈ (0, χ] be the associated inner radius. Wχ(p0, p1) and δ exist by Lemma 2.4. By
definition of local path x0 = p0 and xm = p1. Let δj = δ for all j ∈ {0, ...,m}. By
Lemma 2.5, for all j < m, if a configuration in Bδj(xj) is in Vk−1 at iteration k − 1,

the probability of adding a configuration in Bδj+1
(xj+1) is at least

µ(Bδj+1
(xj+1))

µ(X)
.

Induction Step: Let the path from x′ to x be {p0, ..., pt} of length t+1. The path
{p1, ..., pt} from p1 to x is a path of length t. Therefore, by induction, there are some
{ǫ0, ..., ǫs} > 0, and some sequence {w0, ..., ws} such that w0 = p1, ws = pt, and for
all j < s, if a configuration in Bǫj(wj) is in Vk−1 at iteration k − 1, the probability

of adding a configuration in Bǫj+1
(wj+1) to Vk at iteration k is at least

µ(Bǫj+1 (wj+1))

µ(X)
.

Let χ = min (ǫ0, η(p0, p1)), let Wχ(p0, p1) = {u0, ..., um} be a local path from p0 to p1
of outer radius χ, and let δ be the associated inner radius. Wχ(p0, p1) and δ exist by
Lemma 2.4. Now consider the sequence of configurations

{x0, ..., xr} = {u0, ..., um, w1, ..., ws}, (2.22)

and let

δj =

{

δ if j ≤ m
ǫj−m else

(2.23)

We have x0 = p0 by definition of local path and xr = x by induction. If j > m,
if a configuration in Bδj(xj) = Bǫj−m

(wj−m) is in Vk−1 we add a configuration in

Bδj+1
(xj+1) = Bǫj−m+1

(wj−m+1) to Vk on iteration k with probability
µ(Bδj+1

(xj+1))

µ(X)
by

induction. If j = m then assume a configuration in Bδm(xm) is in Vk−1. Now

Bδm(xm) = Bδ(um) = Bδ(p1) ⊆ Bǫ0(w0) (2.24)

because δ ≤ χ ≤ ǫ0 and um = p1 = w0. Therefore, by induction, we add a configura-
tion in Bǫ1(w1) = Bǫm+1−m(xm+1) = Bδm+1(xm+1) to Vk on iteration k with probability
µ(Bδm+1

(xm+1))

µ(X)
. If j < m, if a configuration in Bδj(xj) = Bδ(uj) is in Vk−1 on iteration

k−1 then we add a configuration in Bδ(uj+1) = Bδj+1
(xj+1) to Vk on iteration k with

probability
µ(Bδ(uj+1))

µ(X)
=

µ(Bδj+1
(xj+1))

µ(X)
by Lemma 2.5.

�

Since the probability that we advance along the path is independent of iteration,
the probability that we have not added a configuration near the end of the path goes
down exponentially. This argument is made in LaValle and Kuffner [28] Theorems 6
and 7 but we reproduce it here for convenience.

Theorem 2.7 (Exponential Convergence of the Holonomic RRT Algorithm):
Let x0 be the starting configuration. For all x ∈ R(x0), for all ζ > 0, the probability
that the tree does not include a configuration in Bζ(x) after k iterations is O(2−ak)
for some positive constant a.

Proof: Choose some {δ0, ..., δr} ∈ (0, ζ], and some sequence {x0, ..., xr} such that
x0 = x′, xr = x, and for all j < r, if a configuration in Bδj(xj) is in the tree Vk−1 at
iteration k− 1, the probability of adding a configuration in Bδj+1

(xj+1) to the tree at

34

iteration k is at least
µ(Bδj+1

(xj+1))

µ(X)
. We can make such a choice by Lemma 2.6. Let

λ = min
j∈{1,...,r}

µ(Bδj(xj))

µ(X)
> 0. (2.25)

By Lemma 2.6, if a configuration in Bδj(xj) is in Vk−1, the probability that we add
a configuration in Bδj+1

(xj+1) to Vk is at least λ. Now λ > 0, λ does not depend
on iteration, and we begin with x0 ∈ Bδ0(x0) in the tree. Therefore, let us consider
each iteration as a Bernoulli distribution in which λ is the probability of a successful
outcome. In the worst case, we require r successful outcomes to add a configuration
in Bδr(xr) ⊆ Bζ(x) to the tree. Note that the success of each outcome is independent;
λ is an underestimate of the probability that a sample drawn uniformly at random
from the configuration space falls within some ball.

Let C1, ..., Ck be independent and identically distributed random variables whose
common distribution is the Bernoulli distribution with parameter λ. Cj is an un-
derestimate of the probability that we add a configuration in Bδj(xj) to the tree
given that the tree contains a configuration in Bδj−1

(xj−1). The random variable
C = C1 + ...+Ck is the number of successes after k iterations. Since each Ci has the
Bernoulli distribution, C has a binomial distribution with expected value E[C] = kλ.
Therefore, for any γ ∈ (0, 1],

Pr [C < (1− γ)kλ] < e−kλγ2/2. (2.26)

Since C is the number of successes after k iterations, we require C ≥ r. Choosing
γ = 1− r

kλ
, for k > r/λ, we have

Pr[C < r] < exp

(

−
kλ

2

(

1−
r

kλ

)2
)

(2.27)

= exp

(

−
kλ

2

(

1 +
(r

kλ

)2

− 2
r

kλ

))

(2.28)

= exp

(

−
kλ

2
+ r −

r2

2kλ

)

. (2.29)

Equation 2.29 characterizes the convergence rate of the algorithm in terms of the
length of the path, represented by r, and its clearance, represented by λ. A little
algebraic manipulation allows us to express it in the form of Definition 2.2:

Pr[C < r] ≤ exp

(

−
kλ

2
+ r

)

(2.30)

= O
(

e−kλ/2
)

. (2.31)

Thus the probability that a configuration in Bζ(x) has not been added to the tree
after k iterations is O(2−ak) for some positive constant a.

�

In Chapter 6, we give a similar proof for the algorithm we present in this thesis.

35

xI

xF

Figure 2.11: To move from the initial position shown to the final position (solid green
arrow), the car cannot follow a straight line because it cannot move sideways. Instead,
it must use a curved path like the one shown.

Algorithm 2.3 Input: xI , configuration to extend from; xF , configuration to extend
towards; EmptySpacePlanner, A planner that returns a path from one configura-
tion to another that is executable in the absence of obstacles
Output: A collision free path from xI towards xF

Extend (xI , xF)

1 {x0, ..., xm} ← EmptySpacePlanner(xI , xF)
2 for xi ∈ {x0, ..., xm}
3 if collision(xi)
4 return {x0, ..., xi−1}
5 return {x0, ..., xm}

2.2.3 The RRT Algorithm in Non-Holonomic Spaces

The RRT algorithm can also work in non-holonomic spaces where the system cannot
move along any straight line path in the configuration space. For instance, the car
shown in Figure 2.11 is non-holonomic. The algorithm outlined in Section 2.2.2 would
find paths for the car that the car could not actually execute because it cannot move
sideways.

When the system cannot move along any line in the configuration space, the Ex-
tend function uses what we term an empty space planner. An empty space planner,
L(xI , xF), returns a path from a configuration xI to a configuration xF that is exe-
cutable by the robot in the absence of obstacles. The Extend function then checks
this path and truncates it to the first collision, as shown in Algorithm 2.3.

This empty space planner is part of the input to the algorithm as it is problem
dependent. In Section 2.2.2, it was a straight line path. With non-holonomic systems,

36

like a car, it is often more complicated. For instance, if xF is a configuration to the
left of a car, the empty space planner would return a curve for the car rather than a
straight line. This is shown in Figure 2.11.

In this thesis, we work with empty space planners that can return paths all the
way from an initial configuration to a final configuration. This is important for ma-
nipulation problems because these paths may need to move through low-dimensional
subspaces of the configuration space like the subspace in which a robot is grasping
an object. However, in some applications, we do not require a full path from the
initial to the final configuration. In this situation, it is common to use local planners
that plan a path only a short way from the initial configuration towards the final
configuration. This is most often used when the system is described by a differential
equation. By not requiring that the local plan go all the way to the end point, we
avoid complicated boundary value problems.

The proof of exponential convergence of the algorithm when we use empty space
or local planners has to make some assumptions about those planners. This proof is
done in LaValle and Kuffner [28].

2.2.4 RRTConnect Algorithm

The RRTConnect algorithm [23] is a variant of the RRT algorithm that grows two
trees, one forward from the starting configuration like the RRT algorithm and one
backwards from the goal set, and tries to connect them in the middle. This has proven
to be much more efficient in practice.

The RRTConnect algorithm is shown in Algorithm 2.4. This algorithm takes
similar input to the RRT algorithm except that the Extend function must be able to
extend configurations either backwards or forwards. Namely Extend(xT , xS,True)
extends xT forwards towards xS while Extend(xT , xS,False) extends xT backwards
towards xS. This distinction is only important in the non-holonomic case.

The advantage of the RRTConnect algorithm is that it finds its way around
obstacles more easily because of the attempt to connect the forwards tree to the
backwards tree. We give an example of this in Figure 2.12. Figure 2.12a shows an
execution trace of the RRT algorithm while Figure 2.12b shows an execution trace
of the RRTConnect algorithm for the same samples. In Figure 2.12a, the RRT
algorithm:

1. Samples the red configuration (Sample 1)

2. Chooses the start configuration (blue) as the nearest configuration to the red
configuration

3. Extends the tree from the start configuration to the red configuration (line 1)

4. Samples the orange configuration (Sample 2)

5. Chooses the red configuration as the nearest configuration to the orange con-
figuration

37

Algorithm 2.4 Input: X, Configuration space; x0, Starting configuration; XG, Goal
set; ρ, Distance function; Extend, Extend function
Output: A path from x0 into XG.

RRTConnect (X, x0, XG, ρ,Extend)

1 Va ← {x0}, Vb ← {randomConfiguration(XG)}
2 F ← True // True when extending forwards
3 while True
4 if F

// Add a goal configuration to the backwards tree
5 Vb ← Vb ∪ {randomConfiguration(XG)}
6 xS ←uniformRandomConfiguration(X)
7 xT ← argminv∈Va ρ(v, xS)
8 {x0, ..., xl} ← Extend(xT , xS, F)
9 Va ← Va ∪ {x0, ..., xl}
10 if l > 0 // Extend Vb towards Va

11 xT ← argminv∈Vb
ρ(v, xl)

12 {y0, ..., yk} ← Extend(xT , xl,¬F)
13 Vb ← Vb ∪ {y0, ..., yk}
14 if yk = xl

15 return ExtractPath(Va, Vb)
16 swap(Va, Vb), F ← ¬F

6. Extends the tree from the red configuration to the orange configuration (line 2)

7. Samples the magenta configuration (Sample 3)

8. Chooses a configuration on line 2 as the nearest configuration to the magenta
configuration

9. Extends from this configuration towards the magenta configuration, but is trun-
cated because it hits an obstacle (line 3)

So the RRT algorithm has yet to find a path to the goal. In Figure 2.12b, the
RRTConnect algorithm:

1. Samples the red configuration (Sample 1)

2. Chooses the start configuration (blue) as the nearest configuration to the red
configuration

3. Extends the forward tree from the start configuration to the red configuration
(line 1)

4. Chooses the goal configuration (green) as the nearest configuration in the back-
wards tree to the red configuration

38

Sample 1

Sample 2

Sample 3
Start

Goal
Tree

1 32

(a)

Sample 1 (f)

Sample 3 (f)

Sample 2 (b)
Start

Goal
Forward tree
Backwards tree

1

2
3

4

5
6

(b)

Figure 2.12: An example of a situation in which the RRTConnect algorithm is
more efficient than the RRT algorithm. Both figures show a point robot navigating
in the two dimensional plane. The robot begins at the blue dot and ends at the
green dot and the black rectangle is an obstacle. Figure (a) shows a trace of the RRT
algorithm while Figure (b) shows a trace of the RRTConnect algorithm. See the
text for a full explanation of the traces.

5. Extends backwards from the backwards tree towards the red configuration, but
is truncated because it hits an obstacle (line 2)

6. Samples the magenta configuration (Sample 2)

7. Chooses a configuration on line 2 as the closest configuration in the backwards
tree to the magenta configuration

8. Extends backwards from this configuration to the magenta configuration (line
3)

9. Chooses the red configuration as the nearest configuration in the forward tree
to the magenta configuration

39

10. Extends the forward tree towards the magenta configuration, but is truncated
because it hits an obstacle (line 4)

11. Samples the orange configuration (Sample 3)

12. Chooses a configuration on line 4 as the nearest configuration in the forward
tree to the orange configuration

13. Extends this configuration to the orange configuration (line 5)

14. Chooses the magenta configuration as the nearest configuration in the back-
wards tree to the orange configuration

15. Extends the backwards tree to the orange configuration, connecting the two
trees (line 6)

The reason the RRTConnect algorithm is able to find a path quickly in this
example while the RRT algorithm requires more time is that when the RRTCon-
nect algorithm extends one tree towards the other, it extends towards the last point
added to the tree not the nearest point in the tree. This introduces a bias to continue
growing into free space. Although the convergence results for the RRTConnect
algorithm are the same as for the RRT algorithm, this bias is very helpful in practice.

2.3 Related Work

In this section, we review the literature pertinent to this thesis. Recall that our goal
is to solve complicated manipulation problems in which a single object may have
to be manipulated multiple times using a different type of manipulation each time.
We begin by presenting the previous work in non-prehensile manipulation that we
build upon to generate interesting manipulation domains. We then discuss problems
and techniques similar to ours, including re-grasping, the navigation among movable
obstacles problem, and algorithms for sampling in constrained or multi-modal spaces.

2.3.1 Non-Prehensile Manipulation

In this thesis, we discuss planning for a diverse set of manipulation types. An impor-
tant aspect of our work is that we can plan for non-prehensile manipulation. Non-
prehensile manipulation is any form of manipulation in which the object(s) being
manipulated are not rigidly attached to the manipulator.

For instance, pushing is a form of non-prehensile manipulation, because the object
being pushed is not attached to the robot’s end effector. Mason [31, 32, 33] was among
the first to discuss pushing for robotic manipulators. Mason’s work focuses on dealing
with the inherent uncertainty of pushing because the manipulator may not control
all degrees of freedom of an object. Additionally, the mechanics of pushing depend
on properties that are hard to measure, such as the pressure distribution of an object
and the forces of friction on that object. Mason discusses how to predict an object’s

40

motion when pushed even when there is some uncertainty about these quantities.
Other work [53] uses learning to map robot motions to object motions. In our work,
we assume stable pushing in which the pusher always remains in contact with the
object. We also use two-point pushing, which helps to reduce the uncertainty as,
with two-point pushing, a pusher can control all degrees of freedom of an object.

Pushing can also be used as a precursor to grasping. Brost [7] and Dogar and
Srinivasa [11] both use a push-grasp. A push grasp is a motion that first “pushes”
with the open gripper by moving it parallel to the surface on which by object is
resting and then “grasps” by closing the gripper. Brost shows how to decide when
the object being push-grasped will roll into the gripper. Dogar and Srinivasa use the
push-grasp when an object is in too close contact with the environment for a normal
grasp to succeed. For an object in contact with the environment, the push motion
can allow a gripper finger to gently separate the object from its contact.

Dogar and Srinivasa [12] expand on the idea of using a push-grasp to separate
an object from its environment by allowing the manipulator to sweep some movable
objects out of the way while trying to grasp another. They consider a library of four
actions: push-grasp, sweep, go-to, and pick-up. The “sweep” action pushes objects
with the outside of the hand. Cosgun et al. [9] discuss the related problem of placing
an object on a cluttered surface. However, although Dogar and Srinivasa have a
library of manipulation actions, they assume that each object or piece of clutter is
only moved once using a single type of manipulation action. Cosgun et al. allow
multiple objects to be pushed, but they only consider one type of manipulation.
Neither work gives any completeness or convergence guarantees. In our work, we
have a library of manipulation actions and try to find a plan for a single object that
may require many of these actions.

Although we do not explicitly use them in our experiments, other manipulation
actions in which the robot is in contact with the object at all times like pulling [26]
or pushing a cart [41, 50, 49, 51] should fit within our framework. It should also be
possible to extend our approach to more dynamic types of actions like striking and
tapping [18, 19], juggling [8, 39, 40], or throwing [42], but this is left for future work.

In all of the work discussed in this section, the focus is on the dynamics and control
of a single type of manipulation. When this work addresses planning, it emphasizes
planning for this single action type. We take a different view; we build on this existing
work to model a set of diverse action types and focus on combining them to generate
complex plans.

2.3.2 Re-Grasping

One area of manipulation planning focused on chaining multiple actions for a single
object is re-grasping. In the re-grasping task [30, 43], a robot has many choices
(sometimes an infinity of choices) for a rigid grasp, and the robot must use more than
one grasp to find a solution to the problem. For example, when placing an object on
a shelf, a robot might need to adjust the grasp it is using before it can set the object
down stably without disturbing anything else on the shelf.

The framework proposed by Siméon et al. [43] for the re-grasping task is the

41

one most closely related to the algorithms we propose in this thesis. They consider
manipulation of a single, rigid, six degree-of-freedom movable object. Let O be the
configuration space of the object and R be the configuration space of the robot.
The full configuration space is X = O × R. Let Xfree ⊆ X be the subset of X in
which neither the object nor the robot is in collision with any obstacles. The authors
consider two subsets of Xfree: CP , the subset of Xfree in which the object is in
a stable placement in the world, and CG, the subset of Xfree in which the robot
holds the object in a valid grasp. These regions allow them to define two types of
manipulation paths:

• Transit paths: are paths where the robot moves by itself. These paths must be
in CP . Note that a path through CP is not necessarily a valid transit path,
because the object must remain in the same stable position through a transit
path. Siméon et al. show that transit paths induce a foliation of CP .

• Rigid-transfer paths: are paths where the robot moves while holding the object.
These paths must be in CG. Again, not all paths through CG are rigid-transfer
paths because the robot’s grasp must remain consistent throughout. A grasp
“remains consistent” when the position of the robot’s end effector does not
change relative to the object. Rigid-transfer paths induce a foliation of CG.

A region of interest is CG ∩ CP , the intersection of CG and CP . This is the
region in which the robot can grasp or place the object and all connections between
transit and rigid-transfer paths must lie in it. Moreover, Siméon et al. prove the
following reduction property:

Reduction Property: Any path lying in a connected component of CG∩CP can
be transformed into a finite sequence of transit and rigid-transfer paths.

In other words, within CG∩CP , the connectivity of the space reflects the under-
lying connectivity of the system: if two points in a connected component of CG∩CP
are connected by any free path (even one that changes the robot’s grip in midair or
teleports the object to a new position), the robot can in fact move the system between
the two points.

Therefore, it is sufficient only to study the inter-connectivity of the connected
components of CG ∩ CP by transit and rigid-transfer paths. We need not study the
intra-connectivity because the reduction property guarantees that once in a connected
component of CG∩CP , any other point in that connected component can be reached.
Siméon et al. show how to use this to plan first a path of connected components and
then each transit or rigid-transfer between connected components. We will call this
algorithm PG-map.

Unfortunately, the reduction property relies on the fact that the robot can move
a rigidly grasped object instantaneously in any direction. When we consider non-
prehensile manipulation, it no longer holds because we might introduce a constraint
dependent on the direction of motion. We show a counter-example using a pushing
task.

42

0 1 2 3

Object Robot

(a)

0

1

2

3

0 1 32
Robot configuration

O
bj

ec
t c

on
fig

ur
at

io
n

(b)

Figure 2.13: A one-dimensional pushing world. (a) The robot (black dot) and object
(rectangle) exist on the number line. When the robot is aligned with the left edge of
the object, it can push it in the +x direction. (b) The configuration space. CP is
the entire region while CG (gray line) is the single line where the robot’s center and
the object’s left edge are aligned. This is a single connected component.

Consider the 1D world shown in Figure 2.13a. If the robot’s center is aligned with
the left edge of the object, it can push the object in the +x direction. It cannot push
the object in the −x direction. Any configuration in which the robot can push the
object is a “grasp”. All push paths must be in CG∩CP because the object must also
be sitting stably during pushing. The CG∩CP area is a straight line in configuration
space as shown in Figure 2.13b. This has a single connected component so, if the
reduction property held, there should be a valid series of transits and pushes from
every point in CG∩CP to every other point. In fact, there is no valid path from, for
example, any configuration in which the object is at 1 to any configuration in which
the object is at 0 because there is no way for the robot to push the object in the −x
direction. Pushing introduces a one-way connectivity.

Therefore, the major leverage proposed by Siméon et al., that the connectivity of
CG ∩ CP reflects the connectivity of the underlying system, is no longer true once
we introduce a non-prehensile action. However, we believe that their idea of using
configurations at which rigid-transfer and transit paths intersect as subgoals can be
extended to frameworks that include non-prehensile manipulation. We discuss this
in Chapter 4.

2.3.3 Navigation Among Movable Obstacles

The navigation among movable obstacles (NAMO) problem [36, 46, 47, 48, 52] is an
example of a manipulation problem requiring many manipulation actions. In this
problem, there are multiple movable obstacles in the world and a robot navigates
among them. Usually, the robot has a goal position, but the movable obstacles do

43

not; the robot only needs to move them if they keep it from reaching the goal. The
challenge is that the space is cluttered so that choosing a new position for an obstacle
is not necessarily easy.

Most of the work in this domain looks for a plan of transit actions, in which
the robot moves alone, and transfer actions, in which the robot moves an obstacle.
Usually, it is assumed that only a single transfer action is needed per obstacle and so
that each obstacle is only moved once. The focus is on choosing the order in which
to move the objects so that they do not obstruct one another rather than on how
to move a particular object. In this thesis, we focus on moving a single object that
requires many types of manipulation. Future work combining the two approaches
could allow a robot to move many objects in a cluttered space using non-prehensile
manipulation.

van den Berg et al. [52] approach the NAMO problem somewhat differently. They
point out that the canonical representation of the problem as a sequence of transit
and transfer actions makes it very hard to devise a probabilistically complete algo-
rithm, because these actions lie in “slices” of the configuration space. There are an
infinite number of such slices, but each slice has a probability zero of being sampled.
Therefore, they consider the movement of the movable obstacles primarily and then
try to find robot motions that can accomplish these obstacle paths.

Specifically, van den Berg et al. look for valid obstacle paths. We also use this con-
cept so we review their definition here. An obstacle is manipulable if its configuration
space representation has some point adjacent to the current connected component of
the robot. A path for an obstacle is valid if

1. The path is collision free for the obstacle.

2. The obstacle is manipulable at all points along the path.

van den Berg et al. assume that the obstacle can be rigidly grasped by the robot
at any point of contact. Therefore, if the obstacle is “manipulable”, the robot can
move it any direction. Under this assumption, any valid path has an accompanying
collision free robot motion. The algorithm presented by van den Berg et al. first
plans valid paths for obstacles and then plans the robot motion for each path. An
obstacle may be moved more than once.

We also use the idea of planning for the movable objects first and then finding a
robot path that can accomplish this plan. However, van den Berg et al. were only able
to demonstrate their algorithm using axis-aligned rectangular obstacles and a robot
that can only translate in the plane, because their algorithm requires analytically
describing the connected components of the robot’s configuration space. Moreover,
we do not assume that the robot can rigidly grasp the object at any point of contact
or even rigidly grasp it at all, so we need to modify the definition of manipulable. We
discuss this further in Chapter 4.

2.3.4 Sampling and Constrained Motion Planning

When working with manipulation, we cannot sample configurations uniformly at ran-
dom from the space as done on Line 3 of the RRT algorithm because we need to sample

44

Figure 2.14: The robot (red disc with black center) can push the object (light blue
disc) only along the ray (black arrow) connecting the center of the robot to the center
of the object.

in spaces that are lower dimensional than the full configuration space. We do this by
sampling uniformly at random from the space and then projecting the sample onto a
subspace.

Much of the work in sampling other than uniformly from the configuration space
has focused on speeding up sampling-based algorithms without changing the expo-
nential convergence properties [6, 16, 24, 25, 54, 55]. These algorithms attempt to
boost sampling in narrow passage regions where sampling-based planners tend to have
difficulty sampling.

However, there is also work on sampling for constrained motion planning problems
in which the constraint is specified as a constraint on the end effector in the work
space [4, 5, 45, 56]. In these problems, the constraint defines a lower-dimensional
subspace of the full configuration space. For instance, we could define a constraint in
which the robot’s gripper must remain parallel to the ground at all times for trans-
porting a full pitcher of water. There is zero probability that any such configuration
can be sampled uniformly at random from the configuration space. Of this body
of work, only Berenson and Srinivasa [4, 5] are able to show that their algorithm is
probabilistically complete or exponentially convergent. They take a similar approach
to ours so we discuss their work in more detail.

As we do, Berenson and Srinivasa choose a configuration uniformly at random from
the space and then project it onto a subspace defined by the constraints of the problem
(i.e. the robot’s gripper must be parallel to the ground). In their work, Berenson and
Srinivasa assume that the constraints are all holonomic constraints on the robot’s
end effector. With this assumption, they can represent constraints as Task Space
Regions or Task Space Region chains. Task Space Regions define a region of the work
space to which the end effector is constrained while the chains describe constraints
that can be represented as closed kinematic chains. Berenson and Srinivasa use the
Jacobian pseudo-inverse method to map samples from the configuration space onto
the subspace defined by these constraints. They prove that this sampling covers the
constraint space so the algorithm is still probabilistically complete.

The advantage of this representation of constraints is that Berenson and Srinivasa
do not require the user to supply the projection functions, but only the constraints on
the end effector. Non-prehensile manipulation, however, cannot always be expressed
as end effector constraints. Consider a round robot pushing a round object as shown

45

in Figure 2.14. There are two constraints: the robot must contact the object and
the robot must push the object along the ray connecting the robot’s center to the
object’s center. In this case, the robot is also the end effector. We can express the
constraint that it contact the object as a holonomic constraint since we know the
object’s position. Once the robot and object begin moving together, however, there
is no way to express the directionality constraint of the pushing as a constraint only
on the robot’s position. We could constrain the robot to only move along a line, but
we cannot constrain it to only move along a ray.

Therefore, we require that users provide the full projection functions for the sam-
ples rather than just a constraint. We can prove that our algorithm converges ex-
ponentially even for projection functions that are not holonomic constraints on the
robot’s end effector.

2.3.5 Multi-Modal Planning

In Chapter 4, we frame the problem of manipulation with diverse actions as a multi-
modal planning problem. Hauser [14] defines a multi-modal planning problem as one
in which the system moves between configurations and also among a set of modes.
The mode space is part of the problem description and each mode describes a set of
configurations that all satisfy certain mode-specific constraints. In his initial work,
Hauser focused on problems with discrete mode spaces, but low-dimensional mode
transitions. For instance, in legged locomotion, the modes are a fixed set of footfalls.
The footfalls constrain the feet to be on the ground, and walking must transition
through these footfalls.

Subsequently, Hauser and Ng-Throw-Hing [15] extended the work on multi-modal
planning to domains with continuous modes. They describe the set of continuous
modes as a finite, discrete set of mode families. Mode families partition a continuous
mode set using a co-parameter that varies to describe each of the different modes.
Transitions between modes within a mode family are disallowed; modes must first
transition out of the family. An example of a problem with continuous modes is
shown in Figure 2.15. In this problem, only one dot can move along the line at a
time. The modes in this problem are the dot that is moving and also the position of
the two stationary dots. Since the two stationary dots can be located anywhere along
the line, there are an infinity of modes. However, we can partition these modes by
which dot is moving, giving us three mode families: the blue family, the red family,
and the green family. The co-parameter for each the mode family is the position of the
stationary dots. For instance, the co-parameter for the blue family is the position of
the red and green dots. Additionally, consider moving between two modes in the blue
family. This requires moving at least the red or the green dot so we must transition
out of the blue family before we can move to a new mode in the blue family.

The multi-modal planning algorithms proposed by Hauser require three pieces of
information:

• A mode adjacency graph: This graph should capture every transition between
modes, although it may include some impossible transitions. A mode transition

46

(a) (b) (c) (d)

Figure 2.15: An example of a problem with continuous modes, but discrete mode
families. Only one dot can move along the line at a time. A mode specifies the
moving dot and the exact locations of the stationary dots. A mode family specifies
the moving dot with the locations of the stationary dots as co-parameters. Figure (a)
shows a mode in the blue family. Figure (b) is in the same mode while figure (c)
is in the same mode family but a different mode because the green dot has moved.
Figure (d) is a different mode and a different family. Note that to move from the
configuration shown in figure (a) to the configuration shown in figure (c), the green
dot must move. This requires a moving through configurations in the green family.
Modes within the same family cannot transition directly to each other.

graph for the legged locomotion problem with six legs, for example, might have
the mode with all feet on the ground adjacent to any mode with just one foot
off the ground.

• A method for sampling from mode transitions: Given two adjacent modes, σ
and σ′, this method should sample a configuration in the transition between the
two modes. For example, in legged locomotion, if σ was a mode with one foot
in the air and σ′ was a mode with all feet on the ground, this function should
return a good foot placement for placing all feet on the ground.

• A method for planning within a single mode: The idea is that planning within
a single mode is easy so providing a planner to plan a single mode path should
not be difficult. In legged locomotion, this would be a plan for placing a foot
or lifting one up.

Given this information, all of the explicit multi-modal algorithms perform essentially
the same steps. Given a current configuration x and mode σ:

1. Sample an adjacent mode, σ′, from the mode adjacency graph

2. Sample a transition configuration, x′, from the intersection of σ to σ′

3. Plan a collision free, feasible path within this single mode from x to x′

We focus here on the Random-MMP algorithm proposed by Hauser and Ng-
Throw-Hing because it is most similar to our work. Random-MMP is shown in
Algorithm 2.5. This algorithm is similar to the RRT algorithm of Algorithm 2.1
except that when it extends the tree, rather than extending towards the sampled
configuration, it instead tries to extend towards some mode transition. Hauser and

47

Algorithm 2.5 Input: x0, Starting configuration; XG, Goal set; AdjacentMode,
method for sampling from the mode adjacency graph; Transition, method for sam-
pling a transition between two modes; PlanSingleMode, method for planning an
intra-mode path
Output: Tree with path from x0 into XG

RandomMMP(x0, XG,AdjacentMode,Transition,PlanSingleMode)

1 T ← {(x0, NULL)}
2 while T ∩XG = {}

// ci is a (configuration, mode) pair
3 (c0, ..., ck)← ExtendTree(T,AdjacentMode,Transition,PlanSingleMode)
4 if c0 6= NULL
5 Add the path c0 ← · · · ← ck as descendants of c0 in T
6 return T

ExtendTree(T, AdjacentMode, Transition, PlanSingleMode)

1 x← randomConfiguration()
2 (xT , σT)← argmin(x′,σ′)∈TDistance(x

′, x) // xT is a configuration and σT is a mode
3 return PlanModeSwitch(xT , σT ,AdjacentMode,Transition,PlanSingleMode)

PlanModeSwitch(x, σ,AdjacentMode,Transition,PlanSingleMode)

1 σ′ ← AdjacentMode(σ)
2 x′ ← Transition(σ, σ′)
3 if PlanSingleMode(x, x′, σ) fails
4 return NULL
5 else
6 return (x′, σ′)

Ng-Throw-Hing were able to use this algorithm to find paths for a walking robot
pushing an object on a table. However, that work required the implementation of
complicated mode samplers and a number of heuristics, some of which took substantial
pre-processing time. Hauser and Ng-Throw-Hing do not show how to generalize
their problem-specific framework to other manipulation problems and, as we show
in Chapter 4, the algorithms proposed for multi-modal problems are unable to solve
some manipulation problems of interest.

In the next two chapters, we describe our algorithms for planning for manipulation
with diverse actions. We build on the work described here, using sampling-based
planners similar to the RRT and Random-MMP algorithms, but address problems
that neither of these algorithms can solve unmodified.

48

Chapter 3

Sampling-Based Algorithms for
Diverse Action Manipulation

In this section, we present two sampling-based algorithms for diverse action manip-
ulation. We begin by formally defining the Diverse Action MAnipulation (DAMA)
problem and showing that the RRT algorithm cannot solve DAMA problems. We then
discuss the Diverse Action Rapidly-exploring Random Tree (DARRT) algorithm, a
sampling-based algorithm for the DAMA problem. Lastly, we give the DARRT-
Connect algorithm for DAMA problems, which is based on the RRTConnect
algorithm.

We do not present results for these algorithms in this chapter as we discuss more
algorithms for the DAMA problem in Chapter 4. Therefore, we postpone experimen-
tal results until Chapter 5 and theoretical results, including a proof of exponential
convergence for DARRT, until Chapter 6.

Some of the work in this chapter was previously discussed in Barry et al. [2, 3].

3.1 Diverse Action Manipulation Problem

We address problems in which we have a robot, a set of movable objects, and a
set of manipulation primitives. The configuration space for these problems is a cross
product space of the robot configuration space, R, and the object configuration spaces,
O1, ..., On, X = R × O1 × ... × On. Manipulation primitives describe the actions
the robot can take in the space. For instance, the transit, rigid-transfer, and push
manipulations discussed in Chapter 2 are all individual manipulation primitives. More
generally, we define a manipulation primitive as a function that returns a trajectory
from one configuration to another:

Definition 3.1 (Trajectory): Let xI , xF ∈ X be configurations. A function
τ : [0, 1]→ X is a trajectory from xI to xF if and only if τ(0) = xI and τ(1) = xF .

Recall that X is the cross product space of the robot and object spaces so trajec-
tories include configurations for objects as well as robots. For instance, a trajectory in

49

which the robot is holding an object in a rigid grasp is a sequence of configurations in
which the relative position of the robot’s end effector and the object does not change.

Not all types of manipulation can begin at or reach every configuration. For
example, transit, in which the robot moves alone, cannot occur from a configura-
tion in which the robot is holding an object. Similarly, rigid-transfer, in which the
robot moves with a rigidly attached object, can never reach a configuration in which
the robot is not holding an object. Therefore, manipulation primitives are partial
functions that operate over a subset of the possible input pairs. Formally:

Definition 3.2 (Manipulation Primitive): A manipulation primitive is a deter-
ministic partial function that takes as input an initial configuration xI and a final
configuration xF and returns a trajectory from xI to xF . A primitive p is applicable
only to pairs of configurations in its domain, denoted X(p):

X(p) =
{

(xI , xF) ∈ X ×X
∣

∣(xI , xF) is in domain of p
}

. (3.1)

The set of initial configurations that a primitive p can be applied to is

XI(p) =
{

xI ∈ X
∣

∣∃xF ∈ X, (xI , xF) ∈ X(p)
}

, (3.2)

while the set of configurations reachable by primitive p is

XF (p) =
{

xF ∈ X
∣

∣∃xI ∈ X, (xI , xF) ∈ X(p)
}

. (3.3)

The set of configurations a primitive p is applicable to given an initial configuration
xI is XF (p|xI),

XF (p|xI) =
{

xF ∈ X
∣

∣(xI , xF) ∈ X(p)
}

. (3.4)

XF (p|xI) may be substantially smaller than XF (p).

We also make a distinction between primitives that move an object and primitives
that move only the robot. This will be helpful when we consider separately the paths
objects can take in Chapter 4.

Definition 3.3 (Transit/Transfer Primitive): For primitive p, let (xI , xF) ∈
X(p) and let τ = p(xI , xF). The primitive p is a transit primitive if and only if for all
α ∈ [0, 1], the configuration of every object in τ(α) is the same as its configuration in
τ(0). The primitive p is a transfer primitive if and only if it is not a transit primitive.

Note that transfer primitives are primitives that move objects on some input, but
may not move them on all inputs.

For many primitives both XI(p) and XF (p) are lower-dimensional than the full
configuration space, X. This fact will keep traditional sampling-based algorithms
from being able to solve manipulation problems. We discuss this further in Section 3.2.

Any type of manipulation can be represented as a manipulation primitive provided
it is possible to simulate the effect of the primitive. For complicated primitives this

50

Transit Rigid-Transfer Push
(a) The primitives available in the Push World. The robot can move by itself (transit).
It can move the rigidly grasped plate (rigid-transfer). It can push the plate along the
ray connecting the center of the gripper to the center of the plate when the gripper is in
two-point contact with the plate, the plate rests on a supporting surface, and the gripper
can move along this ray without moving the robot’s base (push).

(b) A trajectory sequence from the configuration shown in the photograph to the sample
shown with the white solid lines. This sequence first transits the robot to a pushing
configuration (blue dashed), pushes the plate to the edge of the table (green solid), transits
the robot to a grasp (blue dashed), and rigid-transfers the plate to the final position
(magenta dotted). For simplicity of visualization, we show straight lines in joint space as
straight lines for the gripper.

Figure 3.1: An example world in which a robot manipulates a plate.

could require computational integration of equations of motion, but we use simpler
primitives in this thesis.

Throughout this chapter, we consider an example world, the Plate World, shown
in Figure 3.1, in which a robot manipulates a plate. The robot can push the plate
when it is on a support surface or rigidly transfer it when it is grasped. The robot’s
grippers are too thick to grasp the plate while it is on a surface so the robot must

51

push the plate to the edge of the surface to grasp it.

The configuration space X in this world is the cross product of the robot’s con-
figuration space R and the plate’s configuration space O. We denote a configuration
as (r, o) ∈ R×O where r is the configuration of the robot and o is the configuration
of the plate.

This world has the following primitives shown in Figure 3.1a:

Transit describes the robot moving alone. Transit is applicable to any pair of
configurations in which the plate is supported by a surface and does not move.
On any applicable input

(

(rI , oI), (rF , oI)
)

, transit returns a straight line from
rI to rF in the robot’s subspace.

Rigid-transfer describes the robot moving the rigidly attached plate. Rigid-transfer
is applicable to any initial configuration and final configuration in which the
plate is grasped with the same grasp. Rigid-transfer returns a trajectory
that moves the robot and plate to the final configuration using a straight line
in the robot’s subspace.

Push describes the robot pushing an object. Push is applicable to any initial config-
uration in which the robot’s gripper is in two-point contact with the plate and
any final configuration in which the plate has moved along the ray connecting
the center of the gripper to the center of the plate and it is possible to move
the gripper along this line without moving the robot’s base. Push returns a
trajectory that moves the gripper along this ray.

We give more examples of primitives in Chapter 5.

We generate long trajectories by sequencing the output of several primitives as
shown in Figure 3.1b. Because we want to be able to identify trajectories with the
primitives that generated them, we use trajectory sequences rather than creating one
long trajectory.

Definition 3.4 (Trajectory Sequence): An ordered set of trajectories {τ0, ..., τl}
is a trajectory sequence from xI to xF if and only if τ0(0) = xI , τl(1) = xF and, for
all i ∈ {1, ..., l}, τi−1(1) = τi(0).

Since each primitive returns a trajectory, a set of primitives generates a trajectory
sequence.

Definition 3.5 (Generate): A sequence of primitives {p0, ..., pl} generates a
trajectory sequence from xI to xF , {τ0, ..., τl} if and only if for all i ∈ {0, ..., l},
(τi(0), τi(1)) ∈ X(pi) and pi (τi(0), τi(1)) = τi. A trajectory sequence can be gener-
ated by a set of primitives P if there is some sequence of primitives in P that can
generate the sequence. The pairs of configurations for which a set of primitives P can

52

generate a trajectory sequence are denoted X(P):

X(P) =

{

(xI , xF) ∈ X ×X

∣

∣

∣

∣

some sequence of the primitives in P can
generate a trajectory sequence from xI to xF

}

.

(3.5)
The set of initial configurations from which P can generate trajectories is

XI(P) =
{

xI ∈ X
∣

∣∃xF ∈ X, (xI , xF) ∈ X(P)
}

, (3.6)

while the set of configurations to which P can generate trajectories is

XF (P) =
{

xF ∈ X
∣

∣∃xI ∈ X, (xI , xF) ∈ X(P)
}

. (3.7)

The set of configurations to which a primitive set P can generate trajectories given
an initial configuration xI is

XF (P |xI) =
{

xF ∈ X
∣

∣(xI , xF) ∈ X(P)
}

. (3.8)

Now that we have formally defined manipulation primitives, trajectories, and
trajectory sequences, we can define a manipulation problem.

Definition 3.6 (DAMA Problem): The Diverse Action MAnipulation (DAMA)
problem is a tuple

〈

R, {O1, ..., On}, {B0, ..., Bq}, {p0, ..., pm}, x0, XG

〉

in which R is the
configuration space for a robot, {O1, ..., On} are the configuration spaces for the mov-
able objects, {B0, ..., Bq} is a set of fixed obstacles, {p0, ..., pm} is a set of manipulation
primitives, x0 is an initial configuration, and XG is a set of goal configurations.

The configuration space for a DAMA problem is the cross product space of the
robot and object configurations spaces X = R×O1 × ...×On.

The goal set for a DAMA problem may be infinite in size, and often is. For
example, in manipulation, goal configurations are often specified only for objects.
The goal set is any configuration in the full configuration space in which the objects
are in their goal configurations.

In most DAMA problems, there are some fixed obstacles in the world with which
contact may be permissible. For example, if the robot is pushing an object, the object
contacts the table on which it sits, the robot’s gripper contacts the object, and the
robot’s gripper contacts the table. Therefore a primitive can define a set of collisions
for which it is disabling collision checking. The primitive is responsible for managing
this contact. For example, push disables collision checking between the robot gripper
and the table so must be careful never to return a trajectory in which the gripper
goes through the table.

We define the free space as not allowing any contact:

Definition 3.7 (Free Space): The free space for a DAMA problem P , Xfree(P)
is all configurations in which there is no contact between the robot and objects, the

53

robot and the fixed obstacles, or the objects and the fixed obstacles.

We will give a more rigorous treatment of free space in Chapter 6.

A collision free trajectory is one that is either entirely in free space or only has
contacts that the primitive allows.

Definition 3.8 (Collision Free): A trajectory τ generated by primitive p is
collision free in DAMA problem P if, for all α ∈ [0, 1], either τ(α) ∈ Xfree(P) or all
collisions present in τ(α) have collision checking disabled by p. A trajectory sequence
is collision free if all of its trajectories are collision free.

A solution to a DAMA problem is a collision free trajectory sequence from x0 to
some configuration in XG that can be generated by the primitives.

In the next sections, we discuss algorithms for solving DAMA problems based on
the RRT [28] and RRTConnect [23] algorithms.

3.2 Diverse Action Rapidly-exploring Random Tree

Algorithm

In this section, we present the Diverse Action Rapidly-exploring Random Tree (DARRT)
algorithm for solving DAMA problems. This algorithm is based on the RRT algo-
rithm [28], but modified to plan through the low-dimensional subspaces necessary in
manipulation. We begin with an example to illustrate the problems with the classic
RRT approach and then discuss the DARRT algorithm.

3.2.1 Motivating Example

We begin by motivating our claim that the classic RRT algorithm fails to plan for some
manipulation problems. Consider again the Plate World introduced in Section 3.1.
For simplicity, in this discussion, we ignore the rigid-transfer primitive and assume
that we have only a robot arm pushing a plate on a table (the Plate Pushing World).
We also assume that all pushing configurations on the table can be reached by the
robot. Recall that this world has a configuration space, X = R×O, that is the cross
product of a robot configuration space, R, and a plate configuration space, O. In
this case, the plate configuration space is two-dimensional as the plate is round so its
orientation is irrelevant and we assume it remains on the table. A configuration in
this space is denoted (r, o) ∈ R×O.

Firstly note that although the robot arm is holonomic, we cannot use a holonomic
extension like that of Section 2.2.2 because the full configuration space of the robot
and plate is non-holonomic. Namely, consider extending from a configuration xI =
(rI , oI) to a configuration xF = (rF , oF). If the space was holonomic, we could extend
using a straight line in the space. A straight line in the full configuration space
corresponds to a line in the robot’s subspace and a line in the plate’s subspace. While

54

Figure 3.2: A straight line extension in the plate pushing domain. The initial con-
figuration is shown in the photograph while the final configuration is shown by the
dashed outlines. This extension cannot be executed because the plate cannot move
on its own.

the robot can move along the line from rI to rF , the plate cannot move along the line
from oI to oF without being actuated by the robot. This is shown in Figure 3.2.

Therefore, we use the non-holonomic RRT introduced in Section 2.2.3. This re-
quires an empty space planner that returns plans that could actually be executed in
the environment. An empty space planner for our problem of an arm pushing a plate
on a table is shown in Figure 3.3. Given an initial configuration xI = (rI , oI) and a
final configuration xF = (rF , oF) for the planner to achieve, there are two possibilities.
If oI = oF (the plate does not move), then the empty space planner returns a single
trajectory generated by the transit primitive from rI to rF . If oI 6= oF , then the
empty space planner returns a sequence of three trajectories. There is exactly one
configuration for the gripper that can push the plate along the ray from oI to oF . The
planner chooses a robot configuration, rP , that has the gripper in this configuration.
Let r′P be the robot’s configuration after pushing the plate from oI to oF (we assume
the robot arm can reach all pushing configurations on the table). The empty space
planner returns a transit from (rI , oI) to (rP , oI), a push from (rP , oI) to (r′P , oF),
and a transit from (r′P , oF) to (rF , oF). During transit, collision checking between
the plate and table is disabled. During push, collision checking between the plate and
table, table and gripper, and gripper and plate are all disabled.

This empty space planner successfully plans through some of the important lower-
level subspaces. For instance, it makes it possible to add to the tree configurations
in which the gripper is in two-point contact with the plate. However, with this type
of empty space planner, a traditional non-holonomic RRT still fails to find a solution
to most manipulation problems. One such scenario is illustrated in Figure 3.4. In
this case, a fixed obstacle blocks all direct paths from the robot’s initial configuration

55

(a) If the plate’s configuration in the final configuration matches the plate’s configuration in
the initial configuration, the empty space planner returns a single transit from the robot’s
initial configuration to the robot’s final configuration.

(b) If the plate’s configuration in the final configuration does not match the plate’s con-
figuration in the initial configuration, the empty space planner returns a sequence of three
trajectories. There is a single configuration of the robot’s gripper that can push the plate
along the desired ray to its final configuration. The first trajectory is a transit from the
robot’s initial configuration to this pushing configuration. The second trajectory is a push

from the plate’s initial configuration to its final configuration. The third trajectory is a
transit from the robot’s configuration after pushing to its final configuration.

Figure 3.3: The empty space planner in the Plate Pushing World. Initial configura-
tions are shown in the photograph while final configurations are shown with dashed
black lines. For ease of visualization, only the gripper’s path and only the gripper
position in the robot’s final configuration are shown, and trajectories that are straight
lines in joint space are shown as straight lines for the gripper.

56

Figure 3.4: An illustration of the failure of the non-holonomic RRT in the Plate
Pushing World. The bowl is a fixed obstacle and the initial configuration is shown
in the photograph. Every straight line path from the robot’s initial configuration
to any configuration in which the robot’s gripper is in two-point contact with the
plate is blocked by the bowl. A number of samples for the plate (the sample for
the robot is irrelevant and not shown to avoid clutter) are shown in different colors.
The corresponding pieces of path added to the tree are shown as solid lines in the
corresponding colors. Because we have zero probability of sampling a configuration in
which the plate is in its initial configuration, the first part of the trajectory returned
by the empty space planner is always a straight line to a configuration in which the
robot’s gripper is in two-point contact with the plate. Therefore, with probability one,
the algorithm never adds a configuration to the tree in which the robot is pushing
the plate.

to any configuration in which the robot’s gripper is in two-point contact with the
plate. With probability one, the algorithm never samples a configuration in which
the plate’s sampled position matches its position in the starting configuration passed
to the algorithm. Therefore, the empty space planner always returns, as its first
primitive, a direct path from the robot’s current configuration to a configuration in
which its gripper is in two-point contact with the plate. Because all of these paths
have an early collision with the bowl, the RRT fails to solve all but the most trivial
problems in this domain. This is not simply a situation in which the RRT is slow;
the RRT cannot solve the problem shown in Figure 3.4 even given infinite time. It
is not complete in this domain because the solution requires moving through the low
dimensional subspace in which the robot moves but the plate does not.

The fundamental problem is that the constraints of the primitives lead to the
the empty space planner having two distinct solution classes: it can either return a
trajectory generated by transit or a sequence of transit-push-transit. However,

57

Figure 3.5: In this example, the transit projection function was used with Sample 1
followed by the push projection function with Sample 2. This allows the robot to
move its gripper around the bowl and add configurations to the tree in which it is
pushing the plate.

if we sample final configurations uniformly at random from the configuration space,
the empty space planner has zero probability of returning the transit trajectory.
These types of problems are common to manipulation. In almost every manipulation
problem, the robot must be near the object in order to manipulate it. Moreover,
the types of manipulation themselves can also bifurcate the planner. For instance,
consider a primitive that can only move an object to one configuration or along a
specific line. Given final configurations sampled uniformly at random from the space,
an empty space planner will likely never use this primitive, but it may be necessary
to the final solution.

There are many possible methods for circumventing this problem. We could create
smarter empty space planners in the manner of explicit multi-modal planning [14].
However, as we discuss in Section 4.1, these planners become more difficult to write
as the types of manipulation become more complicated and more inter-dependent. It
is hard to imagine a general solution in which the empty space planner is not, in fact,
solving the whole problem.

Therefore, our solution is twofold. We use empty space planners to find trajectory
sequences the robot can execute in the absence of obstacles, and we also use projection
functions to ensure that there is some probability that all of the solution classes of
the empty space planner can be returned. These functions take as input both the
random sample and the configuration in the tree nearest to the random sample and
“adjust” the random sample accordingly. For example, in the Plate Pushing World,
we could use two projection functions:

Transit Let (rT , oT) be the nearest configuration in the tree to the random sample

58

(rS, oS). The transit projection function returns (rS, oT).

Push Let (rT , oT) be the nearest configuration in the tree to the random sample
(rS, oS). The push projection functions returns (rS, oS).

Now when we search, we do not immediately try to extend towards the random
sample. Instead, we choose a projection function, apply it to the sample, and then use
the empty space planner to extend towards the projected configuration. This allows
the empty space planner to sometimes return trajectories generated by transit,
which allows the robot and object to take up different positions relative to each
other. This is shown in Figure 3.5.

In the next sections, we explain the DARRT algorithm more fully. In Chapter 6,
we show that the combination of the empty space planner and projection functions
ensures that DARRT exponentially convergent.

3.2.2 Overview

Pseudo-code for the DARRT algorithm is given in Algorithm 3.1. This algorithm
takes as input a DAMA problem, an empty space planner, a set of projection func-
tions, and a distance metric ρi for each subspace i. Like an RRT, each iteration begins
by choosing a configuration xS uniformly at random from the full configuration space.
We then find the configuration xT in the tree closest to xS. We choose a projection
function to apply, project xS to xF , and extend xT to xF . The Extend function is
the same Extend function as is used in a non-holonomic RRT.

In the next sections, we discuss our particular choice of distance function for
manipulation domains, the empty space planner, and the projection functions. We
present the experimental results using this algorithm in Chapter 5 and the theoretical
results in Chapter 6.

3.2.3 Distance Function

As we showed in Section 2.2.1, the distance function for an RRT should reflect how
well one configuration approximates another. Specifically, if the distance from a
configuration xI to a configuration xF is small and xI is in free space, xF should also
be in free space. For manipulation problems, this means that the distance function
should consider the distance in each subspace individually. For example, consider
again the Plate World of Section 3.1. The full configuration space is the cross product
space of the robot’s space and the plate’s space. If a configuration is in free space,
then we can likely move the plate or the robot slightly and remain in free space.

Our choice of distance function is shown on Line 4 of Algorithm 3.1. For config-
uration space X = R × O1 × ... × On, let M0 = R and Mi>0 = Oi. Additionally, for
configuration x, let xi be the projection of configuration x onto subspace Mi. For
instance if x = (r, o1, ..., on) the projection of x onto M0 is r while the projection of
x onto Mi>0 is oi. We assume that we have distance metrics ρi defined for each sub-
space Mi. We then define the distance from a configuration xI ∈ X to a configuration

59

Algorithm 3.1
Input: X = R × O1 × ... × On, Configuration space; {B0, ..., Bq}, Fixed obstacles;
{p0, ..., pm}, Manipulation primitives; x0, Initial configuration; XG, Goal set; L,
Empty Space planner; {f0, ..., fj}, Projection functions; {ρ0, ..., ρn}, Distance met-
rics for each subspace
Output: Trajectory sequence from x0 into XG

DARRT (X, {B0, ..., Bq}, {p0, ..., pm}, x0, XG, L, {f0, ..., fj}, {ρ0, ..., ρn})

1 V ← {x0}
2 while V ∩XG = ∅
3 xS ←configuration chosen uniformly at random from X
4 xT ← argminv∈V maxi∈{0,...,n} ρi(vi, xS,i)
5 f ← randomChoice({f0, ..., fj})
6 xF ← f(xT , xS)
7 {τ0, ..., τl} ← Extend (xT , xF , X, {B0, ..., Bq}, {p0, ..., pm}, L)
8 V ← V ∪

⋃

τ∈{τ0,...,τl}

⋃

α∈[0,1] τ(α)

9 return ExtractTrajectorySequence(V)

Extend (xI , xF , X, {B0, ..., Bq}, {p0, ..., pm}, L)

1 {τ0, ..., τl} ← L(xI , xF , {p0, ..., pm})
2 for i ∈ {0, ..., l}
3 for α ∈ [0, 1] // Usually discretized in practice
4 if collision(τi(α), {B0, ..., Bq}, X)
5 return {τ0, ..., τi−1}∪ {τi from 0 to α}
6 return {τ0, ..., τl}

xF ∈ X as the maximum distance in any subspace:

ρ(xI , xF) = max
i∈{0,...,n}

ρi(xI,i, xF,i). (3.9)

The maximum of distance metrics is also a distance metric. In Chapter 6, we show
that this distance function allows DARRT to converge exponentially in manipulation
domains.

It is interesting to note that this distance metric is not an accurate measure of how
far the robot must move between two configurations. Figure 3.6 gives an example in
the Plate Pushing World of Section 3.2.1. Here xI is a configuration in which the robot
and plate are far apart while xF is a configuration in which the plate’s and robot’s
configurations are close to what they are in xI . To move from configuration xI to
configuration xF , however, the robot has to move over to the plate, push it, and then
move back to nearly its original position. Our distance function considers these two
configurations “close,” but the actual distance the robot must travel between them
is not short. We have not been able to prove that the algorithm is exponentially

60

Figure 3.6: The path from the configuration shown in the photograph to the con-
figuration shown with the dashed black lines. Although these two configurations are
“close” according to the distance function, this path is long.

convergent if we use a distance function that more accurately reflects the distance
the robot travels.

3.2.4 Empty Space Planner

The empty space planner should use the primitives to create a trajectory sequence.
This trajectory sequence does not necessarily need to be collision free.

Definition 3.9 (Empty Space Planner): Let P be a DAMA problem with
primitive set P . A function, L, from X(P) to a trajectory sequence is an empty
space planner for P if and only if, for all xI , xF ∈ X(P), L(xI , xF) is a trajectory
sequence from xI to xF that could be generated by P .

This means that if it is possible for the primitives to generate a trajectory from
configuration xI to configuration xF , the empty space planner must return a trajec-
tory from xI to xF . Empty space planners are usually mostly independent of fixed
obstacle placement, but they may require some information about support surfaces.
Additionally, empty space planners do consider kinematic constraints. The primitives
return full trajectories for the robot and objects and in the process must necessarily
solve for a full configuration of the robot at every point.

The empty space planner is how the user builds domain knowledge into the algo-
rithm. The planner is dependent on the primitives used so it is part of the input to the
DARRT algorithm. In practice, we have found that empty space planners are both
easy to write and computationally tractable in many domains. We outline one imple-
mentation choice here that worked well in practice, but Algorithm 3.1 only requires

61

Algorithm 3.2
Input: xI , Initial configuration; xF , Final configuration; {p0, ..., pm}, Primitives
Output: Trajectory sequence from xI to xF

EmptySpacePlanner(xI , xF , {p0, ..., pm})

1 if xI = xF

2 return ∅
3 p← usefulPrimitive(xI , xF , {p0, ..., pm})
4 {τ0, ..., τl} ← p.propagate(xI , xF)
5 return {τ0, ..., τl} ∪ EmptySpacePlanner(τl(1), xF , {p0, ..., pm})

an empty space planner satisfying Definition 3.9. In Chapter 6, we give more rigorous
conditions on the empty space planner that guarantee exponential convergence.

In our implementation of the empty space planner, we require that each primitive
have some extra information in the form of a propagate function. The propagate
function takes as input an initial configuration xI and a final configuration xF and
returns either NULL or a trajectory sequence (usually ending with a trajectory gen-
erated by the primitive). The first configuration on the trajectory sequence must
be xI , but the last configuration need only be some configuration that can be fed
to another primitive’s propagate function to eventually reach xF . The user must
ensure that the output of propagate functions can be chained. A primitive is useful
in propagating configuration xI towards configuration xF if the propagate function
does not return NULL. The empty space planner then repeatedly searches for a use-
ful primitive1 and appends the trajectory sequence from that primitive’s propagate
function to its current sequence. This is shown in Algorithm 3.2.

For example, in the Plate World, we use the following propagate functions:

Transit The propagate function for transit returns NULL when transit is not
applicable and the trajectory generated by transit when transit is applicable.

Push The propagate function for push returns NULL when the plate is in the same
position in the initial and final configurations or the plate is not on a support
surface in the initial configuration. Otherwise, assume the input is xI = (rI , oI)
and xF = (rF , oF). If oF is on the support surface, let oT = oF . Otherwise, let
oT be the closest configuration to oF such that the plate is on the edge of the
table. If oT = oI , the propagate function returns NULL. Otherwise, there is
one configuration for the gripper that can push the plate along the line from oI
to oT . The function chooses a configuration for the robot, rP , with the gripper
in this configuration. If it is possible to move the plate in a straight line from

1If there are multiple useful primitives for a pair of configurations, the empty space planner
chooses one randomly. In Chapter 6, we require that the empty space planner be deterministic. We
could require that the empty space planner remember its choices, but in fact, there is zero probability
that the empty space planner is called with the same two arguments so there is no need to do this.

62

oI to oT , let r
′
P be the robot’s configuration after moving the plate along this

ray and let oP = oT . Otherwise, let oP be the farthest point along this ray that
the robot can reach without moving its base, and let r′P be the configuration
for the robot when the plate is at oP . The function then returns the trajectory
generated by transit from (rI , oI) to (rP , oI) and the trajectory generated by
push from (rP , oI) to (r′P , oP).

Rigid-Transfer The propagate function for rigid-transfer returns NULL when
the plate is in the same position in the initial and final configurations, the
plate is on a support surface and there is no grasp for it that is collision free
for the gripper (i.e. the plate is not on the edge of the surface) in the initial
configuration, the plate is not grasped in the final configuration, or the grasp
in the initial configuration and final configuration do not match. Let rg be the
configuration in which the robot is grasping the plate when the plate is at oI
using the grasp from xF . The propagate function returns a transit from
(rI , oI) to (rg, oI) (when rg 6= rI) and then a rigid-transfer from (rg, oI) to
(rF , oF).

Consider creating an empty space plan from the configuration shown in the pho-
tograph of Figure 3.1b to the sampled configuration shown with solid white lines. In
the initial configuration, push is useful. Its propagate function returns the trajec-
tory sequence in which the robot first transits to a pushing configuration and then
pushes the plate. In the final configuration of this sequence, the plate is on the edge
of the table. Thus, in this configuration, rigid-transfer is useful. Its propagate
function returns a transit to the grasp and then a rigid-transfer to the final
configuration. If the first push of the plate had not been able to reach the edge of the
table, push would have continued to be useful, creating more transit-push sequences
until the plate could be pushed to the edge of the table.

The propagate functions are, in a sense, also empty space planners. We let the
empty space planner chain them rather than using each propagate as a single plan
both for ease of implementation and also for the adaptation to the bi-directional
planner we discuss in Section 3.3.

The primitives define a set of constraints that govern the trajectories they return.
For instance, in the trajectories returned by transit, only the robot can change its
configuration. In the trajectories returned by push (by the actual primitive, not its
propagate function), the robot and plate always have the same relative configura-
tion. Planning in these constrained spaces creates two challenges: The configuration
towards which the algorithm extends should fall within the constraints of some prim-
itive (and not always the same one), and it must be possible to find a configuration
at the intersection of two primitives. This is shown in Figure 3.7.

The empty space planner is capable of the latter since it may require many prim-
itives to move from an initial configuration to a final configuration. However, it is
possible that the probability of sampling a configuration that the empty space plan-
ner can reach is zero. Consider again the Plate World. The empty space planner for
this world can only reach configurations in which the plate is supported by the table

63

Figure 3.7: Primitives each define a set of constraints that usually are a lower-
dimensional subspace of the full configuration space. In this figure, one primitive
defines the one-dimensional subset shown by the solid black line and another defines
the subset shown by the dashed black line. The search must be able to find config-
urations in both subsets and also at the (even lower-dimensional) intersection of the
sets. We use empty space planners to plan through the intersections and projection
functions to guarantee that all samples are in some primitive’s constrained subspace.

or grasped. The probability of sampling those configurations is zero. Therefore, we
must be able to adjust the final configurations before they are given to the empty
space planner. For this, we use projection functions.

3.2.5 Projection Functions

The empty space planner allows the search to move through intersections of con-
straints as shown. However, it requires samples that fulfill the constraint of some
primitive. Moreover, the the empty space planner has many “types” of solutions it
can return depending on which constraint the final configuration fulfills. For instance,
in the Plate Pushing World, the empty space planner could return a trajectory se-
quence of only a transit or a trajectory sequence of two transits and a push. Most
actual collision free trajectory sequences require multiple transits before a push.
Therefore, we require projection functions that project samples onto the primitive’s
constraints.

The constraints primitives define depend on the initial configuration, which in turn
depends on the primitives earlier in the sequence. The sequence of primitives used
to move from one configuration to another is governed by the empty space planner,
which returns a sequence of trajectories generated by some sequence of primitives.
The sequence of primitives used to generate the trajectory sequence is the trajectory
class. A necessary condition for completeness is that there is a non-zero probability
that the empty space planner return every trajectory class.

Definition 3.10 (Trajectory Class): Let P be a DAMA problem. The trajectory
class C = {p0, ..., pl} is the set of trajectories that can be generated by the sequence
of primitives {p0, ..., pl}.

We are interested in the classes of trajectories the empty space planner can return.
For trajectory class C, X(C) is the pairs of configurations for which the empty space

64

planner, L, returns a trajectory in C,

X(C) =
{

(xI , xF)
∣

∣L(xI , xF) ∈ C
}

. (3.10)

We let the set of initial configurations for which the empty space planner can return
a trajectory in class C be

XI(C) =
{

xI ∈ X
∣

∣∃xF ∈ X, (xI , xF) ∈ X(C)
}

, (3.11)

while the set of configurations that the empty space planner can reach using a tra-
jectory in class C is,

XF (C) =
{

xF ∈ X
∣

∣∃xI ∈ X, (xI , xF) ∈ X(C)
}

. (3.12)

The set of configurations that can be reached from configuration xI using the empty
space planner and only considering trajectories in class C is

XF (C|xI) =
{

xF ∈ X
∣

∣(xI , xF) ∈ X(C)
}

. (3.13)

For example, in the Plate Pushing World, the empty space planner can return
four classes of trajectories: the Transit Class, {transit}, the Push Class, {push}, the
Transit-Push Class, {transit, push}, and the Transit-Push-Transit Class, {transit,
push, transit}. However, if we randomly sample final configurations from the con-
figuration space, the empty space planner has zero probability of ever returning a
solution in the Transit, Push, or Transit-Push Classes. We use projection functions
instead to ensure some probability of returning all solution classes.

A projection function takes a configuration xS and an initial configuration xI and
projects xS onto some constrained subspace defined by xI . Two examples of projection
functions were given in Section 3.2.1. A projection function can be any function from
X ×X to X.

The projection functions choose the trajectory class that the empty space planner
returns. We require that there be some probability of returning every trajectory class.

Definition 3.11 (Projection Function Set): The set of projection functions
{f0, ..., fj} is a projection function set for a DAMA problem P and empty space
planner L if and only if for all solution classes C that L can return, for all xI ∈ XI(C),
for some fi, there is probability greater than zero that for xS chosen uniformly at
random from X, L(xI , f(xI , xS)) ∈ C.

As with the empty space planner, Algorithm 3.1 can take as input any set of
projection functions that satisfies Definition 3.11. Here we describe a strategy for
creating sets of projection functions that works well in practice. In Chapter 6, we
treat projection functions more rigorously.

In general, we have found that the ordering of the primitives does not change the
constraints on the primitives. The result is that the empty space planner usually has
one trajectory class per primitive. Therefore, we create one projection function per

65

primitive. Let L(x0) be the set of configurations reachable from x0 using the empty
space planner. Then

Definition 3.12 (Primitive Projection Function): For primitive pi, the prim-
itive projection function fi(xI , xS) returns a configuration in XF (p) ∩ L(xI) or xS if
XF (p) ∩ L(xI) = ∅.

Choosing a projection function for a primitive is usually easy. For example, in the
Plate World, we have three projection functions:

Transit On input xI = (rI , oI) and xS = (rS, oS), if oI is not on a support surface
(so xI 6∈ X0(transit)), the function returns xS. Otherwise, it returns (rS, oI).

Push On input xI = (rI , oI) and xS = (rS, oS), if oI is not on a support surface (so
xI 6∈ X0(push)), this function returns xS. Otherwise, it first chooses an ending
configuration, oP , for the plate. If (rI , oI) is a pushing configuration, oP is the
closest configuration to oS that can be reached with a single push. Otherwise,
oP is the closest configuration to oS on the same support surface as the plate in
xI . The robot configuration, rP , is the pushing configuration in which the robot
ends after pushing the plate from oI to oP . This function returns (rP , oP).

Rigid-transfer function: On input xI = (rI , oI) and xS = (rS, oS), this function
first chooses a grasp for the robot. If the robot is grasping the plate in xI ,
it chooses this grasp. Otherwise, it chooses a random grasp. It then finds an
inverse kinematics solution, rg. for the robot to use this grasp to hold the plate
at oS. It returns (rg, oS).

The definition of the empty space planner and the projection functions are not
enough to ensure exponential convergence or even completeness because we cannot
guarantee that the distance function allows us to connect the correct configurations.
In Chapter 6, we discuss the requirements on the empty space planner and projection
functions for exponential convergence. However, it is difficult to verify that a given
empty space planner and projection functions meet these requirements. In practice,
we have found that using empty space planners and projection functions that fulfill
the definitions in this chapter gives good results and are much easier to verify.

3.3 DARRTConnect Algorithm

DARRT is based on the RRT algorithm. Using the empty space planner defined in
Section 3.2.4, we can create a version of DARRT based instead on the RRTCon-
nect algorithm.

3.3.1 Motivation

As with the RRT, the majority of the planning time inDARRT is spent finding paths
around obstacles. Consider again the Plate World. When the plate is at the edge of

66

Contact

Figure 3.8: When the plate is at the edge of the table the robot can grasp it. However,
in trying to move from the pushing configuration (left) to the approach to the grasp
(right), the gripper usually contacts the plate.

the table, the robot can grasp it. However, in moving the plate to the edge of the
table, the robot must have used the push primitive, which puts its gripper on the far
side of the plate from the table edge, as shown in Figure 3.8. During the transition to
the grasp, the robot retreats upwards from the push and then moves in a straight line
in joint space to the approach to the grasp (the retreat and approach are added to this
world in Chapter 5 and make this example clearer). In many cases, there is a collision
between the plate and the robot’s gripper along this line. Subsequent samples are
often near this configuration because the plate is on the boundary of its configurations
on the table. However, the configuration in the tree cannot be extended directly to
the grasp because of the gripper-plate collision. In order to move around the plate,
the gripper must first move off the direct line of the approach-to-grasp, around the
plate, and then to the approach-to-grasp configuration. This requires a large number
of transit projection samples before a path is found around the plate.

As with the classic RRT, planning bi-directionally can help alleviate this problem.
In this section we present theDARRTConnect algorithm, the bi-directional version
of DARRT, based on the RRTConnect algorithm [23].

3.3.2 Algorithm

The DARRTConnect algorithm is shown in Algorithm 3.3. Because our defi-
nition of an empty space planner requires that the planner return full plans from an
initial configuration xI to a final configuration xF , the DARRTConnect algorithm
does not require a system of inverse control for primitives. Instead, when extending
“backwards” from an ending configuration xF towards a starting configuration xI , we
simply reverse the order of the arguments to the empty space planner. The empty
space planner returns a path from xI to xF that we discretize and then check for
collisions in the reverse order. The result is a valid path backwards from xF towards

67

Algorithm 3.3
Input: X = R × O1 × ... × On, Configuration space; {B0, ..., Bq}, Fixed obstacles;
{p0, ..., pm}, Manipulation primitives; x0, Initial configuration; XG, Goal set; L,
Empty Space planner; {f0, ..., fj}: Projection functions; {ρ0, ..., ρn}, Distance metrics
for each subspace
Output: Trajectory from x0 into XG

DARRTConnect (X, {B0, ..., Bq}, {p0, ..., pm}, x0, XG, L, {f0, ..., fj}, {ρ0, ..., ρn})

1 Va ← {x0}, Vb ← {randomConfiguration(XG)}
2 F ← True // True when extending forwards
3 while True
4 if F

// Add a goal configuration to the backwards tree
5 Vb ← Vb ∪ {randomConfiguration(XG)}
6 xS ←configuration chosen uniformly at random from X
7 xT ← argminv∈Va maxi∈{0,...,n} ρi(vi, xS,i)
8 f ← randomChoice({f0, ..., fj})
9 xF ← f(xT , xS, F)
10 {τ0, ..., τl} ← Extend (xT , xF , X, {B0, ..., Bq}, {p0, ..., pm}, L, F)
11 Va ← Va ∪

⋃

τ∈{τ0,...,τl}

⋃

α∈[0,1] τ(α)

12 if l > 0 or there are configurations in on τ0 // Extend Vb towards Va

13 xT ← argminv∈Vb
maxi∈{0,...,n} ρi(τl(1)i, xS,i)

14 {σ0, ..., σk} ← Extend (xT , τ1(1), X, {B0, ..., Bq}, {p0, ..., pm}, L,¬F)
15 Vb ← Vb ∪

⋃

σ∈{σ0,...,σk}

⋃

α∈[0,1] σ(α)

16 if σk(1) = τl(1)
17 return ExtractTrajectory(Va, Vb)
18 swap(Va, Vb), F ← ¬F

Extend (xT , xS, X, {B0, ..., Bq}, {p0, ..., pm}, L, F)

// xT is the configuration in the tree and xS is the sampled configuration.
// F = True when extending forwards, False backwards.

1 if F
2 {τ0, ..., τl} ← L (xT , xS, {p0, ..., pm})
3 else
4 {τ0, ..., τl} ← L(xS, xT , {p0, ..., pm})
5 reverseTrajectories({τ0, ..., τl}) // Reverse order and every trajectory.
6 for i ∈ {0, ..., l}
7 for α ∈ [0, 1] // Usually discretized in practice.
8 if collision(τi(α), {B0, ..., Bq}, X)
9 return {τ0, ..., τi−1}∪ {τi from 0 to α}

68

xI . This is shown in the Extend method of Algorithm 3.3 when F is false.
There is one more subtlety in this modification, however, because we use projection

functions. We can tell the projection function whether the extension is forwards
or backwards. The better the projection function is in the “backwards” direction,
the more efficient the algorithm is. However, DARRTConnect is still growing a
forward tree. Therefore, we do not need to modify the definition of a set of projection
functions.

The implementation of backwards projection functions when using the empty
space planner in Algorithm 3.2 is similar to that of the forward projection functions.
In fact, in many cases, the projection functions we discussed in Section 3.2.5 work
almost as well backwards as they do forwards. For instance, we could use the transit
function unmodified. The push function only requires a modification when the final
configuration is a pushing configuration. For the rigid-transfer function, we should
project backwards only when the final configuration is a grasp to create an initial
configuration using the same grasp. More generally, for primitive pi, a reasonable
choice for backwards projection function fi is

fi(xT , xS,False) =

{

xS if xF 6∈ XF (pi)
argminxI∈XI(pi) ρ(xI , xT) else.

(3.14)

These functions can be modified to increase the efficiency of the algorithm.
In the next chapter, we describe a hierarchical algorithm to solve DAMA prob-

lems that uses DARRT or DARRTConnect as a subroutine. In Chapter 5, we
present results for both algorithms and in Chapter 6, we prove that DARRT is expo-
nentially convergent under some assumptions about the configuration space, empty
space planner, and projection functions.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

Chapter 4

A Hierarchical Approach to
Diverse Action Manipulation

In Chapter 3, we presented sampling-based search algorithms for solving the diverse
action manipulation problem. However, these algorithms are “flat” in the sense that
they search the whole space without attempting to identify and solve smaller parts
of the problem first. Manipulation problems lend themselves to more hierarchical
algorithms because the planning for each of the manipulation primitives is almost
decoupled. For example, the task of picking an object off of a table and placing
it on another involves two manipulation primitives: transit and rigid-transfer.
Once we choose the grasp to use, we can plan the transit to the grasp and the
rigid-transfer of the object entirely separately. The caveat is that the grasp must
be chosen a priori. The grasp has to be one that the robot can achieve without
colliding with obstacles in the world and also one that allows the robot to place
the object on the table. The grasp used is a “subgoal” of the problem, and these
are not necessarily easy to identify. In this chapter we discuss a hierarchical algo-
rithm for manipulation that attempts to choose good subgoals for each manipulation
primitive. We begin by casting the problem as a multi-modal problem. Recall from
Section 2.3.5 that multi-modal problems have an extra structure to the configuration
space in which configurations can be sorted into modes. We show how to create a hier-
archical algorithm that uses this structure to attempt to plan first between large sets
of configurations, roughly corresponding to mode families, and then to plan within
each set of configurations.

Some of the work in this chapter was previously discussed in Barry et al. [3].

4.1 Manipulation as Multi-Modal Planning

Recall from Section 2.3.5, that a multi-modal problem is a tuple 〈X,Σ〉 where X is
a configuration space and Σ is a mode space [14]. Each mode σ ∈ Σ defines a set
of mode-specific constraints that in turn define a set of configurations that satisfy
those constraints. A state (x, σ) in a multi-modal problem specifies both the current
configuration x and the mode σ. For adaptation to continuous-mode problems, such

71

as the DAMA problem, we describe the set of continuous modes as a finite, discrete
set of mode families [15]. Mode families partition a continuous mode set using a
co-parameter that varies to describe each of the different modes. Transitions between
modes within a mode family are disallowed; modes must first transition out of the
family. An example of a multi-modal problem with continuous modes is shown in
Figure 2.15.

The Navigation Among Movable Obstacles (NAMO) problem is an example of a
multi-modal manipulation problem. Recall that in this problem there are n movable
obstacles and the robot can move by itself or manipulate one movable obstacle at a
time. This gives us n+1 mode families, one for each movable obstacle and one for the
robot moving by itself. As in the example shown in Figure 2.15, the co-parameters
of each family are the positions of the stationary obstacles.

We formally define the multi-modal diverse action manipulation problem and then
explain why prior techniques in multi-modal planning can fail for some of these prob-
lems before presenting our hierarchical algorithm for planning for manipulation.

4.1.1 MM-DAMA Problem

Recall the DAMA problem from Section 3.1. We can automatically create a multi-
modal instance of the DAMA problem:

Definition 4.1 (DAMA Problem): Let the DAMA problem be
〈

R, {O1, ..., On},
{B0, ..., Bq}, {p0, ..., pm}, x0, XG

〉

. For each primitive pi, we define one mode family.
A mode is an assignment of parameters like grasps or relative configurations to the
robot and objects being manipulated and a stationary configuration of the objects
not being manipulated. The MM-DAMA problem is the DAMA problem augmented
by this mode space.

Consider again the Plate World of Section 3.2.1 in which a robot manipulates
a plate using the transit, rigid-transfer, and push primitives. This world has
three mode families, one for each of the primitives. Within each mode family, there
is a set of parameters that we can vary. For instance, in transit the robot moves
and the plate remains stationary so the co-parameter of the Transit family is the
plate’s configuration. In the Rigid-Transfer family, the robot and plate both move
but the plate must be grasped, so the co-parameter is the grasp. Similarly, the co-
parameter for the Push family corresponds to different pushing configurations. If
there was also a bowl in the world that could be grasped but not pushed, we would
have four mode families: Transit, Rigid-Transfer-Plate, Rigid-Transfer-Bowl,
and Push-Plate. Note that it is impossible to transition between modes within the
same family. For instance, to change the pushing configuration (Push family), the
robot must pass through Transit. Additionally, although we use the mode family
formulation because the majority of the modes are continuous, they do not have to
be. For instance, we may have a finite number of grasps for the plate. In this case,
the Rigid-Transfer family has only a finite number of modes.

72

Figure 4.1: We assume the plate can only be grasped at a single position on the table.

4.1.2 Explicit Multi-Modal Planning

Hauser [14] originally proposed the multi-modal framework and also several sampling-
based algorithms for solving multi-modal problems. Those algorithms require an extra
piece of information specifying not only the modes of the problem but also a high-level
mode graph guiding the possible mode transitions. This graph may have transitions
that cannot occur in actuality, but it must describe all possible transitions. Recall
from Section 2.3.5 that the algorithms rely on the following extension step:

1. Sample an adjacent mode from the mode adjacency graph

2. Sample a transition configuration from the intersection of the two modes

3. Plan a collision free, feasible path within a single mode to reach this transition

However, there are situations in which these algorithms may not be complete.
Consider again the problem of pushing an object on a table, but add the additional
constraint that there is only one spot on edge of the table at which the robot can
grasp the object. This situation is shown in Figure 4.1. The Tool Use domain, for
which we present results in Chapter 5, has a constraint like this.

Recall that the primitives in the Plate World are transit, rigid-transfer, and
push. The mode families are Transit, co-parameterized by the position of the plate,
Rigid-Transfer, co-parameterized by the grasp used, and Push, co-parameterized
by the pushing configuration used. The mode adjacency graph for the Plate World
is shown in Figure 4.2. The Transit and Push families are adjacent, as are Rigid-
Transfer and Transit. Push and Rigid-Transfer are not adjacent because no
configuration exists in which the robot and plate are simultaneously in a pushing
configuration and a grasping configuration. In other words, the robot must transit
between any push and rigid-transfer. Intersections between Transit and Push
are collision free pushing configurations. Intersections between Transit and Rigid-
Transfer are collision free grasping configurations in which the plate is at the special
configuration on the edge of the table.

Assume the plate starts on the table. Any path involving rigid transfer must
include the following steps:

73

Figure 4.2: The mode adjacency graph in the Plate World.

1. Robot transits to pushing configuration

2. Robot pushes plate to the special configuration on the edge of the table

3. Robot transits to grasping configuration

4. Robot rigid-transfers the plate to the goal

However, we plan single mode pushing paths only when PlanModeSwitch(x, σ)
in Algorithm 2.5 is called with σ=Push. In this case, only Transit can be returned
from AdjacentMode because only Transit is adjacent to Push. Therefore, Tran-
sition returns a configuration in the intersection of Transit and Push, ideally a
random position for the plate on the table that can be reached with a single push.
Thus all pushing paths are planned such that the plate ends in a random position on
the table; the probability that the plate ends at the special point on the edge of the
table is zero. Therefore, the algorithm never creates a single mode plan for pushing
the plate to that special point on the edge of the table. Thus there is never be a
configuration in the tree in which the plate’s configuration is at the edge of the table
and the transition from Transit to Rigid-Transfer cannot occur.

Note that we could write the mode graph so that we only sample the plate at
the special point on the edge of the table when sampling from the intersection of
Transit and Rigid-Transfer modes. However, this only happens when the single
mode planning is for Transit, in which the plate cannot move. We require that all
points on the table be in the intersection of Transit and Push so that we can push
around obstacles.

An alternative solution to this problem is to define transit-and-push as a single
mode family, giving us a “single mode planner” that plans multiple pushes and tran-
sits. The intersection of this mode and transit could be configurations with the plate
at the special point. However, what if a third primitive needs to be involved? At
some point, the single mode planners would become responsible for solving the entire

74

problem because, unlike empty space planners, single mode planners must handle
collisions. We discuss this further in Section 4.3.

In most manipulation problems, transfer primitives can only transition to and
from transit primitives, but there may be dependency between transfer primitives.
Explicit multi-modal planning cannot capture this multi-step dependency. Since our
focus is on manipulation problems, we are not able to use the explicit multi-modal
algorithms for our problems.

4.2 DARRTH Algorithm

Many solutions to specific manipulation problems implicitly rely on their multi-modal
nature. For example, in Section 2.3, we discussed two manipulation problems: re-
grasping and NAMO. Both of these problems are subsets of the MM-DAMA prob-
lem defined in Section 4.1.1. For re-grasping, there are two mode families: Rigid-
Transfer and Transit. Transit is co-parameterized by the location of the object
while Rigid-Transfer is co-parameterized by the grasp. The NAMO problem with
n movable obstacles has n+1 mode families, one for each obstacle, co-parameterized
by the robot’s grasp and location of the non-moving obstacles, and Transit, co-
parameterized by the location of the obstacles. The solutions to these problems are
usually multi-modal in nature.

Firstly, consider PG-map, which we discussed in Section 2.3.2. Recall that CG ∩
CP is the region of configuration space in which the object can sit stably and the robot
can grasp it. Therefore, this is the only region in which the robot can change mode
families. Since modes within the same family cannot transition to one another, modes
can only change within CG ∩ CP . PG-map first plans a path between connected
components of CG ∩ CP . This gives a high level ordering of mode families since
the mode family changes at each component of CG ∩ CP . However, the reduction
property actually allows PG-map to choose the individual modes a priori. Each
connected component of CG ∩ CP may include multiple grasps and multiple object
locations, but the reduction property guarantees that any configuration in a connected
component of CG ∩ CP can reach any other configuration in the same component.
The result is that the algorithm can choose any mode in a component of CG ∩ CP
with which to enter CG ∩ CP and any mode in that same component with which to
leave it. Thus PG-map can choose grasps and place locations and plan to achieve each
of those individually. After planning through the connected components of CG∩CP
the algorithm does not just know the mode family ordering, i.e. first Transit then
Rigid-Transfer, but in fact it knows the mode ordering as well, i.e. transit to this
grasp then rigid-transfer using this grasp. The ability to assign modes a priori is
very powerful.

The solutions proposed for NAMO also focus on trying to identify the sequence of
modes and then plan for each mode. The only method that does this exactly is the
approach proposed by van den Berg et al. [52], which we discussed in Section 2.3.3.
van den Berg et al. first choose the obstacles to move, ensuring that there is some
actual grasp for the robot, which essentially allows them to choose a mode. After

75

choosing each obstacle and grasp, they plan the individual robot motions.

These algorithms are both examples of an idealized algorithm for solving the MM-
DAMA problem:

1. Plan a sequence of modes.

2. Plan for each mode in the sequence individually.

However, PG-map and the version of NAMO proposed by van den Berg et al. both
rely on describing connected components of the robot’s configuration space to perform
these steps. PG-map is able to use the holonomic robot and rigid-grasp aspects of
the problem to describe CG ∩ CP , while van den Berg et al. assume it is possible
to analytically describe all connected components of the robot’s configuration space.
Because we allow non-prehensile manipulation and have potentially high dimensional
configuration spaces, we are not able to apply the same leverage to the problem.

When the connected components of the robot’s configuration space cannot be
described, effective solution methods focus on finding a sequence of mode families
in Step 1 rather than a sequence of modes. The difference is that of knowing the
correct primitive to apply rather than knowing the exact configuration in which to
apply it. For example, if we know that we must find a transition between Transit
and Rigid-Transfer, we know the sequence of mode families. If, however, we know
the specific grasp to use in the rigid-transfer, we know the sequence of modes. We
also simplify the problem in this way, modifying the algorithm to:

1. Plan a sequence of mode families

2. Plan within each mode family

Moreover, in manipulation, transfer mode families are rarely able to transition to one
another because this requires a configuration that could simultaneously be used for
two different types of transfer. Therefore, we know that a transit must occur between
every type of transfer and the interesting ordering is within the ordering of transfers.
Thus, we simplify the algorithm even further:

1. Plan a sequence of transfer mode families

2. Plan each set of transfer and transit trajectories

Throughout the rest of this chapter we assume that the goal only involves a single
object, which we refer to as the goal object. There may be other objects in the domain
that are used as tools. If the domain is uncluttered, the algorithm can be repeated
for each object. Otherwise, we can combine our algorithms for manipulation with the
NAMO work to first find a candidate order in which to move objects and then plan
the manipulations for each object individually.

76

4.2.1 Finding an Object Path

A common theme in manipulation planning is to plan a path for the objects first and
then use information from that plan to guide the search for a full path [36, 37, 44, 46,
47, 48, 52]. In our hierarchical approach to manipulation, we also first try to identify
an object path. We then use that path to find a sequence of transfer mode families.

van den Berg et al. [52] give a method for planning a valid object path using two
criteria:

1. The path is collision free for the object.

2. The object is manipulable at all points along the path.

van den Berg et al. define “manipulable” to mean that the object is adjacent to the
robot’s current connected component in configuration space. However, this definition
relies on the robot being able to grasp the object at any point of contact, the object
being able to sit stably everywhere in its configuration space, and there only being a
single object in the domain. Since none of these are necessarily true in our domains, we
need to modify the definition of manipulable. Let Rfree be the the set of configurations
for the robot not in contact with any fixed obstacles.

Definition 4.2 (Manipulable): A set of objects aremanipulable from configuration
(oI,1, ..., oI,n) to configuration (oF,1, ..., oF,n) if and only if for some primitive p and
robot configurations rI and rF , p is applicable to

(

(rI , oI,1, ..., oI,n), (rF , oF,1, ..., oF,n)
)

,
and the trajectory for the robot returned by p lies entirely within the robot’s current
connected component of Rfree.

Now we can update the definition of valid to work with this definition of manip-
ulability:

Definition 4.3 (Valid): A trajectory sequence {τ0, ..., τl} for a set of objects is
valid if and only if

1. The sequence is collision free for the objects.

2. For all i ∈ {0, ..., l}, the objects are manipulable from τi(0) to τi(1).

Exactly calculating valid paths requires characterizing the connected components
of the robot’s configuration space and the possible applicable primitives at each con-
figuration. Even were this computationally feasible, it would be very likely harder
than solving the original problem. However, we cannot ignore manipulability entirely
because the object paths must obey the constraints of the manipulation primitives.
For instance, in the Plate World, while the plate is on the table, push is the only
applicable transfer primitive. The plate cannot rise straight up off the table; it must
first be pushed to the edge of the table and, since we are interested in the order of
transfer primitives, we want the path for the plate to reflect this constraint.

77

Thus, we plan object paths using DARRT(Connect) but only checking colli-
sions between the objects and the environment. These paths fulfill the first condition
of a valid path, but only approximately satisfy manipulability. Although we ensure
that there is some applicable primitive, we do not ensure that the corresponding
trajectory is within the robot’s current connected component.

In general, solving for an object path is much easier than solving for a full path.
Although the particular path found for the objects is unlikely to be executable by
the robot, the necessity of positioning the objects drives the transfer primitives used
so we expect that the sequence of transfer mode families along the object path is
informative.

Given an object path, we then convert it to a sequence of transfer mode families
and use this to define subgoals.

4.2.2 Manipulation Primitive Subgoals

We use the object path to find a sequence of subgoals. Because we useDARRT(Connect)
to solve for an object path, the object paths are annotated with the manipulation
primitive used. Therefore, we can convert immediately from an object path to a se-
quence of manipulation primitives. Moreover, since only transfer primitives move an
object, the object path consists entirely of transfer primitives.

Therefore, the object path defines a sequence of subgoals g0, ..., gS corresponding
to the transfer primitives p0, ..., pS used along the path. The subgoal gi is the collision
free set of initial configurations for which the primitive pi is applicable, XI(pi)∩Xfree.
We refer to this as a primitive subgoal.

Analytically describing XI(pi) ∩Xfree is not necessarily tractable. However, our
algorithms do not require an analytical description. For DARRT, we must just be
able to decide whether or not a configuration is inXI(pi)∩Xfree. Because we can label
trajectories with the primitive that generated them in the empty space planner, when
trying to achieve subgoal gi, we simply check whether the current set of trajectories
has any generated by primitive pi.

When using DARRTConnect to achieve a primitive subgoal, we also need to
sample from the goal set. To sample from the set XI(pi) ∩Xfree, we use the empty
space planner to create trajectory sequences from the starting configuration of the
current subgoal to a random projected configuration until we find a trajectory τ gen-
erated by pi. If τ(0) is collision free, we return it as a goal configuration. Otherwise,
we sample a new configuration and create another path. Note that we do want to
return τ(0). If we return a later point on the trajectory, we usually must pass through
other configurations using pi (the ones earlier on the trajectory) to reach it. Since
these are likely in collision, this removes the usefulness of the goal sampling. The
definitions of the empty space planner and projection function set guarantee that a
trajectory generated by pi has some probability of being returned by the empty space
planner. In practice, we have found that it is helpful to sample a configuration from
the goal set some percentage of the time.

78

Algorithm 4.1
Input: X = R × O1 × ... × On, Configuration space; {B0, ..., Bq}, Fixed obstacles;
{p0, ..., pm}, Manipulation primitives; x0, Initial configuration; XG, Goal set; L,
Empty Space planner; {f0, ..., fj}, Projection functions; {ρ0, ..., ρn}: Distance metrics
for each subspace; N , Number of DARRT tries
Output: Trajectory from x0 into XG

DARRTH(Connect) (X, {B0, ..., Bq}, {p0, ..., pm}, x0, XG, L, {f0, ..., fj}, {ρ0, ..., ρn})

1 while no solution has been found
2 T ← ∅

// Only check object collisions
3 ω ← DARRT(Connect)(X, {B0, ..., Bq}, {p0, ..., pm}, x0, XG, L, {f0, ..., fj},
{ρ0, ..., ρn})

4 {p0, ..., pk} ← Transfer primitives on ω
5 x← x0, T ← ∅
6 for g ∈ {XI(p0) ∩Xfree, ..., XI(pk) ∩Xfree, XG}
7 while no solution and #attempts < N
8 {τ0, ..., τl} ← DARRT(Connect)(X, {B0, ..., Bq}, {p0, ..., pm}, x,

g, L, {f0, ..., fj}, {ρ0, ..., ρn})
9 if no solution
10 break
11 T ← T ∪ {τ0, ..., τl}
12 x← τi(1)
13 return T

4.2.3 DARRTH(Connect) Algorithm

Pseudo-code for DARRTH(Connect) is shown in Algorithm 4.1. We first gen-
erate an object path using DARRT(Connect) but only checking collisions for the
objects. We then identify the sequence of transfer primitives used along this path
and, for each primitive, run DARRT(Connect) until we achieve a configuration in
which that primitive is applicable. Lastly, we solve for the final goal set.

Because we only approximate the validity of object paths, we cannot guarantee
that the sequence of transfer mode families found from the object path is correct.
Therefore, if we are unable to find a solution for a subgoal, we do eventually restart
the entire algorithm. Thus we must specify two restart conditions: The time after
which to restart a DARRT(Connect) run and the number of DARRT(Connect)
runs after which to restart the entire algorithm. We chose these numbers empirically
for each problem, but found that we rarely required more than one iteration of DAR-
RTH(Connect).

In Chapter 5, we show that DARRTH(Connect) is usually significantly more
efficient than its flat counterpart. In Chapter 6, we prove thatDARRTH(Connect)
is complete under certain assumptions about the primitives and configuration space.

79

4.3 DARRT as a Multi-Modal Planner

While we are interested in the multi-modal DAMA problem primarily as guiding the
hierarchical algorithm, DARRT itself can be viewed as a multi-modal algorithm. In
this case, however, the modes are not the primitives, but the trajectory classes used
during planning. At each iteration, DARRT uses a projection function to choose
the “mode” (i.e. trajectory class) and then extends in that mode. The single mode
planners are, in fact, just different cases within the empty space planner. They are
different from previously proposed single mode planners because they do not attempt
to find collision free plans, but we can still prove exponential convergence for the
algorithm.

80

Chapter 5

Diverse Action Manipulation
Experiments

In this chapter, we present results for the DARRT, DARRTConnect, DARRTH,
and DARRTHConnect algorithms from Chapters 3 and 4 on a set of problems
from two domains. We show that DARRTConnect is almost always more efficient
than DARRT and that the hierarchical algorithms usually perform better than their
flat counterparts.

We implemented the algorithms on two domains, the Plate Domain and the Tool
Use Domain. The implementation was built on the Open Motion Planning Library
(OMPL) [10]. In both domains, we used the Willow Garage PR2 robot [13], planning
for one of the robot’s seven degrees of freedom arms and its three degree of freedom
base for a total of ten degrees of freedom in the robot subspace. Videos of the robot
executing in these domains can be found on the website1.

Some of the results in this chapter were previously given in Barry et al. [2, 3].

5.1 Plate Domain

The plate domain was discussed in Section 3.1. In this domain, there is a single
movable object, the plate. The plate is round so we ignored its yaw dimension in the
search. This gives us a fifteen dimensional search space. In this domain, the plate
began on a table. The PR2 had to maneuver to the table, push the plate to the
edge of the table, grasp the plate, and transfer it to somewhere else in the domain.
We solved five different problem instances in this domain, altering the robot’s and
plate’s starting configurations and the plate’s goal configuration. These are shown in
Figures 5.1 and Figure 5.2.

5.1.1 Implementation Details

The primitives we implemented in this domain are similar to the primitives discussed
in Chapter 3. Recall from Chapter 3 that for each primitive we need to define the

1http://people.csail.mit.edu/jbarry/pr2/darrt

81

http://people.csail.mit.edu/jbarry/pr2/darrt
http://people.csail.mit.edu/jbarry/pr2/darrt
http://people.csail.mit.edu/jbarry/pr2/darrt

Goal

Start

(a) World 0

Goal

Start

(b) World 1

Plate

Goal

Start

(c) World 2

Figure 5.1: Instances of Worlds 0-2 in the Plate Domain. The goal configuration was
specified only for the plate and is shown by the location of the green disc. Goals were
a sphere of 2cm radius around the shown location. The left image shows the initial
configuration in reality while the right image shows the world in which the algorithm
plans. In each problem, the robot and plate began at the shown configuration. The
robot had to maneuver to the table, push the plate to the edge of the table, grasp it,
and then transfer it to the shown goal location. The collision checking in this world
was done on the dense three-dimensional map shown. The origin of this map was
under the center table; the y axis is shown in green and the z axis in blue (the x axis
is not visible).

following:

82

Plate

Barrier

Goal

Start

Barrier

(a) World 3

Goal

Start

(b) World 4

Figure 5.2: Instances of Worlds 3-4 in the Plate Domain. The goal configuration was
specified only for the plate and is shown by the location of the green disc. Goals were
a sphere of 2cm radius around the shown location. The left image shows the initial
configuration in reality while the right image shows the world in which the algorithm
plans. In each problem, the robot and plate began at the shown configuration. The
robot had to maneuver to the table, push the plate to the edge of the table, grasp it,
and then transfer it to the shown goal location. The collision checking in this world
was done on the dense three-dimensional map shown. The origin of this map was
under the center table; the y axis is shown in green and the z axis in blue (the x axis
is not visible). In World 3, an extra obstacle was added. The robot is not allowed to
collide with the barrier.

Trajectory The trajectory that the primitive itself returns as part of its definition.

Applicability The domain of the function.

Collision The collisions for which the primitive disables collision checking during its
trajectory.

Propagate The function used by the empty space planner to chain the primitives.
This function will return a sequence of trajectories each generated by some
primitive. The trajectory returned by the primitive is usually included in this
sequence but the propagate function not the same as the primitive function.
Recall that applicability applies only to the trajectory returned by the primitive

83

not to the propagate function.

We implemented five primitives:

Transit describes the PR2 robot moving by itself. The base and the arm are moved
separately. Transit is applicable to any configurations in which the plate has
not moved and the initial configuration is not a pushing configuration (in this
case, retreat must be used before transit is applicable). Transit returns
a trajectory that is a straight line in joint space between the two robot arm
configurations and a straight line in Cartesian space between the two robot
base configurations. The transit function randomly chooses whether to move
the arm or base first. Transit disables collision checking between the plate and
its support surface. The transit propagate function returns NULL exactly
when transit is not applicable and otherwise returns the trajectory generated
by transit on the input.

Rigid-transfer describes the PR2 robot moving the rigidly grasped plate. Like
transit, rigid-transfer moves the base and the arm separately. Rigid-transfer
is applicable only to initial and final configurations in which the plate is rigidly
grasped in the same grasp. Rigid-transfer returns a straight line in joint space
between the robot arm configurations and a straight line in Cartesian space be-
tween the robot base configurations. The rigid-transfer function randomly
chooses whether to move the arm or base first. Rigid-transfer disables col-
lision checking between the plate and the robot gripper. The rigid-transfer
propagate function returns NULL unless the plate is grasped in the initial con-
figuration. If the plate is grasped, the propagate function returns a rigid-transfer
trajectory that moves the plate to its final configuration using the grasp of the
initial configuration.

Approach/Retreat describe the PR2 robot moving its gripper in a straight line.
The PR2’s base does not move. Approach is applicable in situations defined by
the push and pickup primitives and returns a straight line in Cartesian space
for the gripper between two gripper configurations. Retreat is applicable to any
initial configuration in which the robot and plate are in a pushing configuration
and any final configuration in which the gripper has moved directly upwards
(+z) and there is an inverse kinematics solution for every point along the line in
Cartesian space from the gripper’s initial configuration to its final configuration.
Retreat returns a straight line in the upwards (+z) direction for the gripper in
Cartesian space. Approach and retreat both disable collision checking between
the robot’s gripper and the plate, the plate and the table, and the robot’s gripper
and the table. The propagate function for approach always returns NULL
(the propagate functions of push and pickup use the trajectories returned
by approach). The propagate function for retreat returns NULL unless
the robot and plate are in a pushing configuration and otherwise returns the
trajectory generated by retreat.

84

Push describes the PR2 robot pushing the plate on the table. Push is applicable
to any initial configuration in which the plate is on a support surface and the
robot is in two point contact with the plate and any final configuration in which
the plate is on a support surface, the robot is still in two point contact with
the plate, the robot and plate have moved along the ray connecting the center
of the gripper to the center of the plate, and the gripper can move along this
ray without moving the robot’s base. Push returns a straight line in Cartesian
space for the gripper from its initial to final configuration. Push disables collision
checking between the robot’s gripper and the plate, the plate and the table, and
the robot’s gripper and the table. The push propagate function returns NULL
if the plate does not begin on a support surface or the plate does not move.
Otherwise, let the input to the push propagate function be

(

(rT , oT), (rS, oS)
)

.
The push propagate function calculates the configuration, oP , for the plate
on the table closest to oS. If oP = oT , the function returns NULL. The push

propagate function solves an inverse kinematics problem to find a configuration
rP for the robot in which it can push the plate from oT to oP . It then solves
for moving the gripper in a straight line in Cartesian space without moving
the base along the ray connecting the center of the gripper to the center of
the plate. If there is no inverse kinematics solution for some point on this ray,
only the piece of the ray before the first point at which there is no inverse
kinematics solution is returned. Let the final configuration of the robot and
plate after pushing be (r′P , o

′
P) (o′P = oP if there was an inverse kinematics

solution for every point along the ray). The propagate function also finds an
approach configuration rA above rP from which the robot can move the gripper
downwards in a straight line. The push propagate function returns three
trajectories: a transit to the approach-to-push configuration (this is both a
base move and an arm move), an approach in the downwards (−z) direction
into the initial pushing configuration, and a push to (r′P , o

′
P).

Pickup describes the PR2 robot closing its gripper to grasp the plate and lifting it
straight up. Pickup is applicable to any initial configuration in which the robot
is grasping the plate and the plate is resting on a support surface and any final
configuration in which the gripper and plate have moved directly up from their
initial configuration (+z) and there is an inverse kinematics solution along every
point on the line in Cartesian space between the initial and final configurations
of the gripper. Pickup returns a straight line for the gripper in the upwards
(+z) direction. Pickup disables collision checking between the robot’s gripper
and the plate, the plate and the table, and the robot’s gripper and the table.
The pickup propagate function returns NULL unless the center of the plate
is at the edge of the table. When the plate is at the edge of the table, the
propagate function chooses a grasp for the plate. We use a discrete set of 200
grasps for the plate, placed evenly around its perimeter. The pickup propagate
function discards any grasps in collision with the table. Let rg be the robot’s
configuration in the grasp. The propagate function also chooses an approach-
to-grasp configuration rA from which the robot can move the gripper in straight

85

line in Cartesian space with no rotation to rg. The propagate function returns
three trajectories: a transit (both arm and base) to the approach-to-grasp
configuration, an approach to the grasp, and a pickup.

Examples of each of these primitives can be seen in Figure 5.3. The empty space
planner chains these primitives as described in Chapter 3.

The pickup, approach, retreat, and push primitives all require the gripper to
“move in a straight line in Cartesian space.” To accomplish this, we discretize the
line in Cartesian space and then solve an inverse kinematics problem for every point
on the line. We assume that the gripper’s movement between these points is a line
in Cartesian space. In practice, we have found that discretizing the line every 3cm
works well.

The pickup, approach, and retreat primitives are used to regulate collision
checking. In theory, these should be folded into the rigid-transfer and transit

functions. For instance, the propagate function for transit should retreat when
necessary. As a matter of implementation and exposition, it is easier to consider
them their own primitives, but they do not require separate projection functions and
pickup does not become a subgoal for the object path.

To simplify the implementation for this domain, we considered projection func-
tions as defining “active spaces”: either the robot moved or the plate moved. Using
this view, we also considered the distance function in only one space or the other.
This breaks the theoretical guarantees, but worked well in practice because we had
only a single object. In Section 5.2, we discuss a domain with multiple objects for
which this approach no longer works.

We used two projection functions in this domain corresponding to whether the
robot or object should move. Let the input to the function be xT = (rT , oT) and
xS = (rS, oS). Then

Transit Returns (rT , oS).

Identity Returns (rS, oS).

These functions had the same return for a backwards or a forwards extension.

When planning backwards, we allowed the robot to approach and pick up the
plate in mid-air. During collision checking, we treated any configuration in which
the plate was unsupported as invalid. This allowed us to calculate the grasp during
the propagate rather than have a rigid-transfer projection function. However,
it also meant that, with these projection functions, the backwards extension would
never place the plate on the table because the probability of sampling the plate on the
table is zero. When connecting the backwards tree towards the forward tree, however,
we could add configurations in which the plate was on the table to the backward tree.

For the subspace distance metrics we used:

Plate We treated the plate as a six degree of freedom object and added its Euclidean
translational distance to the angular distance.

86

Domain
DARRT DARRTConnect Mode-Specified (s)

DARRT (s) DARRTH (s) DARRTConnect (s) DARRTHConnect (s) (Lower Bound)
World 0 12 (15) 20 (15, 10) 11 (15) 19 (15, 10) 13
World 1 42 (60) 40 (15, 10) 34 (30) 28 (15, 10) 14
World 2 142 (90) 48 (15, 10) 98 (30) 36 (15, 10) 19
World 3 1004 (200) 203 (30, 10) 436 (120) 61 (30, 10) 36
World 4 411 (90) 214 (60, 3) 165 (60) 240 (60, 3) –

Table 5.1: Overall planning time (wall clock time in seconds) averaged over 50 runs
in the Plate Domain. DARRTH is the hierarchical algorithm using DARRT as a
flat planner and DARRTHConnect is the hierarchical algorithm using DARRT-
Connect as a flat planner. For DARRT(Connect) the number shown in paren-
thesis is the number of seconds after which the algorithm was restarted. For DAR-
RTH(Connect) the numbers in parenthesis are (seconds after which each subgoal
was restarted, maximum tries per subgoal). For the forward planners, we sampled
from the goal configurations 10% of the time. For the bi-directional planners, we
added a goal configuration to the backwards tree for every 20 non-goal configurations
added to the backwards tree.

Robot In the arm subspace we used the Euclidean distance that the wrist moved
(we ignored the angular distance). In the base subspace, we used the Euclidean
distance plus one-tenth the angular distance. The full distance function in the
robot subspace was the sum of the distances in the arm subspace and the base
subspace.

In this domain, rather than always choose the maximum distance in either sub-
space, we instead first chose the projection function. If we used the Identity projection
functions, we used the distance in the object’s subspace. If we used the Transit pro-
jection function, we used the distance in the robot’s subspace.

We also needed a method for breaking ties in the distance function. This is
because many configurations in the tree will have the object or robot in the same
configuration. For instance, the first extension is almost a transit for the robot. All
of the configurations along this transit have the plate in the same configuration.
Ties in distance the plate’s subspace were decided based on how far the robot would
have to travel to its initial contact with the plate. We broke further ties in the
object’s subspace and ties in the robot’s subspace randomly. In theory, all ties should
be broken randomly, but the slight increase in greediness in the distance function
appeared to be helpful in practice.

5.1.2 Results

The results in the Plate Domain are shown in Table 5.1. All times are wall clock time
in seconds. We did not make any attempt to streamline the set up of these problems
so these times include only planning time, not any time required to initialize the
algorithm. For the hierarchical domains, the set up time of each sub-problem is not
included. The averages are taken over 50 runs; the time for each run is given in
Appendix B.1. An execution trace is shown in Figure 5.3.

87

(a) Transit (b) Approach (c) Subgoal 1

(d) Push (e) Retreat (f) Approach

(g) Pickup (h) Subgoal 2 (i) Rigid-transfer

Figure 5.3: An example execution in the Plate Domain. (a) The robot transits
to an approach-to-push configuration. (b) The approach-to-push configuration. The
gripper will descend into the pushing configuration using the approach primitive.
(c) The pushing configuration. By achieving this configuration, the robot achieves
the first subgoal. (d) The robot pushes the plate to the edge of the table. (e) The
gripper rises in a straight line using the retreat primitive. (f) The robot in the
approach-to-grasp configuration. The gripper will move in a straight line to the grasp
configuration using the approach primitive. (g) The grasp configuration. (h) Pickup
lifts the plate straight up. This becomes a rigid-transfer, achieving the second
subgoal. (i) The robot rigid-transfers the plate to its final destination.

For comparison’s sake, to show that the planning times are within the realm of
reason, we also found an approximate lower bound on planning time using a planner
for which we specified the exact modes by hand. For the mode-specified planner,
we gave the robot base and arm positions at every mode switch along the path and
then used out-of-the-box planners to find a plan for the base or arm alone. We gave
the mode-specified planner at least 11 waypoints in each problem: 1) base position
at table, 2) arm position at approach to pushing, 3) arm position while pushing, 4)
arm position after pushing, 5) arm position at retreat from pushing, 6) base position
for picking up the object, 7) arm position for approaching the grasp, 8) arm position
in the grasp, 9) arm position after lifting the object, 10) base position at the goal
pose, and 11) arm position at the goal pose. Note that the base and arm planners
are planning in three and seven dimensional spaces respectively while the DARRT

88

Domain
DARRTH DARRTHConnect

Object S1 (Transit) S2 (Push) S3 (Rigid-Transfer) Object S1 S2 S3
World 0 7 1 7 5 3 1 12 3
World 1 6 1 7 26 3 1 12 12
World 2 6 13 9 21 4 7 16 9
World 3 7 23 8 166 3 9 8 42
World 4 10 24 174 5 4 32 201 3

Table 5.2: Time taken to solve each subgoal. The Object column is the time taken to
plan the object path while S1, S2 and S3 are the times taken to plan the intermediate
subgoals using the flat planner. (Times are rounded to the nearest second so the sum
of the results may not exactly equal the total time reported in Table 5.1.)

and DARRTH variants make an entire plan in fifteen dimensional space. This mode-
specified planner is shown in the last column of Table 5.1. We did not run it on World
4 as that was a world designed to show a weakness of the hierarchical planner.

We restarted the sampling-based algorithms after a certain amount of time. This
time is shown in parentheses in Table 5.1. For the hierarchical algorithms, this time
was used for each sub-problem (i.e. we ran the sub-problem for this amount of time
and if there was not a solution, we restarted the sub-problem). This time was picked
empirically. We also report the number of tries for each sub-problem before restarting
the entire hierarchical algorithm. We discuss this further in Section 5.3.

DARRTH(Connect) identified three subgoals in these domains: push, rigid-transfer
and achieving the actual goal pose. These subgoals were the same for every problem
as they all required the same high-level sequence of transfer primitives. The time
taken for each subgoal, as well as the time required for planning the object path, is
shown for the hierarchical planners in Table 5.2. The subgoals are also marked in the
execution trace in Figure 5.3.

We discuss these results farther in Section 5.3.

5.2 Tool Use Domain

The Tool Use domain is an example of using the DARRT(H)(Connect) algorithms
for tool use. In this domain, there are two movable objects: a small CD and a spatula.
Goals are specified for the CD. The CD is too small and breakable to be grasped by
the robot so the only way for the robot to transfer it is to push it or use the spatula.
However, if the robot tries to just slide the spatula under the CD, the CD slides
away as shown in Figure 5.4a. In order to slide the spatula under the CD, the CD
must be resting against a fixed object. In this case, we have a box on the table
that the CD can rest against. There are only four positions on the table that allow
the CD to rest against the box as shown in Figure 5.4b. The robot must transit to
the table supporting the CD, push it to one of these four configurations, transit to
the table supporting the spatula, grasp the spatula, return to the table supporting
the CD, use the spatula to pick up the CD, and finally transfer the CD to its goal

89

(a) (b)

Figure 5.4: Using the spatula to lift the CD in the Tool Use Domain. (a) If the
CD is not resting against a fixed obstacle, the spatula pushes it instead of lifting it.
(b) There are four configurations for the CD on the table where its rests against the
box (the one where the CD is and the three configurations shown with white arrows).
When the CD rests against the block, the spatula can slide underneath it and lift it
up.

location. Because there are only a finite number of configurations for the CD in which
the spatula can be used, this is an example of a domain that cannot be solved with
explicit multi-modal planning.

The CD is always parallel to the ground and is round. Therefore, it has only the
three translational degrees of freedom. The spatula is a full six degree of freedom
object. This gives us a nineteen dimensional configuration space.

We solved four different problem instances in this domain, altering the spatula’s
starting configuration and the CD’s goal configuration. These are shown in Figures 5.5
and 5.6.

5.2.1 Implementation Details

A configuration in this world is denoted (r, d, s) where r is the configuration of the
robot, d is the configuration of the CD, and s is the configuration of the spatula. Recall
that for each primitive we need to define the trajectory it returns, its applicability,
the collisions for which it disables collision checking, and its propagate function. We
used seven primitives in this domain:

Transit describes the PR2 robot moving by itself. The base and the arm are moved
separately. Transit is applicable to any configurations in which the CD and
spatula have not moved and the initial configuration is not a pushing configura-
tion (in this case, retreat must be used before transit is applicable). Transit
returns a trajectory that is a straight line in joint space between the two robot
arm configurations and a straight line in Cartesian space between the two robot
base configurations. The transit function randomly chooses whether to move
the arm or base first. Transit disables collision checking between the CD
and its support surface and the spatula and its support surface. The transit

90

(a) World 0

(b) World 1

Figure 5.5: Instances of Worlds 0-1 in the Tool Use Domain. The goal configuration
was specified only for the CD and is shown by the location of the green disc. Goals
were a sphere of 2cm radius around the shown location. The left image shows the
initial configuration in reality while the right image shows the world in which the
algorithm plans. In each problem, the robot, CD, and spatula began at the shown
configuration. The robot had to maneuver to the CD’s table, push the CD to the
block, maneuver to the spatula’s table, grasp the spatula, return to the CD’s table,
use the spatula to lift the CD, and transfer the CD to its goal configuration. Note
that the collision checking in this domain was done against the several rectangular
boxes shown in blue rather than using the full collision map of the Plate World. The
origin was under the center table; the x axis is shown in red, the y axis in green and
the z axis in blue.

propagate function returns NULL exactly when transit is not applicable and
otherwise returns the trajectory generated by transit.

Approach/Retreat describes the PR2 robot moving its gripper in a straight line.
The PR2’s base does not move. Approach is applicable in situations defined
by the push-CD and pickup-spatula primitives, and returns a straight line in
Cartesian space for the gripper between two gripper configurations. Retreat is
applicable to any initial configuration in which the robot and CD are in a push-
ing configuration and any final configuration in which the gripper has moved
directly upwards (+z) and there is an inverse kinematics solution for every

91

(a) World 2

(b) World 3

Figure 5.6: Instances of worlds 2-3 in the Tool Use Domain. The goal configuration
was specified only for the CD and is shown by the location of the green disc. Goals
were a sphere of 2cm radius around the shown location. The left image shows the
initial configuration in reality while the right image shows the world in which the
algorithm plans. In each problem, the robot, CD, and spatula began at the shown
configuration. The robot had to maneuver to the CD’s table, push the CD to the
block, maneuver to the spatula’s table, grasp the spatula, return to the CD’s table,
use the spatula to lift the CD, and transfer the CD to its goal configuration. Note
that the collision checking in this domain was done against the several rectangular
boxes shown in blue rather than using the full collision map of the Plate World. The
origin was under the center table; the x axis is shown in red, the y axis in green and
the z axis in blue. World 3 has an extra obstacle. The robot was not allowed to
collide with the barrier.

point along the line in Cartesian space from the gripper’s initial configuration
to its final configuration, and the CD and spatula have not moved. Retreat

returns a straight line in the upwards (+z) direction for the gripper in Carte-
sian space. Approach and retreat both disable collision checking between the
CD and its table, the spatula and its table, the robot’s gripper and the nearest
object, and the robot’s gripper and the nearest table. The propagate function
for approach always returns NULL (the propagate functions of push-CD and
pickup-spatula use the trajectories returned by approach). The propagate
function for retreat returns NULL unless the robot and CD are in a pushing

92

configuration and otherwise returns the trajectory generated by retreat.

Push-CD describes the PR2 robot pushing the CD on the table. Push-CD is applica-
ble to any initial configuration in which the CD is on a support surface and the
robot is in two point contact with the CD and any final configuration in which
the CD is on a support surface, the robot is still in two point contact with the
CD, the robot and CD have moved along the ray connecting the center of the
gripper to the center of the CD, the gripper can move along this ray without
moving the robot’s base, and the spatula has not moved. Push-CD returns a
straight line in Cartesian space for the gripper from its initial configuration to
its final configuration. Push-CD disables collision checking between the CD and
its table, the spatula and its table, the robot’s gripper and the CD, and the
robot’s gripper and the CD’s table. The push-CD propagate function returns
NULL if the CD does not begin and end on a support surface, the CD does not
move, the spatula does move, or the robot is grasping the spatula. Otherwise,
let the input to the push propagate function be

(

(rT , dT , sT), (rS, dS, sS)
)

. The
push propagate function calculates the configuration, dP , for the CD on the
table closest to dS. If dP = dT , the function returns NULL. The push-CD prop-
agate function solves an inverse kinematics problem to find a configuration rP
for the robot in which it can push-CD the CD from dT to dP . It then solves
for moving the gripper in a straight line in Cartesian space without moving the
base along the ray connecting the center of the gripper to the center of the CD.
If there is no inverse kinematics solution for some point on this ray, only the
piece of the ray before the first point at which there is no inverse kinematics
solution is returned. Let the final configuration of the robot, CD, and spatula
after pushing be (r′P , d

′
P , sT) (d′P = dP if there was an inverse kinematics so-

lution for every point along the ray). The propagate function also finds an
approach configuration rA above rP from which the robot can move the gripper
downwards in a straight line. The push-CD propagate function returns three
trajectories: the transit to the approach-to-push configuration (this is both a
base move and an arm move), an approach in the downwards (−z) direction
into the initial pushing configuration, and a push-CD to (r′P , d

′
P , sT).

Rigid-transfer-spatula describes the PR2 robot moving the rigidly grasped spatula
without the CD on it. Rigid-transfer-spatula is applicable only to initial
and final configurations in which the spatula is rigidly grasped in the same grasp
and the CD is not balanced on the spatula in the initial or final configurations.
Rigid-transfer-spatula returns a straight line in joint space between the
robot arm configurations and a straight line in Cartesian space between the
robot base configurations. The rigid-transfer-spatula function randomly
chooses whether to move the arm or base first. Rigid-transfer-spatula dis-
ables collision checking between the robot gripper and the spatula and the
CD and its table. The rigid-transfer-spatula propagate function returns
NULL exactly when rigid-transfer-spatula is not applicable and otherwise
returns the trajectory generated by rigid-transfer-spatula.

93

Transfer-CD describes the PR2 robot moving the CD balanced on the spatula. In
order that the CD remain balanced on the spatula, the paddle of the spatula
must remain parallel to the ground. Transfer-CD is applicable to any initial
configuration in which the CD is balanced on the spatula and any final config-
uration in which the CD is balanced on the spatula and the robot is grasping
the spatula using the same grasp as in the initial configuration. Transfer-CD

returns a trajectory that is a straight line in Cartesian space to the robot’s final
configuration for the arm and a straight line in Cartesian space to the robot’s fi-
nal configuration for the base. As with transit and rigid-transfer-spatula,
the order of the arm and base moves is randomized. Transfer-CD disables col-
lision checking between the spatula and the CD and the robot’s gripper and the
spatula. The transfer-CD propagate function returns NULL exactly when
transfer-CD is not applicable and otherwise returns the trajectory generated
by transfer-CD.

Pickup-spatula describes the PR2 closing its gripper to grasp the spatula and lift-
ing it straight up. Pickup-spatula is applicable to any initial configuration in
which the robot is grasping the spatula, the CD is in one of the four configura-
tions in which the spatula can be used, and the spatula is resting on a support
surface and any final configuration in which the spatula and gripper have moved
directly upwards (+z) along a line in Cartesian space for which there is an in-
verse kinematics solution at every point and the CD has not moved. It returns a
straight line for the gripper in the upwards (+z) direction. Pickup-spatula dis-
ables collision checking between the spatula and its table, the CD and its table,
the robot’s gripper and the spatula, and the robot’s gripper and the spatula’s
table. The pickup-spatula propagate function always returns NULL unless
the spatula is resting on the table in the initial configuration and grasped in the
final configuration and the CD is in one of the four configurations in which the
spatula can be used in the final configuration. The pickup-spatula propagate
function returns up to seven trajectories: a transit (both arm and base) to an
approach-to-push configuration, an approach in the downwards (−z) direction
to the pushing configuration, a push-CD to push the CD to its final configura-
tion, a retreat from pushing, a transit (both arm and base) to the approach-
to-grasp, an approach to the grasp, which is a straight line in the downwards
(−z) direction for the gripper in Cartesian space, and a pickup-spatula. If the
CD is already in the correct position, the propagate function will not include
the pushing trajectories. If it is not possible to push the CD all the way to its
final configuration without moving the base, the propagate function will only
return up to the pushing trajectory. We defined only one grasp for the spatula
so the propagate function always uses that grasp.

Use-spatula describes the PR2 using the spatula to lift the CD off the table. This
primitive is shown in Figure 5.7. Use-spatula is applicable to initial configu-
rations in which the robot is grasping the spatula, the CD is at one of the four
positions in which the spatula can be used, and the spatula is above the CD at

94

an angle and final configurations in which the CD is balanced on the spatula
and has moved straight upwards (+z). The use-spatula primitive returns: a
straight line in the downwards (−z) direction for the gripper in Cartesian space
with the spatula held at an angle, an approach along the line towards the CD
in Cartesian space that slides the spatula under the CD, an angled trajectory
that results in the paddle of the gripper parallel to the floor and the CD rest-
ing entirely on the paddle, and a lift that lifts the spatula and CD together.
The primitive is only applicable when there are inverse kinematic solutions for
all of these movements. Use-Spatula disables collision checking between the
robot’s gripper and the spatula, the robot’s gripper and the CD’s table, the
spatula and the CD’s table, the spatula and the CD, the spatula and the block,
the robot’s gripper and the CD, the robot’s gripper and the block, the CD
and its table, and the CD and the block. The use-spatula propagate func-
tion returns NULL unless the CD begins on a support surface and ends on the
spatula. Otherwise, the propagate function returns up to nine trajectories: a
transit (base and arm) to an approach-to-pushing configuration for the CD,
an approach in the downwards (−z) direction to the pushing configuration, a
push-CD to one of the four configurations for the CD from which the spatula
can be used (the propagate function chooses one randomly), a retreat from
the push, a transit (base and arm trajectories) to an approach-to-grasp con-
figuration for the spatula, an approach in the downwards (−z) direction to the
grasping configuration, a pickup-spatula, a transit (base and arm trajecto-
ries) to the use-spatula configuration, and finally the use-spatula trajectory.
All nine trajectories are only returned if necessary. If the CD is already in a
location at which the spatula can be used, there will be no pushing trajectories.
Similarly, if the robot is holding the spatula, there will be no pushing or picking
trajectories. If the push-CD fails to push the CD all the way to its location,
only those trajectories are returned.

Note that the long propagate functions of pickup-spatula and use-spatula have
trajectory sequences that are the returns of other propagate functions. For instance,
the first four trajectories on the pickup-spatula propagate function return are the
same as the trajectories on push-CD. Therefore, implementing these functions is not
difficult.

As in the Plate Domain, the pickup-spatula, use-spatula, approach, and
retreat primitives are used to regulate collisions. In theory, these should be folded
into the rigid-transfer-spatula, transfer-CD, and transit functions. As a
matter of implementation and exposition, it is easier to consider them their own
primitives, but they do not require separate projection functions and pickup and
use-spatula do not become a subgoal for the object path.

We used four projection functions in this domain. On input xT = (rT , dT , sT) and
xS = (rS, dS, sS):

Transit returns (rS, dT , sT) if the spatula and CD are resting on the table in dT and
sT . Otherwise, it chooses a random configuration, dP , for the CD on its initial

95

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: The use-spatula primitive. (a)-(b) The first trajectory is straight down
with the spatula held at an angle. (c)-(d) The second trajectory slides the spatula
under the CD with the spatula still held at an angle. (e) The third trajectory angles
downward so that the paddle of the spatula is parallel to the ground. (f) The final
trajectory lifts the CD.

table and returns (rS, dP , s0) where s0 is the configuration of the spatula in x0,
the starting configuration of the search.

Push chooses a random configuration for the CD on its initial table, dP . It re-
turns (rS, dP , s0) where s0 is the configuration of the spatula in x0, the starting
configuration.

Rigid-transfer-spatula first chooses a position, dP , for the CD in one of the four
configurations from which the spatula can be used. If dT is one of these config-
urations it uses that. It then finds an inverse kinematics solution for the robot,
rg, at which it is grasping the spatula and the spatula is in sS (there is only one

96

grasp for the spatula). It returns (rg, dP , sS).

Transfer-CD chooses a configuration for the spatula, sg, for which the CD is at dS
(note that dS is three dimensional so we can assume the angle is parallel to the
floor) and then a configuration for the robot, rg, to grasp the spatula at sg. It
returns (rg, dS, sg).

These functions had the same return for a backwards or a forwards extension.
The spatula is projected to its initial configuration in the Transit and Push pro-

jection functions because there is no place-spatula primitive. Therefore, there is
no way to put the spatula back down once the robot is holding it. Putting it back in
its original configuration allows the backwards extension to possibly connect to the
forward tree even if the extension includes the pickup-spatula primitive.

Similarly, the projection functions and propagate functions are such that the
spatula cannot be grasped until the CD is properly positioned. This is because once
the robot is holding the spatula, it can no longer push the CD.

It is possible, especially when extending backwards, that the empty space planner
does fail to create any plan. In this case, the algorithm adds no new configurations
to the tree and moves on to the next iteration.

For the subspace distance metrics we used:

Spatula The Euclidean translational distance plus one half the angular distance.

CD The Euclidean translational distance.

Robot In the robot’s base space, we used the two-dimensional Euclidean translation
plus one-tenth the angular distance. In the arm space, we used the average
change in joint angle. The overall distance function returned the maximum of
these two distances.

Our overall distance function was the maximum distance in any subspace. We broke
ties randomly.

We found that generating primitive goals for DARRTHConnect (the only al-
gorithm that generated a large number of primitive goals) in this domain was a
substantial factor in running time. We addressed this in two ways:

Firstly, we only added new goal configurations to the backwards tree once for every
500 non-goal configurations added to the backwards tree. Because we add complete
paths, the trees usually had tens of thousands of configurations. This resulted in
adding tens of goal configurations (usually between 20 and 100). Because we only
add valid goal configurations, this was easily sufficient for solving the problem.

Secondly, we also checked if configurations added to the forwards tree satisfied
the goal condition. This is because we may add a configuration that uses the goal
primitive without connecting to the backwards tree. For instance, when achieving
push-CD, the backwards tree grows backwards from some instances of push-CD. How-
ever, the forwards tree may add a different instance of push-CD and that also qualifies
as achieving the goal.

These modifications were also present when running DARRTConnect, but
likely had little effect on running time.

97

Domain
DARRT DARRTConnect

DARRT (s) DARRTH (s) DARRTConnect (s) DARRTHConnect (s)
World 0 206 (45) 51 (15, 100) 39 (30) 31 (15, 100)
World 1 1072 (200) 130 (45, 100) 101 (45) 65 (30, 100)
World 2 773 (200) 127 (45, 100) 514 (200) 41 (45, 100)
World 3 8282 (500) 312 (60, 100) 10166 (300) 162 (45, 100)

Table 5.3: Overall planning time (wall clock time in seconds) averaged over 50 runs
in the Tool Use domain problems. DARRTH is the hierarchical algorithm using
DARRT as a flat planner and DARRTHConnect is the hierarchical algorithm
using DARRTConnect as a flat planner. For DARRT(Connect) the number
shown in parenthesis is the number of seconds after which the algorithm was restarted.
For DARRTH(Connect) the numbers in parenthesis are (seconds after which each
subgoal was restarted, maximum tries per subgoal). For the forward planners, we
sampled from the goal configurations 10% of the time. For the bi-directional plan-
ners, we added one goal configuration to the backwards tree for every 500 non-goal
configurations added.

Domain
DARRTH DARRTHConnect

Object S1 S2 S3 S4 Object S1 S2 S3 S4
World 0 10 6 14 2 20 4 4 10 1 11
World 1 13 6 82 6 23 5 5 35 9 11
World 2 12 5 103 5 1 5 4 27 5 1
World 3 13 64 175 33 27 7 38 58 33 26

Table 5.4: Time taken to solve each subgoal. The Object column is the time taken
to plan the object path while S1, S2, S3, and S4 are the times taken to plan the
intermediate subgoals using the flat planner. (Times are rounded to the nearest
second so the sum of the results may not exactly equal the total time reported in
Table 5.3.)

5.2.2 Results

The results in this domain are shown in Table 5.3. All times are wall clock time
in seconds. As in the Plate Domain, these times do not include set up times. The
averages are taken over 50 runs; the time for each run is given in Appendix B.2. An
execution trace is shown in Figure 5.8.

DARRTH(Connect) identified four subgoals in these domains: push, rigid-
transfer-spatula, transfer-CD, and achieving the actual goal pose. These subgoals
were the same for every problem as they all required the same high-level sequence of
transfer primitives. The time taken for each subgoal, as well as the time required for
planning the object path, is shown for the hierarchical planners in Table 5.4. The
subgoals are also marked in the execution trace in Figure 5.8.

We restarted the sampling-based algorithms after a certain amount of time. This
time is shown in parentheses in Table 5.3. For the hierarchical algorithms, this time

98

(a) Transit (b) Approach (c) Subgoal 1

(d) Push-CD (e) Retreat (f) Approach

(g) Pickup-spatula (h) Subgoal 2 (i) Rigid-transfer-spatula

(j) Use-spatula (k) Subgoal 3 (l) Transfer-CD

Figure 5.8: An example execution in the Tool Use Domain. (a) The robot transits
to an approach-to-push configuration. (b) The approach-to-push configuration. The
gripper will descend into the pushing configuration using the approach primitive.
(c) The pushing configuration. By achieving this configuration, the robot achieves
the first subgoal. (d) The robot uses push-CD to push the CD to the block.
(e) The gripper rises in a straight line using the retreat primitive. (f) The robot
in the approach-to-grasp configuration for the spatula. The gripper will move in
a straight line to the grasp configuration using the approach primitive. (g) The
grasp configuration. (h) Pickup-spatula lifts the spatula straight up. This be-
comes a rigid-transfer-spatula, achieving the second subgoal. (i) The robot
uses rigid-transfer-spatula to transfer the spatula to the table with the CD on
it. (j) The first configuration on use-spatula. See Figure 5.7 for the execution of
use-spatula. (k) The transition from use-spatula to transfer-CD. This is the
third subgoal. (l) The robot uses transfer-CD to move the CD to its final goal
location.

99

was used for each sub-problem (i.e. we ran the sub-problem for this amount of time
and if there was not a solution, we restarted the problem). This time was picked
empirically. We also report the number of tries for each sub-problem before restarting
the hierarchical algorithms. We discuss this further in Section 5.3.

5.3 Discussion

The bi-directional planner is almost always faster than the forward planner, as ex-
pected, and the hierarchical planners are faster than their flat counterparts. Except
in World 4, which we will discuss in detail, DARRTHConnect is not unreasonably
slower than the mode-specified planner in the Plate Domain, even though the latter
has much more information.

5.3.1 Problem Difficulty

The problems are numbered roughly according to their difficulty. In the Plate Do-
main, the difficulty is governed by how complicated the path to configurations at
which the robot can manipulate the plate is and then how complicated the path from
those configurations to the goal configuration is. In World 0, both are simple. In
World 1, the robot begins at the table with the plate, but has to navigate around
the central table while transferring the plate to the goal location. In World 2, the
robot has to navigate around the central table both to originally reach the plate and
then also to reach the goal location. In World 3, we remove one of the routes around
the central table. Finally, in World 4, the robot must move all the way around the
table to pick up the plate, but can reach the plate from the side of the table closest
to the initial robot configuration. This world was set up to show a weakness of the
hierarchical planner and is discussed further in Section 5.3.3.

In the Tool Use world, the robot and CD always begin in the same initial con-
figuration so the difficulty is mostly governed by the path from the table supporting
the CD to a configuration from which the robot can pick up the spatula. In World
0, there are many collision free paths that the empty space planner might return
from a configuration near the table supporting the CD to the table supporting the
spatula and back. In World 1, there are a small number of collision free paths with
the robot to the left of the table that the empty space planner can return. In Worlds
2 and 3 there are no such paths. In these worlds, the path to and from the table
with the spatula on it must involve multiple calls to the empty space planner to move
around the central table. World 3 is harder than World 2 because one possible route
around the central table has been removed. Additionally, the CD goal configuration
for World 3 also requires the robot to navigate around the central table.

5.3.2 Forward vs Bi-Directional Planners

The RRTConnect algorithm is usually preferred in practice to the RRT algorithm
for its increase in efficiency. Our results confirm this for the DARRT(H)Connect

100

planners. The bi-directional planners are nearly always faster than their forward
counterparts especially on more complicated problems.

The Tool Use Domain Worlds 2 and 3 appear somewhat anomalous in this regard.
The DARRT and DARRTConnect times are close in World 2 and DARRT is
faster in World 3. In fact, we suspect that DARRT and DARRTConnect should
be closer in time in the Tool Use Domain than they are in the Plate Domain because
the distance function is less informative about how far the robot will actually travel.
Therefore, when connecting the trees, DARRTConnect is less likely to pick a con-
figuration to which there will be a collision free path because it is less likely to pick
a configuration to which there is a short path. Using one distance function during
sampling and another, more informative one, when connecting the two trees could be
an interesting direction of future research.

However, in Tool Use World 1, DARRTConnect does substantially better than
DARRT. In this world, there were a few configurations for the robot in which it
could reach the spatula on the table without moving around the table. The bi-
directionality of DARRTConnect made it easier for it to find these configurations
when connecting the two trees. Often a forwards path from the CD table would
contact the table supporting the spatula at a configuration from which the robot could
reach the spatula. The DARRTConnect planner would always try to pick up the
spatula from these configurations (the inverse kinematic solvers had a bias towards
solutions that did not move the base) when extending the backwards tree towards
the newly added configuration. The forwards planner, however, might add these
configurations to the tree but then rarely choose them as the nearest configuration
in the tree to a sample. The forwards planner usually found solutions that required
navigating around the table.

In Tool Use World 3, both algorithms took much longer than the reset time they
were given. In this world, it is likely that solving the problem within 300 or 500
seconds was so rare that any advantage the bi-directionality could give was masked
by the improbability of solving the problem in the allowed time.

5.3.3 Flat vs Hierarchical Planners

In most cases, the hierarchical planners outperform their flat counterparts. The
notable exceptions are the Plate Worlds 0 and 4.

Plate World 0 is a trivial domain for which a single goal sample can solve the
problem depending on the path chosen by the empty space planner. Although the
four sub-problems are also easy, solving them individually takes more time than
solving the single problem.

World 4 was chosen to illustrate a weakness of the hierarchical planners. In this
domain it is possible to reach a push configuration from the wrong side of the table.
In this case, the robot’s starting configuration when solving the second subgoal (pick
up the plate) is actually worse than the original starting configuration. It is clear from
the amount of time taken by DARRTH(Connect) on the second subgoal (pick up
the plate) that it fell into this trap often.

Except in the world designed to be difficult for them, the hierarchical algorithms

101

consistently out-perform their flat counterparts and DARRTHConnect plans only
a factor of about two slower than the mode-specified planner. The leverage is owing
primarily to three factors:

Targeted Restarts As is common with sampling-based planners, we restart
DARRT(H)(Connect) after a specified time period. WithDARRT(Connect),
we can do no better than restarting from the starting configuration. With
DARRTH(Connect), however, we restart from the most recent subgoal. For
example, lifting the plate off of the table is a difficult problem. If the move
from the table to the goal configuration is also difficult, DARRT(Connect)
might restart after having solved for lifting up the plate but before being able
to transfer it to its goal location. DARRTH(Connect), however, by its au-
tomatic choice of good subgoals, restarts from the configuration in which the
plate has been lifted.

Nearest Neighbor Calculation We used a linear search for nearest neighbor. As
the trees grew, this search became a limiting factor in efficiency. In the Tool
Use domain, this was less noticeable because we used a very fast distance func-
tion. However, the distance function we used for the Plate Domain involved a
forward kinematics calculation. The flat searches necessarily have larger trees
so this calculation could take a substantial amount of time. This was especially
noticeable in World 3 where the final transfer of the plate to the goal was a dif-
ficult task. Finding a path that lifted the plate off the table creates a large tree.
In the flat planner, these configurations were all still in the tree when finding
a transfer to the plate’s goal position. The hierarchical algorithms, however,
started searching for the transfer with trees with only a single configuration.

Focused Projection Functions The projection functions also limited the available
primitives for the hierarchical planners during some sub-problems. This was
only true for the Tool Use Domain, as we only had two projection functions
in the Plate Domain. Consider achieving the transfer-CD primitive from a
configuration in which the robot is holding the spatula. When the transit

projection function is called, the resulting configuration with the spatula back on
the table in its initial configuration cannot be achieved from any configuration
in the tree because there is no way to place the spatula back down. Therefore,
the robot will never try to transit (the transit projection function might still
be called but no configurations will be added to the tree). Similarly, once the
CD has been lifted, the robot will never transit or rigid-transfer. This
saves a large number of inverse kinematics calculations.

One possible weakness of the hierarchical planner not shown here is that it can
create impossible subgoals for itself. For instance, in the Tool Use Domain, it could
push the CD to a side of the box that was not reachable with the spatula. It is for
this reason that we have to restart the entire hierarchical planner and not just each
sub-problem.

102

5.3.4 Reset Times

We chose the reset times empirically based on how difficult the domain appeared and
usually a few test trials. While we tried to choose fair times, we purposely did not
optimize for the reset time. In practice, we would not run the same problem over and
over again to choose a good reset time.

We usually gave DARRT and DARRTConnect longer reset times than DAR-
RTH and DARRTHConnect. For the hierarchical algorithms, the reset time is for
each sub-problem while for the flat searches the reset time is for the entire search.
Therefore, it makes sense that we have to giveDARRT and DARRTConnect more
time before restarting. However, there is the concern that all that matters is the num-
ber of restarts; that each algorithm actually solves the problem quickly sometimes
and not at all other times. In this case, giving DARRT and DARRTConnect
longer reset times would bias the results against them unfairly. An analysis shows
that this does not appear to be the case.

The ratio of times between the flat planner and hierarchical planner is too high for
it to be caused by the reset time in the Tool Use Domain Worlds 2 and 3. Similarly,
the ratio for the running times of DARRTConnect to DARRTHConnect is too
high to be entirely due to the reset time in the Plate Domain Worlds 2 and 3 while
the ratio for the running times for DARRT to DARRTH is too high in the Tool
Use Domain World 1.

We can check that giving the flat and hierarchical planners the same reset time
would not nullify the results in the remaining problems using the full trial results given
in Appendix B. Consider, for instance, DARRT and DARRTH in Plate Domain
World 2. In this world, DARRTH is given a reset time of 15 seconds while DARRT
had a reset time of 90 seconds. These results show that DARRT was able to solve the
problem in 15 seconds only in 7 trials of the 50. Each trial requires, on average one
restart at 90 seconds. Additionally, the 15 second planner only solves the problem
approximately every 7 times (50/7 = 71

7
). Therefore, the remaining six solutions

found for the 90 second planner would also trigger a restart. This indicates an average
of 13 restarts for the 15 second planner, for a running time of about 195 with 15
second restarts. The same type of analysis shows that decreasing the running time of
DARRT to 30 seconds in Plate Domain World 3 does not improve its performance
or DARRT to 15 seconds in Tool Use Domain World 0. (It is harder to verify that
reducing the reset time of DARRTConnect to 30 seconds from 45 seconds in Tool
Use Domain World 1 might not improve its performance because those two reset times
are so close.)

We should point out here that it is easier to choose good reset times for the
hierarchical planner because the sub-problems are short. We can almost always be
sure that 60 seconds will be enough to solve the problem. In easy domains 15 seconds
is enough. This is reflected in that the reset times for the hierarchical planners are
the same across three problems in the Plate Domain.

103

THIS PAGE INTENTIONALLY LEFT BLANK

104

Chapter 6

Exponential Convergence of the
Search Algorithms

Recall that we defined exponential convergence in Definition 2.2: A sampling algo-
rithm converges exponentially if the probability that the algorithm returns a solution
when one exists is 1−O(2−ak) after k samples for some positive constant a.

In Chapter 3, we presented the DARRT algorithm for manipulation and in Chap-
ter 4, we presented the DARRTH(Connect) algorithm. In this chapter, we prove
that, under some assumptions about the configuration space, empty space planner,
projection functions, and distance function, theDARRT andDARRTH(Connect)
algorithms are both exponentially convergent.

The proof that the DARRT algorithm converges exponentially is in two pieces.
We first provide a high-level proof that makes some strong assumptions about the
configuration space, empty space planner, projection functions, and distance func-
tion. We then show that there are manipulation domains with interesting ma-
nipulation primitives in which these assumptions hold. The proof that the DAR-
RTH(Connect) algorithm is exponentially convergent is more straightforward.

6.1 Exponential Convergence of the DARRT Al-

gorithm

In proving exponential convergence of the DARRT algorithm, we use a more general
version of the algorithm than the one given in Chapter 3 so that we can more easily
state the assumptions we make. This version of the DARRT algorithm takes the
distance function and the method for sampling the space as inputs rather than using
the choices we made in Chapter 3. We can recover the algorithm of Chapter 3 by using
those choices as inputs to the algorithm discussed here. We begin by formally defining
the input for the DARRT algorithm, and then we show that it is exponentially
convergent.

105

6.1.1 DARRT Input

TheDARRT algorithm is designed to search in a product space of a robot and a set of
objects. As we discussed in Section 3.2.3, we need distance functions in each subspace
as well as a distance function for the full product space. In fact, the subspaces must
have distance metrics defined on them, although we do not require that the distance
function defined for the full space be a metric. We begin by defining metric.

Definition 6.1 (Metric): For a spaceX, ametric is a function ρ(x′, x) : X×X → R

that satisfies

1. ρ(x′, x) ≥ 0

2. ρ(x′, x) = 0 if and only if x′ = x

3. ρ(x′, x) = ρ(x, x′)

4. ∀x′′ ∈ X, ρ(x′, x) ≤ ρ(x′, x′′) + ρ(x′′, x)

Point 4 is the triangle inequality.

The configuration space for the DARRT algorithm is the product space of any
spaces with metrics defined on them. In general, this consists of one robot space and
several object spaces.

Definition 6.2 (DARRT Configuration Space): A configuration space for the
DARRT algorithm, X = M0 ×M1 ×M2 × ... ×Mn, is the cross product of several
subspaces. Each of these subspaces must have a metric ρi defined for it. For x ∈ X,
xi denotes the projection of x onto subspace i. Similarly, for subset B ⊆ X,

Bi =
{

m ∈Mi

∣

∣∃x ∈ B with xi = m
}

(6.1)

denotes the projection of the entire set onto subspace i.

One problem with manipulation is that we allow contact between the robot and
objects (but usually not overlap), but the RRT algorithm requires that the free space
be open, which does not allow contact. We resolve this issue by requiring that the
empty space planner handle contact between the robot and objects if contact is re-
quired. Specifically, the empty space planner is responsible for keeping the plans in
a set of restricted configurations. This restricted configuration space does not de-
pend on the fixed obstacles but only on the robot, objects, and ways of manipulating
the objects. Therefore, the empty space planner is still independent of the obstacle
placement.

Definition 6.3 (Restricted Configuration Space): The restricted configuration
space Xrestricted ⊆ X is a set of allowed configurations in X.

106

For example, consider a domain consisting of a round robot and a round object.
The robot can contact the round object so that it can grip it and move it. It cannot
overlap with the object. The restricted configuration space is all configurations in
which the robot and object are not in contact or only in contact along their borders.
The empty space planner must only return plans within this space. When the algo-
rithm does collision checking for the empty space plan, it does not check for collisions
between the robot and object, but only between the robot and fixed obstacles and
the object and fixed obstacles.

We can think of the restricted configuration space as the actual configuration
space for the algorithm. We sample only from this space and all plans lie within this
space. We define it separately from the DARRT configuration space because it is
helpful to keep in mind that it is a subset of a cross product space.

Another advantage of the restricted configuration space is that it makes explicit
the structure of the free space. This space is the set of configurations in which the
robot does not contact any obstacles, the objects do not contact any obstacles, and
the configuration is in the restricted configuration space. Therefore, the free space
is the product of the free spaces within each subspace intersected with the restricted
space. This will be important in our definition of tube for the DARRT algorithm
and also in the example given in Section 6.2.3.

Definition 6.4 (DARRT Free Space): Let the DARRT configuration space be
X = M0 × ...×Mn with restricted configuration space Xrestricted. The free space for
the ith subspace is denoted as Mi,free. The product free space is

XA = M0,free × ...×Mn,free. (6.2)

The DARRT free space is the intersection of the product free space and the restricted
configuration space,

Xfree = Xrestricted ∩XA. (6.3)

The main point of the DARRT algorithm is a way to “adjust” samples based on
the nearest configuration in the tree. As we discussed in Chapter 3, we accomplish this
using projection functions that project the sample onto lower dimensional subspaces.

Definition 6.5 (Projection Function): A projection function f(x′, x) : X×X →
X takes two configurations, x′ and x, and projects x onto some subspace, P (x′) ⊆ X.
The subspace P (x′) may be dependent on the first argument to f .

As we showed in Chapter 3, in manipulation we can no longer assume that a
straight line from one configuration to another represents an executable trajectory.
To create these executable trajectories we use “empty space planners.” An empty
space planner returns a trajectory:

Definition 6.6 (Trajectory): Let x′, x ∈ X. A function τ : [0, 1] → X is a

107

trajectory from x′ to x if and only if τ(0) = x′ and τ(1) = x. A configuration p ∈ X
is on the trajectory τ , denoted p ∈ τ , if there is some t ∈ [0, 1] with p = τ(t). For
all a ∈ [0, 1], for all b ∈ [a, 1], the sub-trajectory τ [a, b] of τ from a to b is defined, for
t ∈ [0, 1] as

τ [a, b](t) = τ (a+ (b− a)t) . (6.4)

An empty space planner is a function that returns a trajectory from x′ to x that
lies entirely in Xrestricted:

Definition 6.7 (Empty Space Planner): A deterministic function L is a empty
space planner if and only if it returns a trajectory, L(x′, x), from x′ to x and, for all
t ∈ [0, 1], L(x′, x)(t) ∈ Xrestricted. We denote the set of configurations returned by the
empty space planner as

π(x′, x) =
⋃

t∈[0,1]

L(x′, x)(t). (6.5)

In the proof of exponential convergence for the RRT algorithm in holonomic spaces
given in Section 2.2.2, the empty space planner was the line segment between two
configurations.

Given a trajectory returned by the empty space planner, we must only consider
the part of the trajectory that lies entirely in Xfree. This is done by the Extend
function in Algorithm 3.1, but we define it more formally here.

Definition 6.8 (Truncated Collision Free Trajectory): Let L be an empty
space planner, let x′ ∈ Xfree, and let x ∈ X. A trajectory τ(x′, x) is a truncated
collision free trajectory from x′ to x if and only if τ(0) = x′, τ(x′, x) is a sub-trajectory
of L(x′, x), and, for all t ∈ [0, 1], τ(x′, x)(t) ∈ Xfree.

We also require that if the empty space planner returns a collision free trajectory,
that entire trajectory is added to the tree. This requirement defines the control
functions for the DARRT algorithm.

Definition 6.9 (DARRT Control Function): The function u(x′, x) is a DARRT
control function if and only if it returns a truncated collision free trajectory on all
input and u(x′, x) = L(x′, x) whenever L(x′, x)(t) ∈ Xfree for all t ∈ [0, 1].

The Extend function of Algorithm 3.1 is a DARRT control function.
Now we are ready to describe the input to the DARRT algorithm. The free

space and empty space planner are input implicitly in the control function while
the restricted configuration space is input implicitly in the SampleConfigura-
tionSpace method. The input is:

• SampleConfigurationSpace: A method for sampling from Xrestricted.

• x0 ∈ Xfree: Starting configuration.

108

Algorithm 6.1
Input: SampleConfigurationSpace, A method for sampling from Xrestricted; x0,
Starting configuration; XG, Goal set; ρ, Distance function; u, Control function; F ,
Set of projection functions
Output: A graph containing from x0 into XG.

DARRT(SampleConfigurationSpace, x0, XG, ρ, u, F)

1 V0 ← {x0}, k ← 1
2 while Vk−1 ∩XG = ∅
3 x← SampleConfigurationSpace()
4 x′ ← argminv∈Vk−1

ρ(v, x)
5 f ← uniformRandomChoice({f0, ..., f|F |})
6 τ ← u(x′, f(x′, x))
7 Vk ← Vk−1 ∪

⋃

t∈[0,1] τ(t)

8 k ← k + 1
9 return Vk−1

• XG ⊆ X: Set of goal configurations.

• ρ(x′, x) : X ×X → R: Returns the distance from x′ to x. This need not be a
metric.

• u: A DARRT control function.

• F = {f0, ..., f|F |}: A set of projection functions.

The code for the DARRT algorithm using this input is shown in Algorithm 6.1.

In the next section, we show that under some assumptions about the free space,
the projection functions, the distance function, and the empty space planner, the
DARRT algorithm converges exponentially. We then prove that these assumptions
hold in two manipulation domains. The descriptions for these domains are given
in Sections 6.2.2 and 6.2.3. The reader may wish to read these descriptions before
proceeding to the next section to form an idea of the formal description of DARRT
manipulation domains.

6.1.2 DARRT Analysis

This section is very similar in form to Section 2.2.2. We let the configuration space
be X = M0 × ... ×Mn with distance metrics ρ0, ..., ρn. Throughout n will be the
number of subspaces.

We are looking for paths in the space from some configuration x′ to some con-
figuration x. These paths consist of segments provided by the empty space planner
(in Section 2.2.2 these segments were straight lines). The set of configurations a

109

configuration can reach using only the empty space planner is the locally reachable
set:

Definition 6.10 (Locally Reachable): For x′ ∈ X, the locally reachable set of
configurations from x′,

U(x′) =
{

x ∈ X
∣

∣π(x′, x) ⊆ Xfree

}

, (6.6)

is the set of configurations for which L returns a collision free trajectory from x′. By
definition of DARRT control function, x ∈ U(x′) if and only if x = u(x′, x)(1).

Recall that the convergence argument for the RRT algorithm in holonomic spaces
required the free space to be open. Because the objects and robot might each contact
fixed obstacles individually, the DARRT algorithm requires that the free space in
each subspace be open. We define an “open ball” on the full configuration space as
the union of open balls in each subspace:

Definition 6.11 (Open Ball): Let x ∈ X be a configuration in a DARRT config-
uration space. An open ball of radius δ around x is the set

Bδ(x) =
{

x′ ∈ Xrestricted

∣

∣∀i ∈ {0, .., n}, ρi(x, x
′) < δ

}

, (6.7)

consisting of open balls of radius δ in each subspace.

Note that the ball consists only of configurations in the restricted space. This will
be important in allowing contact between the robot and objects while maintaining
an open free space.

Balls of larger radius contain balls of smaller radius:

Lemma 6.1: For all x ∈ X, for all ζ > 0, for all δ ≤ ζ, Bδ(x) ⊆ Bζ(x).
Proof:

Bδ(x) =
{

x′ ∈ Xrestricted

∣

∣∀i ∈ {0, .., n}, ρi(x, x
′) < δ

}

(6.8)

= Xrestricted ∩
{

x′ ∈ X
∣

∣∀i ∈ {0, ..., n}, ρi(x, x
′) < δ

}

(6.9)

⊆ Xrestricted ∩
{

x′ ∈ X
∣

∣∀i ∈ {0, ..., n}, ρi(x, x
′) < ζ

}

(6.10)

=
{

x′ ∈ Xrestricted

∣

∣∀i ∈ {0, .., n}, ρi(x, x
′) < δ

}

(6.11)

= Bζ(x). (6.12)

�

For the DARRT algorithm, the assumption that Xfree is open is:

Assumption 6.1: For all x ∈ Xfree, for some δ > 0, Bδ(x) ⊆ Xfree.

Consider a situation in which we have a robot and an object. We allow contact
but not overlap between the robot and object. In this case, the restricted space is

110

Robot tube

+x
+y

Object Tubeδ
Path

Figure 6.1: Tubes should be cross products of subspace tubes, not a union of open
balls. This figure shows the tube around a path (black dashed) taken by a point robot
(black-outlined red disc) and a disc object (red disc) using the pushing dynamics of
Section 6.2.3. The robot is in free space anywhere inside the tube around the path it
takes (solid blue) while the object is in free space anywhere inside the tube around
the path it takes (dotted red). The tube in the full space is not the union of the
cross product balls along the path in the full space (a much smaller set of points),
but rather the cross product of the tubes in each space.

any configuration in which the robot and object do not overlap. The open balls in
this space only contain configurations in which the robot and object do not overlap
because they only contain configurations in the restricted state space. Therefore,
although we allow contact, the open balls are still within the free space because they
do not contain every configuration within δ of some configuration but only every
configuration in the restricted space.

As with the holonomic case, we can turn the empty space planner’s trajectories
into tubes. However, the open ball is defined individually in each subspace. Therefore,
the tube should be the cross product of the tube in each subspace rather than the
tube in the full subspace. This is shown in Figure 6.1. We still require that the entire
tube be in Xrestricted.

Definition 6.12 (Tube): Let x, x′ ∈ X. The tube of radius δ from x′ to x,

Tδ(x
′, x) = Xrestricted∩









⋃

p∈π(x′,x)

(Bδ(p))0



×





⋃

p∈π(x′,x)

(Bδ(p))1



× ...





⋃

p∈π(x′,x)

(Bδ(p))n







 ,

(6.13)
is the set of configurations with all components less than δ from the path from x′ to
x.

Note that in general

Tδ(x
′, x) 6=









⋃

p∈π(x′,x)

(Bδ(p))0



×





⋃

p∈π(x′,x)

(Bδ(p))1



× ...×





⋃

p∈π(x′,x)

(Bδ(p))n









(6.14)

111

even though Bδ(x) is limited to Xrestricted. This is because it is possible that

Bδ(x) ⊂ (Bδ(x))0 × ...× (Bδ(x))n . (6.15)

For example, assume subspace 0 represents a point robot and subspace 1 represents
a disc object. Xrestricted is all configurations in which the robot is not in the interior
of the object. Let x be a configuration in which the robot and object are in contact
along the border of the object. Then Bδ(x) is the configurations near x where the
robot and object are not in collision. However

(Bδ(x))0 =
{

m ∈M0

∣

∣ρ0(x0,m) < δ
}

(6.16)

because for every robot configuration near x there is some object configuration near
x such that the object and robot are not in collision. Similarly,

(Bδ(x))1 =
{

m ∈M1

∣

∣ρ1(x1,m) < δ
}

. (6.17)

Therefore
(Bδ(x))0 × (Bδ(x))1 6⊂ Xrestricted. (6.18)

Thus intersecting the cross product with Xrestricted in Equation 6.14 is necessary.

Just as balls of larger radius contain balls of smaller radius, tubes of larger radius
contain tubes of smaller radius:

Lemma 6.2: For all x′, x ∈ X, for all ζ > 0, for all δ ≤ ζ, Tδ(x
′, x) ⊆ Tζ(x

′, x).

Proof:

Tδ(x
′, x) = Xrestricted ∩









⋃

p∈π(x′,x)

(Bδ(p))0



× ...×





⋃

p∈π(x′,x)

(Bδ(p))n







 (6.19)

⊆ Xrestricted ∩









⋃

p∈π(x′,x)

(Bζ(p))0



× ...×





⋃

p∈π(x′,x)

(Bζ(p))n







 (6.20)

= Tζ(x
′, x) (6.21)

using Lemma 6.1.

�

Now assume we have some x′ ∈ Xfree and some x ∈ U(x′). Then the trajectory
from x′ to x returned by the empty space planner is collision free. Moreover, As-
sumption 6.1 should give us that this trajectory can be expanded into a tube without
leaving the free space. The radius of this expansion is the radius of locality. The
radius of locality in the holonomic case is shown in Figure 2.8.

Definition 6.13 (Radius of Locality): For all x′ ∈ Xfree, for all x ∈ U(x′),
η(x′, x) is the radius of locality from x′ to x if and only if Tη(x′,x)(x

′, x) ⊆ Xfree and
Tζ(x

′, x) 6⊂ Xfree for all ζ > η(x′, x).

112

Since each configuration along π(x′, x) can be expanded a little bit in each sub-
space, we should have that the whole path can be expanded in each subspace. We first
need to note that if a ball is in free space the projection of the ball onto a subspace
is in the free space of that subspace.

Lemma 6.3: For all x ∈ X and all δ > 0, if Bδ(x) ⊆ Xfree then (Bδ(x))i ⊆Mi,free.
Proof: We proceed by contradiction. Assume there is some m ∈ (Bδ(x))i such that
m 6∈ Mi,free. Since m ∈ (Bδ(x))i there is some y ∈ Bδ(x) with yi = m. Then
y 6∈M0,free × ...×Mn,free so y 6∈ Xfree.

�

Now we can show that η(x′, x) > 0.

Lemma 6.4: For all x′ ∈ Xfree and all x ∈ U(x′), η(x′, x) > 0.
Proof: By definition of U(x′), π(x′, x) ⊆ Xfree. For all y ∈ π(x′, x) let δy be the
largest number such that Bδy(y) ⊆ Xfree. By Assumption 6.1, δy > 0 for all y.
Choose

δ = inf
y∈π(x′,x)

δy > 0. (6.22)

Consider p ∈ Tδ(x
′, x) and i ∈ {0, ..., n}. Then there is some y ∈ π(x′, x) with

pi ∈ (Bδ(y))i ⊆
(

Bδy(y)
)

i
using Lemma 6.1. Now Bδy(y) ⊆ Xfree so by Lemma 6.3,

pi ∈ Mi,free. Therefore p ∈ M0,free × ... ×Mn,free. Since p ∈ Xrestricted by definition
of Tδ(x

′, x), p ∈ (M0,free × ...×Mn,free) ∩Xrestricted = Xfree. Thus Tδ(x
′, x) ⊆ Xfree.

Since η(x′, x) is the largest number with Tη(x′,x) ⊆ Xfree, we have η(x
′, x) ≥ δ > 0 by

Lemma 6.2.
�

In the holonomic case, we defined a local path between two configurations as a
set of configurations around which we could draw open balls and guarantee that the
presence of a configuration in one of the balls in the tree gave a constant probability
of adding a configuration in the next ball to the tree as shown in Figure 2.5. Here,
however, we know less about the empty space planner. Specifically, we cannot be
certain that a ball is the correct “shape” to draw around a configuration because the
objects may not be able to move instantaneously in any direction. Therefore, rather
than define a sequence of configurations around which we put open balls, we define
a sequence of sets {W 0, ...,Wm} such that the presence of a configuration in the tree
in one set guarantees a constant probability of adding a configuration in some later
set to the tree. An example of a domain where open balls are not sufficient is given
in Section 6.2.3.

Assume we have some configuration y′ in the tree in subspaceW j. As we discussed
in Section 2.2.2, we may not be able to guarantee that if we sample in W j+1, we
necessarily add this sample to the tree. Instead, we may need to sample from some
set that depends on y′. Putting these requirements together allows us to define a
local path in the more general case.

Definition 6.14 (Local Path): For x′, x ∈ Xrestricted and δ > 0, a set of subspaces
{W 0, ...,Wm} and an associated probability λ ∈ (0, 1] is a local path from x′ to x of

113

radius δ and sampling probability λ if and only if

1. For some ǫ ∈ (0, δ], Bǫ(x
′) ⊆ W 0

2. Wm ⊆ Bδ(x)

3. For all j < m, for all y′ ∈ W j, for some Sj(y′), for all y ∈ Sj(y′) for all
z ∈ X, if ρ(z, y) ≤ ρ(y′, y) then for some f ∈ F , f(z, y) ∈

⋃

l>j W
l and

π(z, f(z, y)) ⊆ Tδ(x
′, x).

4. For all j < m, for all y′ ∈ W j, the probability of sampling from Sj(y′) is at
least λ.

In point 1, we use ǫ because W 0 may not contain all of Bδ(x
′) but does need to

contain some open ball around x′. In point 3, Sj(y′) is usually in W j+1 but does not
have to be because we apply a projection function to the configuration sampled from
Sj(y′).

In the holonomic case we could prove a local path existed (Lemma 2.4) because
we knew the Extend function. Here, we must assume that such a path exists.

Assumption 6.2: For all x′, x ∈ X and all δ > 0, a local path from x′ to x of radius
δ and sampling probability greater than zero exists.

Assumptions 6.1 and 6.2 are the only two assumptions necessary for proving ex-
ponential convergence. Assumption 6.1 is an assumption about the free space that
is independent of the empty space planner and projection functions while Assump-
tion 6.2 is an assumption about the empty space planner and projection functions
that is independent of the free space. Assumption 6.1 (as with Assumption 2.1) is
something we need to ensure is true in the definition of the free space and is usu-
ally satisfied by not allowing contact between the moving components and the fixed
obstacles. Assumption 6.2 is a guideline for writing the empty space planner and
projection functions.

From Assumption 6.2, we can show that if the empty space planner returns a
collision free path from x′ to x, we can find sets {W 0, ...,Wm} with x′ ∈ W 0 and x ∈
Wm such that if a configuration in W j is in the tree, we have a constant probability
of adding a configuration in

⋃

l>j W
l.

Lemma 6.5: For all x′ ∈ X, for all x ∈ U(x′), for any δ ∈ (0, η(x′, x)], let
{W 0, ...,Wm} be a local path from x′ to x of radius δ and let λ > 0 be the asso-
ciated sampling probability. For all j < m, if Vk−1 contains a configuration in W j at
iteration k − 1, the probability of adding a configuration in

⋃

l>j W
l at iteration k is

at least λ/|F |.
Proof: Assume we have y′ ∈ W j ∩ Vk−1 at iteration k − 1 and that we sample in
y ∈ Sj(y′). The probability of such a sample is at least λ by definition of local path.
Let

z = arg min
v∈Vk−1

ρ(v, y) (6.23)

114

be the configuration returned on Line 4 of the DARRT algorithm. Then since y′ ∈
Vk−1, we have ρ(z, y) ≤ ρ(y′, y). Therefore by definition of local path, there is some
f ∈ F with f(z, y) ∈

⋃

l>j W
l and π(z, f(z, y)) ⊆ Tδ(x

′, x) ⊆ Tη(x′,x)(x
′, x) ⊆ Xfree

using Lemma 6.2. Assume we choose this f on Line 5 of the DARRT algorithm. The
probability of such a choice is 1/|F | since we choose a projection from F uniformly at
random. Since the two events are independent, the probability that we both choose
y ∈ Sj(y′) and f is λ/|F |. Since π(z, f(z, y)) ⊆ Xfree, f(z, y) = u(z, f(z, y))(1) so
f(z, y) ∈

⋃

l>j W
l is added to Vk on iteration k.

�

Now we need to consider paths that are not necessarily single applications of the
empty space planner. In the holonomic case, this was paths consisting of multiple line
segments. In this case, they are combinations of trajectories returned by the empty
space planner.

Definition 6.15 (Path): For all x′, x ∈ X, the sequence of configurations {x0, ..., xt}
is a path from x′ to x if and only if x0 = x′, xt = x, and for all j ∈ {0, ..., t − 1},
xj+1 ∈ U(xj).

A configuration x is reachable from a configuration x′ if there is a path from x′ to
x:

Definition 6.16 (Reachable): For all x′, x ∈ Xfree, x is reachable from x′, denoted
x ∈ R(x′), if and only if there is a path from x′ to x.

We showed in Lemma 6.5 that if x ∈ U(x′) then we can create some sequence
{W 0, ...,Wm} such that if a configuration in W j is in the tree, there is a constant
probability of adding a configuration in

⋃

l>j W
l. Now we use induction to show that

this is true for any configuration x′ can reach.

Lemma 6.6: For all x′ ∈ X, for all x ∈ R(x′), for any ζ > 0, for some γ > 0,
for some ǫ > 0, and some sequence of subspaces W = {W 0, ...,W r}, Bǫ(x

′) ⊆ W 0,
W r ⊆ Bζ(x), and for all j ∈ {0, ..., r − 1}, if a configuration in W j is in Vk−1 at
iteration k − 1, the probability of adding a configuration in

⋃

l>j W
l to the tree at

iteration k is at least γ and γ is independent of k.

Proof: Let {x0, .., xt} be a path from x′ to x. Some path exists because x ∈ R(x′).
We proceed by induction on the length of the path.

Base Case (t = 1): If t = 1, the path is {x0, x1}. Let δ = min
[

ζ, η(x0, x1)
]

. Let

{W 0, ...,Wm} be a local path from x0 to x1 of radius δ with sampling probability
λ > 0. By Assumption 6.2, {W 0, ...,Wm} and λ exist. By definition of local path,
Wm ⊆ Bδ(x

1) ⊆ Bζ(x
1) and for some ǫ > 0, Bǫ(x

0) ⊆ W 0. Let γ = λ/|F | > 0.
Clearly γ is independent of k. Lemma 6.5 gives us that if Vk−1 contains a configuration
in W j at iteration k − 1 then the probability we add a configuration in

⋃

l>j W
l to

Vk at iteration k is at least γ.

Induction Step: Let the path be {x0, ..., xt} of length t + 1. The path {x1, ..., xt}

115

from x1 to x is of length t so by induction there are some sequence of subspaces
{W 0,,Wm}, some γ′ > 0, and some δ > 0 such that Wm ⊆ Bζ(x

t), Bδ(x
1) ⊆ W 0,

and, if a configuration in W j is in Vk−1 at iteration k − 1 then a configuration in
⋃

l>j W
l is added to Vk with probability at least γ′. Let {P 0, ..., P p} be a local

path from x0 to x1 of radius min
[

δ, ζ, η(x0, x1)
]

with associated sampling proba-

bility λ > 0. {P 0, ..., P p} and λ exist by Assumption 6.2. Consider the sequence
{Q0, ..., Qp+m+1} = {P 0, ..., P p,W 1, ...,Wm}. By induction, Wm ⊆ Bζ(x

t). By defini-
tion of local path, for some ǫ > 0, Bǫ(x

0) ∈ P 0. Assume Vk−1 contains a configuration
in Qj and consider the probability of adding a configuration in

⋃

l>j Q
l. If j ≥ p+ 1,

by induction this probability is at least γ′ > 0 and independent of k. Assume j = p.
By definition of local path, Qp = P p ⊆ Bδ(x

1) ⊆ W 0. Thus by induction, if a configu-
ration in Qp ⊆ W 0 is in Vk−1 at iteration k− 1, a configuration in

⋃

l>0 W
l =
⋃

l>p Q
l

is added to Vk at iteration k with probability at least γ′. If j ≤ p− 1,

Pr

(

Vk ∩
⋃

l>j

Ql 6= ∅

∣

∣

∣

∣

Vk−1 ∩Qj 6= ∅ and j ≤ p− 1

)

≥ Pr

(

Vk ∩
⋃

j<l≤p

Ql 6= ∅

∣

∣

∣

∣

Vk−1 ∩ P j 6= ∅

)

(6.24)

= Pr

(

Vk ∩
⋃

l>j

P l 6= ∅

∣

∣

∣

∣

Vk−1 ∩ P j 6= ∅

)

(6.25)

≥ λ/|F | (6.26)

using Lemma 6.5. Therefore, if Vk−1 contains a configuration in Qj, the probability

we add a configuration in
⋃

l>j Q
l is at least min

[

λ/|F |, γ′
]

> 0 and is independent

of k.

�

Thus the probability that we advance along the path is independent of iteration.
The proof of exponential convergence is almost identical to the holonomic case (The-
orem 2.7).

Theorem 6.7 (Exponential Convergence of the DARRT algorithm): For all
x ∈ R(x0), for all δ > 0, the probability that the tree does not include a configuration
in Bδ(x) after k iterations is O(2−ak) for some positive constant a.

Proof: By Lemma 6.6, for some λ > 0 and independent of k and for some sequence
of subspaces {W 0, ...,W r}, x0 ∈ W 0, W r ⊆ Bδ(x), and for all j < r, if Vk−1 contains a
configuration in W j, the probability of adding a configuration in

⋃

l>j W
l is at least λ.

Let us consider each iteration as a Bernoulli distribution in which λ is the probability
of a successful outcome. Since we begin with x0 ∈ W 0 in the tree, in the worst case,
we require r successful outcomes to add a configuration in W r ⊆ Bδ(x) to the tree.

Let C1, ..., Ck be independent and identically distributed random variables whose
common distribution is the Bernoulli distribution with parameter λ. The random
variable C = C1 + ... + Ck is the number of successes after k iterations. Since each

116

Ci has the Bernoulli distribution, C has a binomial distribution with expected value
E[C] = kλ. Therefore, for any γ ∈ (0, 1],

Pr [C < (1− γ)kλ] < e−kpγ2/2. (6.27)

Since C is the number of successes after k iterations, we require C ≥ r. Choosing
γ = 1− r

kλ
, for k > r/λ, we have

Pr[C < r] < exp

(

−
kλ

2

(

1−
r

kλ

)2
)

(6.28)

= exp

(

−
kλ

2

(

1 +
(r

kλ

)2

− 2
r

kλ

))

(6.29)

= exp

(

−
kλ

2
+ r −

r2

2kλ

)

(6.30)

≤ exp

(

−
kλ

2
+ r

)

(6.31)

= O
(

e−kλ/2
)

. (6.32)

Thus the probability that a configuration in Bδ(x) has not been added to the tree
after k iterations is O(2−ak) for some positive constant a.

�

Assumptions 6.1 and 6.2 are strong. In the next section, we show examples of two
manipulation domains that satisfy these assumptions.

6.2 Examples

In this section we give two examples of manipulation domains that fulfill the as-
sumptions necessary for exponential convergence of the DARRT algorithm. We first
explain the notation we use and give a few lemmas about product spaces. The proofs
of these lemmas can be found in Appendix A.

6.2.1 Preliminaries: Notation and Cross Product Spaces

Notation: All of the following examples are of a single round robot and object
operating in a two dimensional plane. We useX to denote the full configuration space,
but c to denote an individual configuration to avoid confusion with the coordinate x.
Throughout we let R be the space representing the robot, O be the space representing
the object, and X = R×O be the full configuration space. R and O are both be two
dimensional while X is four dimensional. We denote a configuration in the full space
cj = (cjR, c

j
O) ∈ X. The notation cjR = (xj

R, y
j
R) refers to the robot’s configuration

while cjO = (xj
O, y

j
O) refers to the object’s configuration. The j superscript is used to

indicate that these are for configuration cj.
There are a number of lemmas about product spaces that are useful to many of

the examples. Most are intuitive, but formal proofs can be found in Appendix A.

117

Recall that if X = M0 × ...×Mn and B ⊆ X then

Bi =
{

m ∈Mi

∣

∣∃c ∈ B s.t. ci = m
}

.

Lemma 6.8: For all B ⊆M0 × ...×Mn, B ⊆ B0 × ...× Bn.

Lemma 6.9: For some non-empty sets Qi ⊆ Mi, let B = Q0 × ... × Qn. For any
subsets Wi ⊆ Qi, W0 × ...×Wn ⊆ B.

Lemma 6.10: For some non-empty sets Qi ⊆ Mi, let B = Q0 × ... × Qn. Then
Bi = Qi for i ∈ {0, ..., n}.

Corollary 6.11: For all c ∈ X, for all δ > 0, let X = M0 × ...×Mn where each Mi

has distance metric ρi. Define

Xδ(c) = {c
′ ∈ X |∀i ∈ {0, ..., n}, ρi(c, c

′) < δ} . (6.33)

Then Xδ(c) = (Xδ(c))0 × ...× (Xδ(c))n.

Corollary 6.12: For all c′, c ∈ X, for all δ > 0, define

Qδ(c
′, c) =





⋃

p∈π(c′,c)

(Xδ(p))0



× ...×





⋃

p∈π(c′,c)

(Xδ(p))n



 . (6.34)

Then Qδ(c
′, c) = (Qδ(c

′, c))0 × ...× (Qδ(c
′, c))n.

Corollary 6.13: For all c′, c ∈ X, for all q ∈ π(c′, c), for all i ∈ {0, ..., n}, for all
δ > 0, (Xδ(q))i ⊆ (Qδ(c

′, c))i.

Lemma 6.14: Let B = B0 × ...×Bn ⊆M0 × ...×Mn. If µi(Bi) > 0 and we choose
a configuration at random from M0× ...×Mn, then the probability of sampling from
B is

∏n
i=0

µi(Bi)
µi(Mi)

> 0.

Our last lemma formally proves that the tube around a line segment in the plane
is convex. This can be seen graphically in Figure 2.8.

Lemma 6.15: For i ∈ {0, ..., n}, let Mi represent a plane with the Euclidean distance
metric

ρi ((x
α
i , y

α
i) , (x

a
i , y

a
i)) =

√

(xα − xa)2 + (yα − ya)2, (6.35)

and let
τi(t) =

(

xa
i + (xb

i − xa
i)t, y

a
i + (ybi − yai)t

)

(6.36)

118

describe a straight line in subspace Mi from cai to cbi . Similarly, let

σi(t) =
(

xα
i + (xβ

i − xα
i)t, y

α
i + (yβi − yαi)t

)

(6.37)

describe a straight line from cαi to cβi . Let

(

π(ca, cb)
)

i
=
⋃

t∈[0,1]

τi(t), (6.38)

and let
(

Qδ(c
α, cβ)

)

i
=
⋃

t∈[0,1]

{m ∈Mi |ρi(σ(t),m) < δ} . (6.39)

If cai ∈
(

Qδ(c
α, cβ)

)

i
and cb ∈

(

Qδ(c
α, cβ)

)

i
, then

(

π(ca, cb)
)

i
⊆
(

Qδ(c
α, cβ)

)

i
.

We are now ready to proceed with the examples.

6.2.2 Point Rigid Transfer

We start with the simplest possible manipulation example. We have a point robot
and a point object in a two dimensional plane. The point robot can move in any
direction instantaneously, but the object can only move when its coordinate is the
same as the robot’s coordinate. When the robot and object are in the same place, the
object’s motion mimics the robot’s motion. The robot can occupy the same location
as the object without moving it. This domain is shown in Figure 6.2. Because the
object does not have to move with the robot, the empty space planner allows the
robot to occupy the same position as the object even when the robot is moving alone.
This allows us to set Xrestricted = X.

We first describe the projection functions, sampling function, distance functions,
free space, and empty space planner needed for this example. We then prove that
Assumptions 6.1 and 6.2 hold.

Projection Functions

We require only two projection functions, one allowing the robot to move alone and
the identity:

• fR(c
′, c) = (cR, c

′
O)

• fI(c
′, c) = c.

Distance Functions

We use the Euclidean distance metric for the robot space R and the object space
O. Our full distance function ρ is the maximum distance in either subspace. For

119

Initial robot
configuration

Final robot
configuration

Initial object configuration =
Final object configuration

(a)

Final robot
configuration

Initial robot
configuration

Final object
configuration

Initial object
configuration

(b)

Figure 6.2: A point robot and a point object. The robot can move the object when
they occupy the same point. The robot is shown with a black outline while the object
is a solid disc. The trajectories are shown from the red configuration to the blue
configuration. (a) If the object does not move, the robot travels in a single straight
line from its starting configuration (red) to its ending configuration (blue). (b) If the
object moves, the robot takes a trajectory of three straight lines. It first transits to
the object’s position and transfers the object to the object’s final configuration. Once
the object is in place, the robot transits itself to its final configuration.

c′, c ∈ X,

ρR(c
′
R, cR) =

√

(xR − x′
R)

2 + (yR − y′R)
2 (6.40)

ρO(c
′
O, cO) =

√

(xO − x′
O)

2 + (yO − y′O)
2 (6.41)

ρ(c′, c) = max
[

ρR(c
′
R, cR), ρO(c

′
O, cO)

]

. (6.42)

The Euclidean distance metric is known to be a metric so ρR and ρO are full metrics
with symmetry and the triangle inequality.

Free Space

Let Cobs be all points on an obstacle or on the boundary of an obstacle or on the
boundary of the space. We define Mi,free as the configurations for which component

120

i is not in contact with the obstacles:

MR,free =

{

r ∈ R

∣

∣

∣

∣

inf
p∈Cobs

ρR(r, p) > 0

}

(6.43)

MO,free =

{

o ∈ O

∣

∣

∣

∣

inf
p∈Cobs

ρO(o, p) > 0

}

(6.44)

Xrestricted = X (6.45)

Xfree = MR,free ×MO,free (6.46)

where Equation 6.46 follows from Equations 6.43- 6.45. We have Xrestricted = X
because we allow the robot and object to occupy the same space without forcing the
robot to move the object.

Note that since Xrestricted = X, Bδ(c) = Xδ(c) and Tδ(c
′, c) = Qδ(c

′, c) in the
notation of Section 6.2.1. Therefore, we can apply the lemmas in Section 6.2.1 directly
in our proofs of Assumptions 6.1 and 6.2.

We also require that R and O are both convex.

Sampling the Space

Since X = Xrestricted, SampleConfigurationSpace chooses a random configura-
tion from X.

Empty Space Planner

Lastly, we define the empty space planner. If the object does not move, the empty
space planner moves the robot in a straight line to its final destination. If the object
does move, the planner moves the robot to the object, moves the object to its final
destination, and then moves the robot to its final destination as shown in Figure 6.2.
More formally, on input (c′, c), the planner returns the following:

c′O = cO Move the robot in a single straight line from c′R to cR. This trajectory is

τ(t) =

(

(

x′
R + (xR − x′

R)t, y
′
R + (yR − y′R)t

)

, c′O

)

. (6.47)

c′O 6= cO We move the robot in a straight line from c′R to c′O, then from c′O to cO, and
then from cO to cR. The object moves in a straight line from c′O to cO during

121

the second segment. The trajectory is

τ(t) =















































(

(

x′
R + (x′

O − x′
R)3t, y

′
R + (y′O − y′R)3t

)

, c′O

)

if t ≤ 1
3

(

(

x′
O + (xO − x′

O)(3t− 1), y′O + (yO − y′O)(3t− 1)
)

,

(

x′
O + (xO − x′

O)(3t− 1), y′O + (yO − y′O)(3t− 1)
)

) if 1
3
< t ≤ 2

3

(

(

xO + (xR − x′
O) (3t− 2) , yO + (yR − yO) (3t− 2)

)

, cO

)

if 2
3
< t ≤ 1

(6.48)

Because these trajectories consist only of straight lines within R or O, and R and
O are convex, we can guarantee that they always remain within Xrestricted = X.
Therefore, this is an empty space planner.

Proof that Assumption 6.1 Holds

We first show that Xfree is open.

Theorem 6.16 (Assumption 6.1 Holds): For all c ∈ Xfree, for some δ > 0,
Bδ(c) ⊆ Xfree.

Proof: Choose c ∈ Xfree. Let

δR = inf
p∈Cobs

ρR(cR, p) (6.49)

δO = inf
p∈Cobs

ρO(cO, p) (6.50)

δ =
1

2
min [δR, δO] . (6.51)

By definition of Xfree, δR > 0 and δO > 0 so δ > 0. Choose c′ ∈ Bδ(c). By the
triangle inequality for any p ∈ Cobs,

ρR(p, c
′
R) ≥ ρR(p, cR)− ρR(c

′
R, cR) (6.52)

> δR − δ (6.53)

≥
1

2
δR (6.54)

> 0 (6.55)

ρO(p, c
′
O) ≥ ρO(p, cO)− ρO(c

′
O, cO) (6.56)

> δO − δ (6.57)

≥
1

2
δO (6.58)

> 0. (6.59)

122

c'O

csO

cwO

Nearest state to csO must be in here

Sample in here

ζ

ε/2

ζ+ε/2

Figure 6.3: Assume we have a configuration cwO for the object in the tree that is a
distance of ζ from c′O and we sample a new configuration csO for the object a distance
of ǫ/2 from c′O. Then the nearest configuration in the tree to csO could be as far as
ζ + ǫ from c′O.

Therefore c′ ∈MR,free ×MO,free = Xfree so Bδ(c) ⊆ Xfree.
�

Proof that Assumption 6.2 Holds

Now we show that Assumption 6.2 holds. We begin by showing it holds when the
robot moves alone. This is similar to Lemma 2.4, but made slightly more complicated
by the fact that we must take into account the object’s configuration as well as the
robot’s even though the object is not moving.

This proof diverges from Lemma 2.4 because the configuration we sample is not
necessarily the configuration we try to extend towards. Assume we know there is a
collision free path from c′ to c where c′O = cO. We place open balls in the robot’s
subspace around configurations along the path the robot takes from c′R to cR, similar
to Figure 2.5. As in Lemma 2.4, if we make the radius of these balls small enough and
place them close enough together, we can guarantee that, if we have a configuration
in one ball in the tree and we sample a configuration in the next ball, we add that
configuration to the tree.

The problem is how to sample the object’s configuration as we do this. Unlike the
robot’s configuration, the sampled configuration for the object is not the configuration
we try to extend towards. Specifically, assume we sample cs ∈ X and that the nearest
configuration in the tree is cn ∈ X. Then, because we are considering the case in
which the robot moves by itself, we extend not towards cs = (csR, c

s
O) but towards

(csR, c
n
O). Thus we must have that cnO is sufficiently close to c′O. We accomplish this by

assuming we start close to c′O and sampling the configuration of the object very close

123

to c′O so that even cnO must be quite close to c′O. Assume we start with a configuration
in the tree, cw, in which the object is a distance ζ from c′O and we sample within a
radius of ǫ

2
from around c′O. Then cnO could be a distance of ζ + ǫ from c′O as shown

in Figure 6.3. Therefore, we allow the ball around c′O in which the object might be
found to grow as we move along the path. With proper choices of the size of the ball
around the robot, the spacing of these balls, ζ and ǫ , we can always ensure that the
possible locations for the object remain within some outer radius.

Lemma 6.17: For c′, c ∈ X, let c′O = cO. For all η > 0, for some sets {W 0, ...,Wm},
Bη/6(c

′) ⊆ W 0, Wm ⊆ Bη(c), and for all j < m, for all cw ∈ W j, for some Sj(cw),
for all cs ∈ Sj(cw), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cw, cs), fR(c

n, cs) ∈ W j+1, and
π(cn, fR(c

n, cs)) ⊆ Tη(c
′, c), and for some λR

η (c
′, c) > 0, the probability of sampling

from Sj(cw) is at least λR
η (c

′, c).

Proof: We define

ζ =
η

2
(6.60)

δ =
η

6
(6.61)

jmax =

⌈

ρ(c′, c)

η/6

⌉

(6.62)

d =
ρ(c′, c)

jmax

≤
η

6
(6.63)

ǫ =
d

ρ(c′, c)
(η − (ζ + δ)) . (6.64)

For 0 ≤ j ≤ jmax, we also define

rj =

(

x′
R +

jd

ρ(c′, c)
(xR − x′

R), y
′
R +

jd

ρ(c′, c)
(yR − y′R)

)

(6.65)

W j
R =

{

q ∈ R
∣

∣ρR(r
j, q) < δ

}

(6.66)

W j
O = {o ∈ O |ρO(c

′
O, o) < ζ + jǫ} (6.67)

W j = W j
R ×W j

O. (6.68)

We first show that Bδ(c
′) ⊆ W 0 and W jmax ⊂ Bη(c).

Since δ < ζ and r0 = c′R and using Corollary 6.11, we have

Bδ(c
′) = (Bδ(c

′))R × (Bδ(c
′))O (6.69)

⊆
{

q ∈ R
∣

∣ρR(r
0, q) < δ

}

× (Bζ(c
′))O (6.70)

= W 0. (6.71)

124

Now

ζ + jǫ ≤ ζ + jmax
d

ρ(c′, c)
(η − (ζ + δ)) = ζ + jmax

ρ(c′, c)/jmax

ρ(c′, c)
(η − (ζ + δ)) (6.72)

= η − δ (6.73)

< η. (6.74)

Additionally

rjmax =

(

x′
R +

jmaxd

ρ(c′, c)
(xR − x′

R), y
′
R +

jmaxd

ρ(c′, c)
(yR − y′R)

)

(6.75)

=

(

x′
R +

jmaxρ(c
′, c)/jmax

ρ(c′, c)
(xR − x′

R), y
′
R +

jmaxρ(c
′, c)/jmax

ρ(c′, c)
(xR − x′

R)

)

(6.76)

= (xR, yR) (6.77)

= cR. (6.78)

Therefore

W jmax ⊆ (Bδ(c))R × (Bη(c
′))O (6.79)

= (Bδ(c))R × (Bη(c))O (6.80)

⊂ (Bη(c))R × (Bη(c))O (6.81)

= Bη(c) (6.82)

again using Corollary 6.11 and the fact that c′O = cO.

Now we show that W j ⊂ Tη(c
′, c) as this makes the rest of the proof easier. Since

c′O = cO,

π(c′, c) =
⋃

t∈[0,1]

(

(

x′
R + (xR − x′

R)t, y
′
R + (yR − y′R)t

)

, c′O

)

. (6.83)

Let cj = (rj, c′O). Using that 0 ≤ j ≤ jmax,

cj =

((

x′
R +

jd

ρ(c′, c)
(xR − x′

R), y
′
R +

jd

ρ(c′, c)

)

, c′O

)

(6.84)

=

((

x′
R +

jρ(c′, c)/jmax

ρ(c′, c)
(xR − x′

R), y
′
R +

jρ(c′, c)/jmax

ρ(c′, c)
(yR − y′R)

)

, c′O

)

(6.85)

=

((

x′
R +

j

jmax

(xR − x′
R), y

′
R +

j

jmax

(yR − y′R)

)

, c′O

)

(6.86)

∈ π(c′, c). (6.87)

125

Therefore, using that ζ ≤ ζ + jǫ < η,

W j =
(

Bδ(c
j)
)

R
×
(

Bζ+jǫ(c
j)
)

O
(6.88)

⊂
(

Bη(c
j)
)

R
×
(

Bη(c
j)
)

O
(6.89)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.90)

= Tη(c
′, c) (6.91)

using Corollaries 6.12 and 6.13.

Now we show that for all j < jmax, for all c
w ∈ W j, for some Sj(cw), for all cs ∈

Sj(cw), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cw, cs) then fR(c
n, cs) ∈ W j+1, π(cn, f(cn, cs)) ⊆

Tη(c
′, c), and the probability of sampling from Sj(cw) is always greater than zero. For

0 ≤ j < jmax and cw ∈ W j, we choose

Sj
R(c

w) =
{

r ∈ R
∣

∣ρR(r
j+1, r) < δ

}

(6.92)

Sj
O(c

w) =
{

o ∈ O
∣

∣

∣
ρO(c

′
O, o) <

ǫ

2

}

(6.93)

Sj(cw) = Sj
R(c

w)× Sj
O(c

w). (6.94)

Now δ > 0 so Sj
R(c

w) is an open ball of radius δ > 0 in R. Therefore pR = µR(S0(c′))
µR(R)

=
µR(Sj(cw))

µR(R)
is independent of j or cw. Now we also have that

ǫ =
d

ρ(c′, c)
(η − (ζ + δ)) (6.95)

=
d

ρ(c′, c)

(

η −
η

2
−

η

6

)

(6.96)

=
dη

3ρ(c′, c)
(6.97)

> 0 (6.98)

so Sj
O(c

w) is an open ball of radius ǫ
2
> 0 in O. Therefore pO = µO(S0(c′))

µO(O)
= µO(Sj(cw))

µO(O)

is independent of j or cw. Therefore, the probability of sampling from Sj(cw) is
λR
η (c

′, c) = pOpR > 0 by Lemma 6.14 regardless of j or cw.

Assume we choose cs ∈ Sj(cw). By the triangle inequality,

ρR(c
w
R, c

s
R) ≤ ρR(c

w
R, r

j) + ρR(r
j, rj+1) + ρR(r

j+1, csR) (6.99)

<
δ +

(

(

x′

R+
(j+1)d

ρ(c′,c)
(xR−x′

R)−
(

x′

R+ jd
ρ(c′,c)

(xR−x′

R)
))2

+
(

y′R+
(j+1)d

ρ(c′,c)
(yR−y′R)−

(

y′R+ jd
ρ(c′,c)

(yR−y′R)
))2
)1/2

+ δ
(6.100)

= 2δ +

√

(

d

ρ(c′, c)
(xR − x′

R)

)2

+

(

d

ρ(c′, c)
(yR − y′R)

)2

(6.101)

126

= 2δ +

√

(

d

ρ(c′, c)

)2

((xR − x′
R)

2 + (yR − y′R)
2) (6.102)

= 2δ +

√

(

d

ρ(c′, c)

)2

ρ(c′, c)2 (6.103)

= 2δ + d, (6.104)

and

ρO(c
w
O, c

s
O) ≤ ρO(c

w
O, c

′
O) + ρO(c

′
O, c

s
O) (6.105)

< ζ + jǫ+
ǫ

2
(6.106)

= ζ +

(

j +
1

2

)

ǫ. (6.107)

Now for some cn ∈ X let

ρ(cn, cs) ≤ ρ(cw, cs) (6.108)

= max
[

ρR(c
w
R, c

s
R), ρO(c

w
O, c

s
O)
]

(6.109)

< max

[

2δ + d, ζ +

(

j +
1

2

)

ǫ

]

(6.110)

≤ max

[

η

3
+

η

6
, ζ +

(

j +
1

2

)

ǫ

]

(6.111)

= max

[

η

2
,
η

2
+

(

j +
1

2

)

ǫ

]

(6.112)

= ζ +

(

j +
1

2

)

ǫ. (6.113)

Let cf = fR(c
n, cs) = (csR, c

n
O). We first show that cf ∈ W j+1. Consider

ρO(c
′
O, c

f
O) = ρO(c

′
O, c

n
O) (6.114)

≤ ρO(c
′
O, c

s
O) + ρO(c

s
O, c

n
O) (6.115)

<
ǫ

2
+ ζ +

(

j +
1

2

)

ǫ (6.116)

= ζ + (j + 1)ǫ (6.117)

so cfO ∈ W j+1
O . Additionally

ρR

(

rj+1, cfR

)

= ρR
(

rj+1, csR
)

< δ (6.118)

so cfR ∈ W j+1
R . Therefore cf ∈ W j+1

R ×W j+1
O = W j+1 ⊆ Tη(c

′, c).

Now we show that π(cn, cf) ⊆ (Tη(c
′, c))O. Firstly, c

f
O = cnO ∈ W j+1

O ⊆ (Tη(c
′, c))O.

127

Additionally, using that j < jmax,

ρR(r
j+1, cnR) ≤ ρR(r

j+1, csR) + ρR(c
s
R, c

n
R) (6.119)

< δ + ζ +

(

j +
1

2

)

ǫ (6.120)

< δ + ζ + jmax
d

ρ(c′, c)
(η − (ζ + δ)) (6.121)

= δ + ζ + jmax
ρ(c′, c)/jmax

ρ(c′, c)
(η − ζ − δ) (6.122)

= δ + ζ + (η − ζ − δ) (6.123)

= η. (6.124)

Since j < jmax, j + 1 ≤ jmax and we showed in Equation 6.87 that rj ∈ (π(c′, c))R for

all j ∈ {0, ..., jmax}. Thus cnR ∈ (Tη(c
′, c))R. We already have cnO = cfO ∈ (Tη(c

′, c))O
so

cn ∈ (Tη(c
′, c))R × (Tη(c

′, c))O = Tη(c
′, c) (6.125)

by Corollary 6.12. Thus, cn ∈ Tη(c
′, c) and cf ∈ Tη(c

′, c). Now cnO = cfO so

π(cn, cf) =
⋃

t∈[0,1]

((

xn
R + (xf

R − xn
R)t, y

n
R + (xf

R − xn
R)t
)

, cnO

)

(6.126)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.127)

= Tη(c
′, c) (6.128)

using Lemma 6.15 and Corollary 6.12.

�

The case in which the robot and object move together is actually closer to the
case of the point robot by itself. We do modify the proof slightly to account for the
fact that the robot and object may not start or end in exactly the same place, but
the fact that we are, in this case, extending towards the sampled configuration makes
the proof less involved than that of Lemma 6.17.

Lemma 6.18: For c′, c ∈ X, assume c′O 6= cO, c
′
R = c′O and cR = cO. Then for all

η > 0, for some sets {W 0, ...,Wm}, for some ǫ ∈ (0, η], Bǫ(c
′) ⊆ W 0, Wm ⊆ Bη(c

e),
and for all j < m, for all cj ∈ W j, for some Sj(cj), for all cs ∈ Sj(cj), for all cn ∈ X,
if ρ(cn, cs) ≤ ρ(cj, cs), fI(c

n, cs) ∈ W j+1, and π(cn, fI(c
n, cs)) ⊆ Tη(c

′, c), and for some
λO
η (c

′, c) > 0, the probability of sampling from Sj(cj) is at least λO
η (c

′, c).

Proof: Let

jmax =

⌈

ρ(c′, c)

η/4

⌉

(6.129)

δ =
ρ(c′, c)

jmax

≤
η

4
(6.130)

128

and for 0 ≤ j ≤ jmax, define

cj =

((

x′
O + (xO − x′

O)
j

jmax

, y′O + (yO − y′O)
j

jmax

)

,

(

x′
O + (xO − x′

O)
j

jmax

, y′O + (yO − y′O)
j

jmax

)) (6.131)

W j = Bδ(c
j). (6.132)

Now c0 = c′ and cjmax = c so clearly Bδ(c
′) = W 0 and W jmax = Bδ(c) ⊆ Bη(c).

For any j < jmax, choose cw ∈ W j. We define

Sj(cw) = Bδ(c
j+1) = W j+1. (6.133)

Now Sj(cw) = (Bδ(c
j+1))R× (Bδ(c

j+1))O by Corollary 6.11 and (Bδ(c
j+1))R is just an

open ball of radius δ in subspace R. Therefore pR = µR(Bδ(c
′))

µR(R)
=

µR((Bδ(c
j+1)))

R

µR(R)
> 0

is the probability we sample from (Sj(cw))R and is independent of cw or j. Similarly,

pO =
µO((Bδ(c

′))O)
µO(O)

> 0 is the probability we sample from (Sj(cw))O. Therefore by

Lemma 6.14, the probability of sampling from Sj(cw) is λO
η (c

′, c) = pRpO > 0.

Now we show that W j ⊆ Tη(c
′, c). We have

π(c′, c) =
⋃

t∈[0,1]

((x′
O + (xO − x′

O)t, y
′
O + (yO − y′O)t) , (x

′
O + (xO − x′

O)t, y
′
O + (yO − y′O)t)) .

(6.134)
Now for 0 ≤ j ≤ jmax, c

j ∈ π(c′, c). Therefore

W j = Bδ(c
j) ⊆ Bη(c

j) (6.135)

=
(

Bη(c
j)
)

R
×
(

Bη(c
j)
)

O
(6.136)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.137)

= Tη(c
′, c) (6.138)

using Corollaries 6.11, 6.12 and 6.13.

Now let cs ∈ Sj(cw) and consider any cn such that

ρ(cn, cs) ≤ ρ(cw, cs) (6.139)

= max
[

ρR(c
w
R, c

s
R), ρO(c

w
O, c

s
O)
]

(6.140)

≤
max

[

ρR(c
w
R, c

j
R) + ρ(cjR, c

j+1
R) + ρR(c

j+1
R , csR),

ρO(c
w
O, c

j
O) + ρO(c

j
O, c

j+1
O) + ρO(c

j+1, csO)
] (6.141)

<
δ +

(

(

x′

O+
(j+1)δ

ρ(c′,c)
(xO−x′

O)−
(

x′

O+ jd
ρ(c′,c)

(xO−x′

O)
))2

+

(

y′O+
(j+1)δ

ρ(c′,c)
(yO−y′O)−

(

y′O+ jd
ρ(c′,c)

(yO−y′O)
))2
)1/2

+ δ
(6.142)

129

= 2δ +

√

(

δ
ρ(c′,c)

(xO − x′
O)
)2

+
(

δ
ρ(c′,c)

(yO − y′O)
)2

(6.143)

= 2δ +

√

(

δ

ρ(c′, c)

)2

((xO − x′
O)

2 + (yO − y′O)
2) (6.144)

= 2δ +

√

(

δ

ρ(c′, c)

)2

ρ(c′, c)2 (6.145)

= 3δ. (6.146)

We first show that cn ∈ Tη(c
′, c). We have

ρR(c
j+1
R , cnR) ≤ ρR(c

j+1
R , csR) + ρR(c

s
R, c

n
R) (6.147)

< 4δ (6.148)

≤ η. (6.149)

Similarly

ρO(c
j+1
O , cnO) ≤ ρO(c

j+1
O , csO) + ρO(c

s
O, c

n
O) (6.150)

< 4δ (6.151)

≤ η. (6.152)

Now j < jmax so cj+1 ∈ π(c′, c). Therefore

cn ∈
(

Bη(c
j+1)

)

R
×
(

Bη(c
j+1)

)

O
(6.153)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.154)

= Tη(c
′, c) (6.155)

using Corollaries 6.11, 6.12 and 6.13.

Consider fI(c
n, cs) = cs ∈ Sj+1 = W j+1 ⊆ Tη(c

′, c). Firstly let cb = (cnO, c
n
O) and

ce = (csO, c
s
O). Recall that c

j+1
R = cj+1

O and that ρR = ρO. Then

ρ(cj+1, cb) = max
[

ρR(c
j+1
R , cnO), ρO(c

j+1
O , cnO)

]

(6.156)

= max
[

ρO(c
j+1
O , cnO), ρO(c

j+1
O , cnO)

]

(6.157)

= ρO(c
j+1
O , cnO) (6.158)

< η (6.159)

by Equation 6.152. Similarly, using that cs ∈ Bδ(c
j+1),

ρ(cj+1, ce) = max
[

ρR(c
j+1
R , ceR), ρO(c

j+1
O , csO)

]

(6.160)

= max
[

ρO(c
j+1
O , csO), ρO(c

j+1
O , csO)

]

(6.161)

= ρO(c
j+1
O , csO) (6.162)

130

< δ (6.163)

< η. (6.164)

Therefore

cb, ce ∈ Bη(c
j+1) =

(

Bη(c
j+1)

)

R
×
(

Bη(c
j+1)

)

O
(6.165)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.166)

= Tη(c
′, c) (6.167)

using Corollaries 6.11, 6.12 and 6.13. Now consider

π(cn, cs) =

⋃

t∈[0,1]

(

(

xn
R + (xb

R − xn
R)t, y

b
R + (ybR − ynR)t

)

, cnO

)

∪
⋃

t∈[0,1]

(

(

xb
O + (xe

R − xb
R)t, y

b
R + (yeR − ybR)t

)

,

(

xn
O + (xs

O − xn
O)t, y

n
O + (ysO − ynO)t

)

)

∪
⋃

t∈[0,1]

(

(

xe
R + (xs

R − xe
R)t, y

s
O − (yeR − ysO)t

)

, csO

)

(6.168)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.169)

= Tη(c
′, c) (6.170)

using Lemma 6.15 and Corollary 6.12.

�

Now we have shown that Assumption 6.2 holds for each possible segment of the
trajectories returned by the empty space planner and we must just show that it holds
for whole trajectories. The proof of this is similar to Lemma 6.6.

Theorem 6.19 (Assumption 6.2 Holds): For all η > 0, for all c′, c ∈ X, for
some λ ∈ (0, 1] and a set of subspaces Wδ(c

′, c) = {W 0, ...,Wm}, for some ǫ > 0,
Bǫ(c

′) ∈ W 0, Wm ⊆ Bη(c), and for all j < m, for all cj ∈ W j, for some Sj(cj),
for all cs ∈ Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs) then for some f ∈ F ,
f(cn, cs) ∈

⋃

l>j W
l, and π(cn, f(cn, cs)) ⊆ Tη(c

′, c), and the probability of sampling

from Sj(cj) is at least λ.

Proof: Firstly assume c′O = cO. Then this follows directly from Lemma 6.17.

Now assume c′O 6= cO. Let c
p = ((x′

O, y
′
O), c

′
O) and let ce = ((xO, yO), cO). Then

π(c′, c) = π(c′, cp) ∪ π(cp, ce) ∪ π(ce, c) (6.171)

and cp ∈ π(c′, c) and ce ∈ π(cb, ce). Because ceO = cO, by Lemma 6.17, we can choose
{D0, ..., Ddmax} such that for some δD ∈ (0, η], BδD(c

e) ⊆ D0, Ddmax ⊆ Bη(c), and for
all j < dmax, for all c

j ∈ Dj, for some Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs),

131

fR(c
n, cs) ∈ Dj+1, π(cn, fR(c

n, cs)) ⊆ Tη(c
e, c) ⊂ Tη(c

′, c), and the probability of
sampling from Sj(cj) is at least λR

η (c
e, c).

Since cpR = cPO and ceR = ceO, by Lemma 6.18, we can choose {P 0, ..., P pmax} such
that for some δP ∈ (0, δD], BδP (c

p) ⊆ P 0, P pmax ⊆ BδD(c
e), and for all j < pmax, for

all cj ∈ P j, for some Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs), for some f ∈ F ,
f(cn, cs) ∈

⋃

l>j P
l, π(cn, f(cn, cs)) ⊆ TδD(c

p, ce) ⊆ Tη(c
′, c), and the probability of

sampling from Sj(cj) is at least λO
δD
(cp, ce).

Lastly, since c′O = cpO, Lemma 6.17 gives that we can choose {A0, ..., Aamax} such
that for some δA ∈ (0, δP], BδA(c

′) ⊆ A0, Aamax ⊆ BδP (c
p), and for all j < amax, for

all cj ∈ Aj, for some Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs), fR(c
n, cs) ∈ Aj+1,

π(cn, fR(c
n, cs)) ⊆ TδP (c

′, cp) ⊆ Tη(c
′, c), and the probability of sampling from Sj(cj)

is at least λR
δP
(c′, cp).

Now let

{

W 0, ...,Wm
}

=
{

A0, ..., Aamax−1, P 0, ..., P pmax−1, D0, ..., Ddmax
}

. (6.172)

We have BδA(c
′) ⊆ W 0 and Wm ⊆ Bη(c). Moreover, Aamax ⊆ BδP (c

p) ⊆ P 0 and
P pmax ⊆ BδD(c

e) ⊆ D0. Therefore for all j < m, for all cj ∈ W j, for some Sj(cj),
for all cs ∈ Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs) then for some f ∈ F ,
f(cn, cs) ∈

⋃

l>j W
l and π(cn, f(cn, cs)) ⊆ Tη(c

′, c) and the probability of sampling

from Sj(cj) is at least min
[

λR
δP
(c′, cp), λO

δD
(cp, ce), λR

η (c
e, c)

]

> 0.

�

Thus Assumption 6.2 holds for the case of a point robot and object. We now do
a more complicated example with a non-prehensile manipulation primitive.

6.2.3 Disc Pushing

In this example, we consider a point robot pushing a disc of radius OR. The robot
can only push the disc in the four cardinal directions from four points on the disc
as shown in Figure 6.4. Note that the object can move to a new configuration that
is not along a line parallel to a principal axis, but this requires the robot push the
object twice (Figure 6.4f). For simplicity, we allow the robot and object to overlap.
This example requires projection functions that respect the interaction between the
robot and object as well as projections onto the robot’s space alone.

Projection Functions

We use three projection functions. Either the robot moves by itself or it pushes the
object parallel to one of the principal axes.

• fR(c
′, c) = (cR, c

′
O)

• fx(c
′, c) = (cR, (xO, y

′
O))

• fy(c
′, c) = (cR, (x

′
O, yO))

132

Initial robot
configuration Final robot

configuration

Initial object configuration =
Final object configuration +x

+y

(a)

Initial robot
configuration

Final robot
configuration

Initial object
configuration

Final object
configuration+x

+y

(b)

Final robot
configuration

Initial robot
configuration

Final object
configuration

Initial object
configuration+x

+y

(c)

Final robot
configuration

Initial robot
configuration

Final object
configuration

Initial object
configuration

+x
+y

(d)

Final robot
configuration

Initial robot
configuration

Initial object
configuration

Final object
configuration

+x
+y

(e)

Final robot
configuration

Initial robot
configuration

Initial object
configuration

Final object
configuration

+x
+y

Intermediate object
configuration

(f)

Figure 6.4: A robot pushing a disc. The robot is a point shown as a filled disc outlined in
black and the object is a solid disc. Trajectories are shown from the red configuration to
the blue configuration. (a) When the object’s initial configuration is the same as its final
configuration, the robot moves in a single straight line from its initial configuration to its
final configuration. The robot and object are allowed to overlap. (b) When the object’s
final configuration has a larger x value than its initial configuration, the robot can push
in the +x direction by moving to the smallest x coordinate on the object and pushing in
the +x direction. (c) When the object’s final configuration has a smaller x value than its
initial configuration, the robot can push in the −x direction by moving to the smallest x
coordinate on the object and pushing in the −x direction. (d) When the object’s final
configuration has a larger y value than its initial configuration, the robot can push in the
+y direction by moving to the smallest y coordinate on the object and pushing in the +y
direction. (e) When the objects’ final configuration has a smaller y value than its initial
configuration, the robot can push in the −y direction by moving to the largest y coordinate
on the object and pushing in the −y direction. (f) If the object’s final configuration is not
along a line parallel to a principal axis from its initial configuration, the trajectory from
initial configuration to final configuration requires the robot to push the object twice (the
object’s position after the first push is shown as a dashed outline). The empty space planner
only plans for single pushes; trajectories like these can be created using multiple instances
of the empty space planner.

133

Distance Functions

We use the Euclidean distance metric for the robot space R and the object space O.
Our full distance function ρ is the maximum distance in either subspace. For c′, c ∈ X

ρR(c
′
R, cR) =

√

(xR − x′
R)

2 + (yR − y′R)
2 (6.173)

ρO(c
′
O, cO) =

√

(xO − x′
O)

2 + (yO − y′O)
2 (6.174)

ρ(c′, c) = max
[

ρR(c
′
R, cR), ρO(c

′
O, cO)

]

. (6.175)

The Euclidean distance metric is known to be a metric so ρR and ρO are full metrics
with symmetry and the triangle inequality. The maximum of two metrics is also a
metric so ρ itself is a metric, but this is not be necessary for the proofs.

Free Space

Let Cobs be all points on an obstacle or on the boundary of an obstacle or on the
boundary of the space. We define Mi,free as the configurations for which component
i is not in contact with the obstacles:

MR,free = {r ∈ R| inf
p∈Cobs

ρR(r, p) > 0} (6.176)

MO,free = {o ∈ O| inf
p∈Cobs

ρO(o, p) > OR} (6.177)

Xrestricted = X (6.178)

Xfree = MR,free ×MO,free (6.179)

where Equation 6.179 follows from Equations 6.176- 6.178. We have Xrestricted = X
because we allow overlap between the robot and object.

Note that since Xrestricted = X, Bδ(c) = Xδ(c) and Tδ(c
′, c) = Qδ(c

′, c) in the
notation of Section 6.2.1. Therefore we can apply the lemmas in Section 6.2.1 directly
in the proofs of Assumptions 6.1 and 6.2.

We also require that R and O are both convex.

Sampling the Space

Since X = Xrestricted, SampleConfigurationSpace need only select a random
configuration from X.

Empty Space Planner

Now we define the empty space planner. The empty space planner always operates
on input of the form (c′, f(c′, c)) for c′, c ∈ X and f ∈ F . Therefore, the empty space

134

planner need only be defined for the domain

{

(c′, c) ∈ Xfree ×X
∣

∣∃f ∈ F, ci ∈ X s.t. f(c′, ci) = c
}

= (6.180)

{(c′, c) ∈ Xfree ×X |c′O = cO or y′O = yO or x′
O = xO } . (6.181)

This means the empty space planner plans for at most one push. If the object’s
initial and final configurations are the same, the empty space planner just returns
a straight line in the robot’s subspace from the robot’s initial configuration to its
final configuration. This is shown in Figure 6.4a. If the object’s final configura-
tion has a larger x value(smaller x value)(larger y value)(smaller y value) than its
initial configuration, the empty space planner plans to move the robot to the small-
est x coordinate(largest x coordinate)(smallest y coordinate)(largest y coordinate)
on the object, plans a push in a straight line in the +x(−x)(+y)(−y) direction,
and finally plans a move to the robot’s final configuration. This is shown in Fig-
ure 6.4b(Figure 6.4c)(Figure 6.4d)(Figure 6.4e).

Specifically, on input (c′, c), the planner returns the following:

c′O = cO Move the robot in a single straight line from c′R to cR. This trajectory is

τ(t) =

(

(

x′
R + (xR − x′

R)t, y
′
R + (yR − y′R)t

)

, c′O

)

. (6.182)

y′O = yO In this case, we must decide whether the push the object right or left. Recall
that the radius of the object is OR.

x′
O < xO The robot moves in a single straight line to the smallest x coordinate

on the object. It then pushes the object directly right to xO and finally
moves in a straight line to its final configuration. The trajectory is

τ(t) =































(

(

x′

R+(x′

O−OR−x′

R)3t,y′R+(y′O−y′R)3t

)

,c′O

)

if t ≤ 1
3

(

(

x′

O−OR+(xO−x′

O)(3t−1),y′O

)

,

(

x′

O+(xO−x′

O)(3t−1),y′O

)

)

if 1
3
< t ≤ 2

3
(

(

xO−OR+(xR−(xO−OR))(3t−2),y′O+(yR−y′O)(3t−2)

)

,cO

)

if 2
3
< t ≤ 1

(6.183)

x′
O > xO The robot moves in a single straight line to the largest x coordinate

on the object. It then pushes the object directly left to xO and finally

135

moves in a straight line to its final configuration. The trajectory is

τ(t) =































(

(

x′

R+(x′

O+OR−x′

R)3t,y′R+(y′O−y′R)3t

)

,c′O

)

if t ≤ 1
3

(

(

x′

O+OR+(xO−x′

O)(3t−1),y′O

)

,

(

x′

O+(xO−x′

O)(3t−1),y′O

)

)

if 1
3
< t ≤ 2

3
(

(

xO+OR+(xR−(xO+OR))(3t−2),y′O+(yR−y′O)(3t−2)

)

,cO

)

if 2
3
< t ≤ 1

(6.184)

x′
O = xO In this case, we must decide whether the push the object up or down. Recall

that the radius of the object is OR.

y′O < yO The robot moves in a single straight line to the smallest y coordinate
on the object. It then pushes the object directly upwards to yO and finally
moves in a straight line to its final configuration. The trajectory is

τ(t) =































(

(

x′

R+(x′

O−x′

R)3t,y′R+(y′O−OR−y′R)3t

)

,c′O

)

if t ≤ 1
3

(

(

x′

O,y′O−OR+(yO−y′O)(3t−1)

)

,

(

x′

O,y′O+(yO−y′O)(3t−1)

)

)

if 1
3
< t ≤ 2

3
(

(

x′

O+(xR−x′

O)(3t−2),yO−OR+(yR−(yO−OR))(3t−2)

)

,cO

)

if 2
3
< t ≤ 1

(6.185)

y′O > yO The robot moves in a single straight line to the largest y coordinate on
the object. It then pushes the object directly downwards to yO and finally
moves in a straight line to its final configuration. The trajectory is

τ(t) =































(

(

x′

R+(x′

O−x′

R)3t,y′R+(y′O+OR−y′R)3t

)

,c′O

)

if t ≤ 1
3

(

(

x′

O,y′O+OR+(yO−y′O)(3t−1)

)

,

(

x′

O,y′O+(yO−y′O)(3t−1)

)

)

if 1
3
< t ≤ 2

3
(

(

x′

O+(xR−x′

O)(3t−2),yO+OR+(yR−(yO+OR))(3t−2)

)

,cO

)

if 2
3
< t ≤ 1

(6.186)

Because these trajectories consist only of straight lines within R or O, R and O are
convex, and the starting configuration is within free space (so the object must be
more than OR from any boundary), we can guarantee that they always remain within
Xrestricted = X. Therefore, this is an empty space planner.

Proof that Assumption 6.1 Holds

We first show that Xfree is open.

Theorem 6.20 (Assumption 6.1 Holds): For all c ∈ Xfree, for some δ > 0,
Bδ(c) ⊆ Xfree.

136

Proof: Choose c ∈ Xfree. Let

δR = inf
p∈Cobs

ρR(cR, p) (6.187)

δO = inf
p∈Cobs

ρO(cO, p)−OR (6.188)

δ =
1

2
min [δR, δO] . (6.189)

(6.190)

By definition of Xfree, δR > 0 and δO > 0 so δ > 0. Choose c′ ∈ Bδ(c). By the
triangle inequality for any p ∈ Cobs,

ρR(p, c
′
R) ≥ ρR(p, cR)− ρR(c

′
R, cR) (6.191)

> δR − δ (6.192)

≥
1

2
δR (6.193)

> 0 (6.194)

ρO(p, c
′
O) ≥ ρO(p, cO)− ρO(c

′
O, cO) (6.195)

> δO +OR − δ (6.196)

≥
1

2
δO +OR (6.197)

> OR. (6.198)

Therefore c′ ∈MR,free ×MO,free = Xfree so Bδ(c) ⊆ Xfree.

�

Proof that Assumption 6.2 Holds

The proof that Assumption 6.2 holds when the robot moves by itself in the case of a
point robot and object is given in Lemma 6.17. Since the trajectory the robot and
object take when the object does not move are the same in this example, the proof
that Assumption 6.2 holds for this example is identical.

The proof that Assumption 6.2 holds for the trajectories in which the robot pushes
the object is slightly more complicated. We only do the proof in the case that x′

O = xO

and y′O < yO as it is clear that the other three cases are analogous.

We are trying to create a sequence of regions {W 0, ...,Wm} such that if there
is a configuration cj ∈ W j in the tree, there is a constant probability of adding a
configuration in

⋃

l>j W
l. In the case where the moving components could move

instantaneously in any direction (Lemmas 2.4, 6.17, and 6.18), we used open balls
for the W j. However, in this case, the object cannot move instantaneously in any
direction even when the robot is in contact with it. We need the shape of the W j

to reflect this restriction. For instance, assume that there is a collision free path
for the object from c′O to cO where x′

O = xO and y′O < yO. Then, if we have some
configuration in the tree at (xj

O, y
j
O) ∈ W j

O where xj
O is near x′

O and y′O ≤ yjO ≤ yO,

137

we want to add a configuration with a y value of at least yjO + s for some finite s.
This allows us to move “up” along the path. However, the x value of the added
configuration only needs to be near x′

O. Thus it makes more sense for the W j
O to be

rectangular.

In fact, our W j
O’s are trapezoidal. This is because when extending from a con-

figuration in the tree, we do not extend directly towards the sampled configuration.
Assume we have some configuration cjO ∈ W j

O in the tree and we sample a configu-
ration csO. Let cnO be any configuration no farther from csO than cjO. In the case of
x′
O = xO and y′O < yO, we try to extend towards fy(c

n, cs) = (csR, (x
n
O, y

s
O)). There-

fore, we both need to ensure that ysO > yjO+s and that xn
O is within the tube of radius

δ from c′O to cO. This raises the same problem we had in Section 6.2.2: If xj
O is a

distance of ζ from x′
O then xn

O could be as far as ζ+ǫ from x′
O (see Figure 6.3). There-

fore, the width of the W j
O’s needs to expand as we move upwards. The amount it can

expand by is governed by the slope of the line connecting (x′
O, y

′
O − δ) to (x′

O + δ, yO)
as shown in Figure 6.5.

Now assume we have some cjO in one of these trapezoidal W j
O. We need to sample

a configuration csO that ensures that for any cnO no farther from csO than cjO, (x
n
O, y

s
O) ∈

⋃

l>j W
l
O. Assume the distance from the bottom line ofW j

O to the bottom line ofW j+1
O

is s. We always want ysO − yjO ≥ s. Let ρ be the distance from cjO to cnO. Assume cjO
is near the left edge of W j

O as shown in part (b) of Figure 6.5. Let the amount the
bottom line of each W j

O expands be 2qx. If the sampled configuration is a distance of
ysO − yjO above cjO we must ensure that xn

O > xs
O − ρ > −qx/s(y

s
O − yjO). This gives us

an upper bound on the angle between cjO and csO while the need to move a distance
of at least s gives us a lower bound. Putting the two bounds together gives us that
the region from which we sample, Sj

O(c
j
O), should be a rectangle in polar coordinates.

This region is shown in green in Figure 6.5. As we move cjO right (along the +x axis)
in W j

O, the same relationship holds until we reach the center with xj
O = x′

O. Once we
cross the center line, we must ensure that xs

O < xj
O. Therefore, Sj

O is split into two
cases: one when xj

O ≤ x′
O and one when xj

O > x′
O. We only analyze the xj

O ≤ x′
O case

since the other one is simply the mirror image.

There is one more technicality: we must make sure that the final W j is within
Bδ(c). We do this by setting Wm = Bδ(c) and ensuring that s is small enough that
it is not possible to “miss” Bδ(c) entirely.

Figure 6.5 shows the important geometric quantities of the following lemma visu-
ally.

Lemma 6.21: For c′, c ∈ X, let x′
O = xO = x′

R = xR, y
′
O < yO, y

′
R = y′O − OR and

yR = yO−OR. Let c
e = (c′R, cO). Then for all η > 0, for some sequence {W 0, ...,Wm},

for some ǫ ∈ (0, η], Bǫ(c
′) ⊆ W 0, Wm ⊆ Bη(c

e), and for all j < m, for all cj ∈ W j,
for some Sj(cj), for all cs ∈ Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs), for some
f ∈ F , f(cn, cs) ∈

⋃

l>j W
l and π(cn, f(cn, cs)) ⊆ Tη(c

′, c), and for some λO
η (c

′, c) > 0,

the probability of sampling from Sj(cj) is at least λO
η (c

′, c).

138

(a)

cO

c'O

Slope = 1/q

δ

s

+x

+y Sample in S0
O (c0) ⇒

Nearest state to sample in here

Nearest state to
csO in here

csO

Sample at csO ⇒
(xnO, ysO) will be on red line

Sample in S0
O (c0) ⇒

(xnO,ysO) in grey area

c0O W 0
O

S0
O(c0)

s
Slope = 1/q

Nearest state to
csO in here

csO

Sample at csO ⇒
(xnO, ysO) will be on red line

c0O

Sample in S0
O (c0) ⇒

Nearest state to sample in here

Sample in S0
O (c0) ⇒

(xnO,ysO) in grey area

S0
O(c0)

W 0
O

s
Slope = 1/q

c0O

Sample in S0
O (c0) ⇒

Nearest state to sample in here

Nearest state to
csO in here

csO

Sample at csO ⇒
(xnO, ysO) will be on red line

Sample in S0
O (c0) ⇒

(xnO,ysO) in grey area

S0
O(c0)

W 0
O

s
Slope = 1/q

(d)

(b)

(c)

Figure 6.5: Assume there is a collision free path for the object from c′O to cO (magenta line).
(a) Because the space is open, we can put a tube (green solid line) of radius δ around this path
and guarantee that anywhere in the tube is collision free. Within the tube, the W j

O are outlined

in gray. The line bordering them has a slope of 1/q and W j
O is a distance of s below W j+1

O in the
y direction. Assume we have a configuration at c0O ∈ W 0 with x0

O ≤ x′

O. Figures (b)-(d) show
close-ups of {W 0

O, ...,W
6
O} with c0O in a different place in W 0

O in each. S0
O(c

0) is shown as a green
area. Regardless of the location of c0O, S

0
O is always the same size so it always has the same measure.

If a configuration csO is sampled in S0
O, let c

n
O ∈ O be any configuration no farther from csO than c0O.

Then csO is within the dotted black line. This dotted black line is clearly within the outer green tube
so cnO is in free space. If ynO > ysO then cnO is already in

⋃

l>0
W l

O. Otherwise, (xn
O, y

s
O) falls into the

gray region, which is clearly contained in
⋃

l>0
W l

O ⊂ (Tη(c
′, c))

O
. Therefore, there is a collision free

path from cnO to (xn
O, y

s
O). For example, if we choose csO at the location shown by the red dot then

the configurations no farther from csO than c0O are all within the red dashed circle. Choose cnO from
within this circle. If ynO > csO then cnO ∈

⋃

l>0
W l

O. Otherwise, (xn
O, y

s
O) is along the red line, which

is contained in
⋃

l>0
W l

O. Therefore, if we start with a configuration in W 0
O, we have a constant

probability of adding a configuration in
⋃

l>0
W l.

139

Proof: Firstly note that

ρ(c′, c) = max
[

ρR(c
′
R, cR), ρO(c

′
O, cO)

]

(6.199)

= max
[

yR − y′R, yO − y′O

]

(6.200)

= yR − y′R (6.201)

= yO − y′O. (6.202)

Let

δ = min

[

η,
ρ(c′, c)

2

]

(6.203)

q =
δ

ρ(c′, c) + δ
(6.204)

s =
q2δ

6
(6.205)

jmax =

⌈

ρ(c′, c)− qδ

s

⌉

+ 1. (6.206)

Note that q ≤ 1
3
< 1. For 0 ≤ j < jmax, we define

W j
R =

{

r ∈ R
∣

∣

∣
ρR(c

′
R, r) < (j + 1)

qs

2

}

(6.207)

W j
O =

{

(x, y) ∈ O

∣

∣

∣

∣

y′O + s
(

j − 1
2

)

< y ≤ y′O + s
(

j + 1
2

)

and
x′
O − q(y − (y′O − δ)) < x < x′

O + q(y − (y′O − δ))

}

(6.208)

W j = W j
R ×W j

O, (6.209)

and we let W jmax = Bδ(c
e) ⊆ Bη(c

e). In Figure 6.5, the W j are shown outlined by
gray lines. Each W j is trapezoidal in shape. The top and bottom of the trapezoid
are parallel to the x axis and separated along the y axis by a distance of s. The top
of each the trapezoid is longer than the bottom; the slope of the line connecting the
bottom right corner of the trapezoid to the top right is 1/q while the slope of the line
connecting the bottom left to the top left is −1/q.

We first show that for some ǫ ∈ (0, η], Bǫ(c
′) ⊆ W 0. We choose ǫ = qs

2
< η so

W 0
R = (Bǫ(c

′))R. Choose (xb
O, y

b
O) ∈ (Bǫ(c

′))O. Then y′O −
qs
2

< yb < y′O + qs
2

and
x′
O −

qs
2
< xb < x′

O + qs
2
. Now q ≤ 1

3
so

x′
O − q(yb − (y′O − δ)) < x′

O − q
(

y′O −
qs

2
− (y′O − δ)

)

(6.210)

= x′
O − qδ +

q2s

2
(6.211)

< x′
O − q

q2δ

6
+

qs

2
(6.212)

= x′
O − qs+

qs

2
(6.213)

140

= x′
O −

qs

2
(6.214)

< xb (6.215)

and

x′
O + q(yb − (y′O − δ)) > x′

O + q
(

y′O −
qs

2
− (y′O − δ)

)

(6.216)

= x′
O + qδ −

q2s

2
(6.217)

> x′
O + q

q2δ

6
−

qs

2
(6.218)

= x′
O + qs−

qs

2
(6.219)

= x′
O +

qs

2
(6.220)

> xb. (6.221)

Therefore
x′
O − q(yb − (y′O − δ)) < xb < x′

O + q(yb − (y′O − δ)). (6.222)

Since qs
2
< s

2
, we have y′O −

s
2
< yb ≤ y′O + s

2
. Therefore (xb, yb) ∈ W 0

O so (Bǫ(c
′))O ⊆

W 0
O. Thus

W 0 = W 0
R ×W 0

O (6.223)

⊇ (Bǫ(c
′))R × (Bǫ(c

′))O (6.224)

= Bǫ(c
′) (6.225)

using Lemma 6.9 and Corollary 6.11.

We also show that W j ⊆ Tη(c
′, c) for all j as that is helpful for the rest of the

proof. Firstly consider W jmax = Bδ(c
e). Then

W jmax

R = (Bδ(c
e))R (6.226)

= (Bδ(c
′))R (6.227)

⊆ (Bη(c
′))R (6.228)

⊆ (Tη(c
′, c))R (6.229)

by Corollary 6.13 and

W jmax

O = (Bδ(c
e))O (6.230)

= (Bδ(c))O (6.231)

⊆ (Bη(c
′))O (6.232)

⊆ (Tη(c
′, c))O (6.233)

141

also by Corollary 6.13. Therefore

W jmax = W jmax

R ×W jmax

O (6.234)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.235)

= Tη(c
′, c) (6.236)

using Lemma 6.9 and Corollary 6.12. Now consider j < jmax. Let r ∈ W j
R. Then

using that q = δ
ρ(c′,c)+δ

and j + 1 ≤ jmax,

ρR(c
′
R, r) < (j + 1)

qs

2
(6.237)

≤

(⌈

ρ(c′, c)− qδ

s

⌉

+ 1

)

qs

2
(6.238)

≤

(

ρ(c′, c)− qδ

s
+ 1 + 1

)

qs

2
(6.239)

=
1

2

δ

ρ(c′, c) + δ
(ρ(c′, c)− qδ) + qs (6.240)

<
δ

2
+

q3δ

6
(6.241)

< δ (6.242)

≤ η (6.243)

so W j
R ⊆ (Bη(c

′))R ⊆ (Tη(c
′, c))R by Corollary 6.13. Now let cjO ∈ W j

O. Then using
that ρ(c′, c) = yO − y′O and q < 1,

yjO ≤ y′O + s

(

j +
1

2

)

(6.244)

≤ y′O + s

(⌈

ρ(c′, c)− qδ

s

⌉

+
1

2

)

(6.245)

≤ y′O + s

(

ρ(c′, c)− qδ

s
+ 1 +

1

2

)

(6.246)

= y′O + ρ(c′, c)− qδ +
3

2
s (6.247)

= yO − qδ +
3

2
s (6.248)

= yO − qδ +
q2δ

4
(6.249)

< yO. (6.250)

142

Now, by our choice of c′ and c we have

π(c′, c) =
⋃

t∈[0,1]

(

(

x′

O+(xO−x′

O)t,y′O−OR+(yO−y′O)t

)

,

(

x′

O+(xO−x′

O)t,y′O+(yO−y′O)t

)

)

(6.251)

=
⋃

t∈[0,1]

(

(

x′
O, y

′
O −OR + (yO − y′O)t

)

,
(

x′
O, y

′
O + (yO − y′O)t

)

)

(6.252)

=
{

ct ∈ X
∣

∣xt
R = xt

O = x′
O and y′O ≤ ytO ≤ yO and ytR = ytO −OR

}

. (6.253)

Therefore, if yjO ≥ y′O, there is some ct ∈ π(c′, c) with xt
O = x′

O and ytO = yjO.
Then

ρO(c
t
O, c

j
O) =

∣

∣x′
O − xj

O

∣

∣ (6.254)

< q(yjO − (y′O − δ)) (6.255)

< q(yO − y′O + δ) (6.256)

=
δ

ρ(c′, c) + δ
(ρ(c′, c) + δ) (6.257)

= δ (6.258)

≤ η. (6.259)

Therefore cjO ∈ (Bη(c
t))O ⊆ Tη(c

′, c) by Corollary 6.13. If yj < y′O then j = 0 and

y′O − y0O < s
2
= q2δ

12
. Therefore

ρO(c
′
O, c

0
O) =

√

(x′
O − x0

O)
2 + (y′O − y0O)

2 (6.260)

<
√

(q(y0O − (y′O − δ)))2 + (y′O − y0O)
2 (6.261)

=
√

q2(δ − (y′O − y0O))
2 + (y′O − y0O)

2 (6.262)

=
√

q2δ2 − 2q2δ(y′O − y0O) + (1 + q2)(y′O − y0O)
2 (6.263)

=
√

q2δ2 − (y′O − y0O)(2q
2δ − (1 + q2)(y′O − y0O)) (6.264)

<

√

q2δ2 − (y′O − y0O)

(

2q2δ − (1 + q2)
q2δ

12

)

(6.265)

=

√

q2δ2 − (y′O − y0O)q
2δ

(

2−
1 + q2

12

)

(6.266)

<

√

q2δ2 − (y′O − y0O)q
2δ

(

2−
1

6

)

(6.267)

< qδ (6.268)

< δ (6.269)

≤ η (6.270)

143

so c0O ∈ (Bη(c
′))O ⊆ (Tη(c

′, c))O by Corollary 6.13. Therefore W j
O ⊆ (Tη(c

′, c))O and
we have

W j = W j
R ×W j

O (6.271)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.272)

= Tη(c
′, c) (6.273)

by Lemma 6.9 and Corollary 6.12.

Now we are ready to show that for all j < jmax, for all c
j ∈ W j, for some Sj(cj),

for all cs ∈ Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs) then for some f ∈ F ,
f(cn, cs) ∈

⋃

l>j W
l, π(cn, f(cn, cs)) ⊆ Tη(c

′, c), and the probability of sampling from

Sj(cj) is greater than zero. Let j < jmax and let cj ∈ W j. Our Sj
O(c

j) are rectangles
in polar coordinates:

Sj
R(c

j) =
{

r ∈ R
∣

∣

∣
ρR(c

j
R, r) <

qs

2

}

(6.274)

Sj
O(c

j) =























{

(x, y) ∈ O

∣

∣

∣

∣

∣

qδ
4
< ρO(c

j
O, (x, y)) <

qδ
2
and

2q
3
<

y−yjO
ρO(cjO,(x,y))

< 2q
1+q2

and x ≥ xj
O

}

if xj
O ≤ x′

O

{

(x, y) ∈ O

∣

∣

∣

∣

∣

qδ
4
< ρO(c

j
O, (x, y)) <

qδ
2
and

2q
3
<

y−yjO
ρO(cjO,(x,y))

< 2q
1+q2

and x ≤ xj
O

}

else

(6.275)

Sj(cj) = Sj
R(c

j)× Sj
O(c

j). (6.276)

Now µR(S
j
R(c

j)) is just the measure of an open ball of radius qs
2
. Therefore,

µR(Sj
R(cj))

µR(R)
=

µR(S0
R(c′))

µR(R)
= pR is independent of cj or j. Now consider µO(S

j
O(c

j)). For csO ∈ O, define

θ(csO, c
j
O) = tan−1

(

ysO − yjO
xs
O − xj

O

)

. (6.277)

Then

Sj
O(c

j) =























{

csO ∈ O

∣

∣

∣

∣

∣

qδ
4
< ρO(c

j
O, c

s
O) <

qδ
2
and

2q
3
< sin(θ(csO, c

j
O)) <

2q
1+q2

and 0 ≤ θ ≤ π
2

}

if xj
O ≤ x′

O

{

csO ∈ O

∣

∣

∣

∣

∣

qδ
4
< ρO(c

j
O, c

s
O) <

qδ
2
and

2q
3
< sin(θ(csO, c

j
O)) <

2q
1+q2

and π
2
≤ θ ≤ π

}

else.

(6.278)
Now q < 1 so 0 < 2q

3
< q < q 2

1+q2
< 1. Therefore Sj

O(c
j) is just a box in polar

coordinates with a difference in radius of qδ
4
and a difference in angle of sin−1

(

2q
1+q2

)

−

sin−1
(

2q
3

)

. Examples of this shape are shown in Figure 6.5. The measure of this box

is greater than zero and independent of j and cj. Let pO =
µO(S0

O(c′))

µO(O)
=

µO(Sj
O(cj))

µO(O)
be

144

the probability of sampling from Sj
O(c

j). By Lemma 6.14, the probability of sampling
from Sj(cj) is λO

η (c
′, c) = pRpO > 0.

Now assume xj
O ≤ x′

O (the case xj
O > x′

O is analogous so we only analyze xj
O ≤ x′

O)
and assume we choose cs ∈ Sj(cj). Now 0 < q < 1 so

ρR(c
j
R, c

s
R) <

qs

2
(6.279)

<
s

2
(6.280)

=
q2δ

12
(6.281)

<
qδ

4
(6.282)

< ρO(c
j
O, c

s
O). (6.283)

Therefore

ρ(cj, cs) = max
[

ρR(c
j
R, c

s
R), ρO(c

j
O, c

s
O)
]

(6.284)

= ρO(c
j
O, c

s
O) (6.285)

<
δq

2
. (6.286)

Let cn be any configuration with

ρ(cn, cs) ≤ ρ(cj, cs) (6.287)

<
δq

2
. (6.288)

We first show that cnR ∈ (Tη(c
′, c))R. Since cjR ∈ W j

R and j < jmax, we have

ρR(c
j
R, c

′
R) < (j + 1)

qs

2
. (6.289)

The triangle inequality gives

ρR(c
n
R, c

′
R) ≤ ρR(c

n
R, c

s
R) + ρR(c

s
R, c

j
R) + ρR(c

j
R, c

′
R) (6.290)

<
qδ

2
+

qs

2
+ (j + 1)

qs

2
(6.291)

≤
qδ

2
+

(⌈

ρ(c′, c)− qδ

s

⌉

+ 2

)

qs

2
(6.292)

≤
qδ

2
+

(

ρ(c′, c)− qδ

s
+ 1 + 2

)

qs

2
(6.293)

=
q

2
(ρ(c′, c) + δ − qδ) +

3

2
qs (6.294)

<
1

2

δ

ρ(c′, c) + δ
(ρ(c′, c) + δ) +

3

2
qs (6.295)

145

=
δ

2
+

q3δ

4
(6.296)

< δ (6.297)

≤ η. (6.298)

Therefore
cnR ∈ (Bη(c

′))R ⊆ (Tη(c
′, c))R (6.299)

by Corollary 6.13.

Now we show that csR ∈ W j+1
R . Consider

ρR(c
s
R, c

′
R) ≤ ρR(c

s
R, c

j
R) + ρR(c

j
R, c

′
R) (6.300)

<
qs

2
+ (j + 1)

qs

2
(6.301)

= (j + 2)
qs

2
. (6.302)

So if j + 1 < jmax, c
s
R ∈ W j+1

R ⊆ (Tη(c
′, c))R . If j + 1 = jmax then

ρR(c
s
R, c

′
R) < (jmax + 1)

qs

2
(6.303)

=

(⌈

ρ(c′, c)− qδ

s

⌉

+ 1 + 1

)

qs

2
(6.304)

≤

(

ρ(c′, c)− qδ

s
+ 1 + 2

)

qs

2
(6.305)

=
q

2
(ρ(c′, c)− qδ) +

3

2
qs (6.306)

<
1

2

δ

ρ(c′, c) + δ
(ρ(c′, c) + δ) +

q3δ

4
(6.307)

=
δ

2
+

q3δ

4
(6.308)

< δ. (6.309)

Therefore csR ∈ (Bδ(c
′))R = W jmax

R ⊆ (Tη(c
′, c))R.

Now we show some properties of csO. This allows us both to show that cnO ∈
(Tη(c

′, c))O and also that the final configuration is in
⋃

l>j W
l.

We first show the y coordinate of csO is between y′O and yO. We have

ysO = yjO + (ysO − yjO) (6.310)

≤ y′O + s

(

j +
1

2

)

+ ρO(c
j
O, c

s
O)

(

ysO − yjO
ρO(c

j
O, c

s
O)

)

(6.311)

< y′O + s

(

j +
1

2

)

+
qδ

2

2q

1 + q2
(6.312)

146

≤ y′O + s

(⌈

ρ(c′, c)− qδ

s

⌉

+
1

2

)

+
q2δ

1 + q2
(6.313)

≤ y′O + s

(

ρ(c′, c)− qδ

s
+ 1 +

1

2

)

+
q2δ

1 + q2
(6.314)

= y′O +

(

yO − y′O − qδ +
3

2
s

)

+
q2δ

1 + q2
(6.315)

= yO −

(

qδ −
q2δ

1 + q2
−

3

2
s

)

(6.316)

= yO − qδ

(

1−
q

1 + q2
−

q

4

)

. (6.317)

Now the maximum value of q
1+q2

is 1
2
and, if q < 1, the maximum value of q

4
is 1

4
.

Therefore

ysO < yO − qδ

(

1−
1

2
−

1

4

)

(6.318)

< yO. (6.319)

We also have that

ysO = yjO + (ysO − yjO) (6.320)

> y′O + s

(

j −
1

2

)

+ ρ(csO, c
j
O)

(

ysO − yjO
ρ(csO, c

j
O)

)

(6.321)

> y′O −
s

2
+

qδ

4

2q

3
(6.322)

= y′O −
s

2
+

q2δ

6
(6.323)

= y′O +
s

2
(6.324)

> y′O. (6.325)

Therefore,
y′O < ysO < yO. (6.326)

Now (π(c′, c))O = {(x, y) ∈ O|x = x′
O and y′O ≤ y ≤ yO}. Thus we can choose

ctO ∈ (π(c′, c))O with yt = ysO and xt
O = x′

O.

Now we show that cnO ∈ (Tη(c
′, c))O. We first bound the distance from ctO to csO

and then use the triangle inequality to bound the distance from ctO to cnO. We have

ρO(c
t
O, c

s
O) = |x

′
O − xs

O| (6.327)

= max
[

x′
O − xs

O, x
s
O − x′

O

]

. (6.328)

147

Now

xs
O = xj

O + (xs
O − xj

O) (6.329)

= xj
O ± ρO(c

j
O, c

s
O)





√

ρO(c
j
O, c

s
O)

2 − (ysO − yjO)
2

ρO(c
j
O, c

s
O)



 (6.330)

= xj
O ± ρO(c

j
O, c

s
O)

√

√

√

√1−

(

ysO − yjO
ρO(c

j
O, c

s
O)

)2

. (6.331)

Now we also require xs
O ≥ xj

O so we must choose the +, giving us

xs
O = xj

O + ρO(c
j
O, c

s
O)

√

√

√

√1−

(

ysO − yjO
ρO(c

j
O, c

s
O)

)2

(6.332)

> xj
O + ρO(c

j
O, c

s
O)

√

1−

(

2q

1 + q2

)2

(6.333)

= xj
O + ρO(c

j
O, c

s
O)

√

(1 + q2)2 − 4q2

(1 + q2)2
(6.334)

= xj
O + ρO(c

j
O, c

s
O)

√

1− 2q2 + q4

(1 + q2)2
(6.335)

= xj
O + ρO(c

j
O, c

s
O)

√

(1− q2)2

(1 + q2)2
(6.336)

= xj
O + ρO(c

j
O, c

s
O)

1− q2

1 + q2
. (6.337)

In order to complete this lower bound, we need a lower bound on xj
O. We have

xj
O > x′

O − q(yjO − (y′O − δ)) (6.338)

and we showed in Equation 6.248 that yjO ≤ yO − qδ + 3
2
s. Therefore

xj
O > x′

O − q

(

yO − qδ +
3

2
s− y′O + δ

)

(6.339)

= x′
O −

δ

ρ(c′, c) + δ
(yO − y′O + δ) + q2δ −

3

2
sq (6.340)

= x′
O − δ + q2δ −

3

2
sq. (6.341)

Therefore

xs
O > x′

O − δ + q2δ −
3

2
sq + ρO(c

j
O, c

s
O)

1− q2

1 + q2
. (6.342)

148

Now we also have that xj
O ≤ x′

O giving a loose upper bound for xs
O of

xs
O < xj

O + ρO(c
j
O, c

s
O) ≤ x′

O + ρO(c
j
O, c

s
O). (6.343)

Therefore

ρO(c
t
O, c

s
O) = max

[

x′
O − xs

O, x
s
O − x′

O

]

(6.344)

< max

[

δ +
3

2
sq − q2δ − ρO(c

j
O, c

s
O)

1− q2

1 + q2
, ρO(c

j
O, c

s
O)

]

. (6.345)

Now we chose δ so that q ≤ 1
3
, giving

δ +
3

2
sq − q2δ − ρO(c

j
O, c

s
O)

1− q2

1 + q2
> δ(1− q2)− ρO(c

j
O, c

s
O) (6.346)

> δ(1− q2)−
qδ

2
(6.347)

≥ δ

(

1−
1

9
−

1

6

)

(6.348)

=
13

18
δ (6.349)

>
1

6
δ (6.350)

≥
qδ

2
(6.351)

> ρO(c
j
O, c

s
O). (6.352)

Therefore

ρO(c
t
O, c

s
O) < δ +

3

2
sq − q2δ − ρO(c

j
O, c

s
O)

1− q2

1 + q2
. (6.353)

These properties allow us to put a bound on where cnO can be. Recall ρO(c
n
O, c

s
O) ≤

ρO(c
j
O, c

s
O). Then using the triangle inequality and that q < 1,

ρO(c
t
O, c

n
O) ≤ ρO(c

t
O, c

s
O) + ρO(c

s
O, c

n
O) (6.354)

< δ +
3

2
sq − q2δ − ρO(c

j
O, c

s
O)

1− q2

1 + q2
+ ρO(q

j
O, q

s
O) (6.355)

= δ +
3

2
sq − q2δ − ρO(c

j
O, c

s
O)

(

1− q2 − 1− q2

1 + q2

)

(6.356)

= δ +
3

2
sq − q2δ + ρO(c

j
O, c

s
O)

2q2

1 + q2
(6.357)

< δ +
q3δ

4
− q2δ + δ

q3

1 + q2
(6.358)

= δ + q2δ

(

q

4
+

q

1 + q2
− 1

)

(6.359)

149

< δ + q2δ

(

1

4
+

1

2
− 1

)

(6.360)

= δ −
q2δ

4
(6.361)

< δ (6.362)

≤ η. (6.363)

Therefore cnO ∈ (Bη(c
t))O ⊆ (Tη(c

′, c))O by Corollary 6.13. Combining this with
Equation 6.299 and using Corollary 6.12 gives us that cn ∈ Tη(c

′, c).

Now we show that with some choice of f , the final configuration is in
⋃

l>j W
l.

Firstly consider choosing the projection function fy. Then

cf = fy(c
n, cs) = (csR, (x

n
O, y

s
O)). (6.364)

We first consider the x coordinate of cfO and show that x′
O− q(ysO− (y′O− δ)) < xn

O <
x′
O + q(ysO − (y′O − δ)). Let

φ =
ysO − yjO
ρO(c

j
O, c

s
O)

. (6.365)

Recall from Equation 6.332 that

xs
O = xj

O + ρO(c
j
O, c

s
O)

√

√

√

√1−

(

ysO − yjO
ρO(c

j
O, c

s
O)

)2

(6.366)

= xj
O + ρO(c

j
O, c

s
O)
√

1− φ2. (6.367)

Recall 2q
3
< φ < 2q

1+q2
≤ 1. Additionally, xn

O−xs
O ≥ −ρO(c

n
O, c

s
O) ≥ −ρO(c

j
O, c

s
O). Thus

xn
O = (xn

O − xs
O) + (xs

O − xj
O) + xj

O (6.368)

≥ xj
O − ρ(cnO, c

s
O) + ρO(c

j
O, c

s
O)
√

1− φ2 (6.369)

≥ xj
O − ρ(cjO, c

s
O) + ρO(c

j
O, c

s
O)
√

1− φ2 (6.370)

> xj
O − ρO(c

j
O, c

s
O)

(

1−

√

1−
2q

1 + q2
φ

)

(6.371)

= xj
O − ρO(c

j
O, c

s
O)

(

1−

√

1−

(

2qφ+ 2q3φ

1 + q2
− q2

(

2q

1 + q2

)

φ

)

)

(6.372)

> xj
O − ρO(c

j
O, c

s
O)

(

1−

√

1−
2qφ+ 2q3φ

1 + q2
+ q2φ2

)

(6.373)

= xj
O − ρO(c

j
O, c

s
O)
(

1−
√

1− 2qφ+ q2φ2
)

(6.374)

= xj
O − ρO(c

j
O, c

s
O)
(

1−
√

(1− qφ)2
)

(6.375)

= xj
O − ρO(c

j
O, c

s
O)(1− (1− qφ)) (6.376)

150

= xj
O − qρO(c

j
O, c

s
O)

(ysO − yjO)

ρO(c
j
O, c

s
O)

(6.377)

= xj
O − q(ysO − yjO) (6.378)

> x′
O − q(yjO − (y′O − δ)) + qyjO − qysO (6.379)

= x′
O − q(ysO − (y′O − δ)). (6.380)

Using that xj
O ≤ x′

O and ysO > y′O, we also have

xn
O = (xn

O − xs
O) + (xs

O − xj
O) + xj

O (6.381)

≤ xj
O + 2ρO(c

j
O, c

s
O) (6.382)

< x′
O + qδ (6.383)

= x′
O + q(y′O − (y′O − δ)) (6.384)

< x′
O + q(ysO − (y′O − δ)). (6.385)

Additionally,

ysO = yjO + ρO(c
j
O, c

s
O)

ysO − yjO
ρO(c

j
O, c

s
O)

(6.386)

> yjO +
qδ

4

(

2q

3

)

(6.387)

> y′O + s

(

j −
1

2

)

+
q2δ

6
(6.388)

= y′O + s

(

j +
1

2

)

. (6.389)

Now consider
⋃

l>j W
l
O. We have that

y′O + s

(

(jmax − 1) +
1

2

)

= y′O + s

(⌈

ρ(c′, c)− qδ

s

⌉

+
1

2

)

(6.390)

≤ y′O + s

(

ρ(c′, c)− qδ

s
+

1

2

)

(6.391)

= y′O + (yO − y′O)− qδ +
1

2
s (6.392)

= yO − qδ +
1

2
s (6.393)

151

so

⋃

j<l≤jmax

W l
O =

(

Bη(c
b)
)

O
∪

⋃

j<l<jmax

{

(x, y) ∈ O

∣

∣

∣

∣

y′O+s(l− 1
2)<y≤y′O+s(l+ 1

2) and

x′

O−q(y−(y′O−δ))<x<x′

O+q(y−(y′O−δ))

}

(6.394)

=
(

Bη(c
b)
)

O
∪

{

(x, y) ∈ O

∣

∣

∣

∣

y′O+s(j+ 1
2)<y≤yO−qδ+ 1

2
s and

x′

O−q(y−(y′O−δ))<x<x′

O+q(y−(y′O−δ))

}

. (6.395)

Thus if ysO ≤ yO − qδ + 1
2
s, (xn

O, y
s
O) ∈

⋃

l>j W
l
O. Now assume ysO > yO − qδ + 1

2
s and

recall that ysO < yO so 0 < yO − ysO < qδ − 1
2
s. We show that (xn

O, y
s
O) ∈ (Bη(c))O:

ρO(cO, (x
n
O, y

s
O)) =

√

(xO − xn
O)

2 + (yO − ysO)
2 (6.396)

=
√

(x′
O − xn

O)
2 + (yO − ysO)

2 (6.397)

<
√

(q(ysO − (y′O − δ)))2 + (yO − ysO)
2 (6.398)

=

√

(

δ

yO − y′O + δ
(yO − y′O + δ) + q(ysO − yO)

)2

+ (yO − ysO)
2

(6.399)

=
√

δ2 + 2qδ(ysO − yO) + (1 + q2)(yO − ysO)
2 (6.400)

=
√

δ2 + (yO − ysO)((1 + q2)(yO − ysO)− 2qδ) (6.401)

<

√

δ2 + (yO − ysO)

(

(1 + q2)

(

qδ −
1

2
s

)

− 2qδ

)

(6.402)

<
√

δ2 + (yO − ysO)((1 + q2)qδ − 2qδ) (6.403)

=
√

δ2 + (yO − ysO)qδ(1 + q2 − 2) (6.404)

=
√

δ2 − (yO − ysO)qδ(1− q2) (6.405)

≤ δ (6.406)

≤ η (6.407)

so if ysO > yO − qδ + 1
2
s, (xn

O, y
s
O) ∈ (Bη(c

′))O = W jmax

O ⊂ (Tη(c
′, c))O. Thus

(xn
O, y

s
O) ∈

⋃

l>j

W l
O ⊆ (Tη(c

′, c))O . (6.408)

Therefore, there is some k ∈ {j+1, ..., jmax} for which (xn
O, y

s
O) ∈ W k

O. We also showed
that csR ∈ W j+1

R ⊂ W j+2
R ⊂ ... ⊂ W jmax

R . Therefore, csR ∈ W k
R. Thus (csR, (x

n
O, y

s
O)) ∈

W k
R ×W k

O = W k ⊆
⋃

l>j W
l.

152

Now assume ynO ≤ ysO and that we choose f = fy. Let

cf = fy(c
n, cs) = (cnR, (x

n
O, y

s
O)). (6.409)

We will show that π(cn, cf) ⊆ Tη(c
′, c). Let cp = ((xn

O, y
n
O − OR), c

n
O) and let cv =

((xn
O, y

s
O−OR), (x

n
O, y

s
O)). Note that c

p
O = cnO ∈ (Tη(c

′, c))O and cvO = cfO ∈ (Tη(c
′, c))O.

Let
ctO = arg inf

p∈(π(c′,c))O

ρO(p, c
n
O). (6.410)

We must have ρO(c
n
O, c

t
O) < η since cnO ∈ (Tη(c

′, c))O. Let

ctR = (xt
O, y

t
O −OR) ∈ (π(c′, c))R . (6.411)

Then

ρR(c
p
R, (x

t
O, y

t
O −OR)) =

√

(xn
O − xt

O)
2 + (ynO − ytO)

2 (6.412)

= ρO(c
n
O, c

t
O) (6.413)

< η (6.414)

so cpR ∈ (Tη(c
′, c))R. Similarly, let

czO = arg inf
p∈(π(c′,c))O

ρO(p, c
f
O). (6.415)

We must have ρO(c
f
O, c

z
O) < η because cfO ∈ (Tη(c

′, c))O. Let

czR = (xz
O, y

z
O −OR) ∈ (π(c′, c))R . (6.416)

Then

ρR(c
v
R, c

z
R) =

√

(xn
O − xz

O)
2 + (ysO − yzO)

2 (6.417)

= ρO(c
f
O, c

z
O) (6.418)

< η (6.419)

so cvR ∈ (Tη(c
′, c))R. Then

π(cn, cp) =
⋃

t∈[0,1]

(

(

xn
R + (xp

R − xn
R)t, y

n
R + (ypR − ynR)t

)

, cnO

)

(6.420)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.421)

= Tη(c
′, c) (6.422)

153

using Lemma 6.15 and Corollary 6.12. Similarly,

π(cv, cf) =
⋃

t∈[0,1]

(

(

xv
O + (xf

R − xv
O)t, y

v
O + (yfR − yvR)t

)

, cfO

)

(6.423)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.424)

= Tη(c
′, c) (6.425)

using Lemma 6.15 and Corollary 6.12. Now consider

π(cp, cv) =

⋃

t∈[0,1]

(

(

xp
R + (xv

R − xp
R)t, y

p
R + (yvR − ypR)

)

,

(

xp
O + (xv

O − xp
O)t, y

p
O + (yvO − ypO)t

)

)

(6.426)

⊆





⋃

t∈[0,1]

(

xp
R + (xv

R − xp
R)t, y

p
R + (yvR − ypR)

)



×





⋃

t∈[0,1]

(

xp
O + (xv

O − xp
O)t, y

p
O + (yvO − ypO)t

)





(6.427)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.428)

= Tη(c
′, c) (6.429)

using Lemmas 6.8 and 6.15 and Corollary 6.12. Since ynO ≤ ysO,

π(cn, cf) = π(cn, cp) ∪ π(cp, cv) ∪ π(cv, cf) (6.430)

⊆ Tη(c
′, c). (6.431)

Therefore if ynO ≤ ysO, fy(c
n, cs) ∈

⋃

l>j W
l and π(cn, f(cn, cs)) ⊆ Tη(c

′, c).

Now assume ynO > ysO and that we choose fR, giving cf = fR(c
n, cs) = (csR, c

n
O).

We have already shown that csR ∈ W j+1
R . We now show that cnO ∈

⋃

l>j W
l
O. Recall

that
x′
O − q(ysO − (y′O − δ)) < xn

O < x′
O + q(ysO − (y′O − δ)).

If ynO > ysO then

x′
O − q(ynO − (y′O − δ)) < xn

O < x′
O + q(ynO − (y′O − δ)). (6.432)

By Equation 6.389, ynO > y′O + s
(

j + 1
2

)

. Therefore, using Equation 6.395, if yn ≤
yO − qδ + 1

2
s then cnO ∈

⋃

l>j W
l. Consider if yn > yO − qδ + 1

2
s. Firstly assume

154

ynO ≤ yO. Then

√

(xO − xn
O)

2 + (yO − ynO)
2 =

√

(x′
O − xn

O)
2 + (yO − ynO)

2 (6.433)

<
√

(q(ynO − (y′O − δ)))2 + (yO − ynO)
2 (6.434)

<
√

(q(ynO − (y′O − δ)))2 + (yO − ynO)
2 (6.435)

=

√

(

δ

ρ(c′, c) + δ
(y0 − y′O + δ)− q(yO − ynO)

)2

+ (yO − ynO)
2

(6.436)

=

√

(δ − q(yO − ynO))
2 + (yO − ynO)

2 (6.437)

=
√

δ2 − 2qδ(yO − ynO) + q2(yO − ynO)
2 + (yO − ynO)

2.

(6.438)

=
√

δ2 + (yO − yn)((1 + q2)(yO − ynO)− 2qδ) (6.439)

≤

√

δ2 + (yO − ynO)

(

(1 + q2)

(

qδ −
1

2
s

)

− 2qδ

)

(6.440)

≤
√

δ2 − (yO − ynO)qδ(1− q2) (6.441)

< δ (6.442)

≤ η (6.443)

since q < 1. Now assume ynO ≥ yO. We have already shown that cnO ∈ (Tη(c
′, c))O.

Therefore, if ynO ≥ yO, we must have cnO ∈ (Bη(c))O. Thus cnO ∈
⋃

l>j W
l
O so there is

some k ∈ {j + 1, ..., jmax} with cnO ∈ W k
O. Since csR ∈ W j+1

R ⊂ W j+2
R ⊂ ... ⊂ W jmax

R ,
csR ∈ W k

R. Then cf = (csR, c
n
O) ∈ W k

R × W k
O = W k ⊆

⋃

l>j W
l. Now using that

cn ∈ Tη(c
′, c) and cf ∈ Tη(c

′, c),

π(cn, cf) =
⋃

t∈[0,1]

((

xn
R + (xf

R − xn
R)t, y

n
R + (yfR − ynR)t

)

, cnO

)

(6.444)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.445)

= Tη(c
′, c). (6.446)

Thus there is some choice of f that gives us f(cn, cs) ∈
⋃

l>j W
l and π(cn, f(cn, cs)) ⊆

Tη(c
′, c).

�

Now we have shown that Assumption 6.2 holds for each possible segment of the
trajectories returned by the empty space planner and we must just show that it holds
for whole trajectories. The proof of this is similar to Lemmas 6.6 and 6.19.

155

Theorem 6.22 (Assumption 6.2 Holds): For all η > 0, for all c′, c ∈ X, for some
λ ∈ (0, 1] and a sequence of subspaces Wδ(c

′, c) = {W 0, ...,Wm}, for some ǫ > 0,
Bǫ(c

′) ⊆ W 0, Wm ⊆ Bη(c), and for all j < m, for all cj ∈ W j, for some Sj(cj),
for all cs ∈ Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs) then for some f ∈ F ,
f(cn, cs) ∈

⋃

l>j W
l and π(cn, f(cn, cs)) ⊆ Tη(c

′, c), and the probability of sampling

from Sj(cj) is at least λ.

Proof: Firstly assume c′O = cO. Then this follows directly from Lemma 6.17.

Now assume c′O 6= cO, x
′
O = xO, and y′O < yO. Let c

p =
(

(x′
O, y

′
O − OR), c

′
O

)

and

let ce =
(

(x′
O, yO −OR), cO

)

. Then

π(c′, c) = π(c′, cp) ∪ π(cp, ce) ∪ π(ce, c), (6.447)

and cp ∈ π(c′, c) and ce ∈ π(cb, ce). Because ceO = cO, by Lemma 6.17, we can choose
{D0, ..., Ddmax} such that for some δD ∈ (0, η], BδD(c

e) ⊆ D0, Ddmax ⊆ Bη(c), and for
all j < dmax, for all c

j ∈ Dj, for some Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs),
fR(c

n, cs) ∈ Dj+1, π(cn, fR(c
n, cs)) ⊆ Tη(c

e, c) ⊂ Tη(c
′, c), and the probability of

sampling from Sj(cj) is at least λR
η (c

e, c). Now let cb = (cpR, cO). Also by Lemma 6.17,
we can choose we can choose {Q0, ..., Qqmax} such that for some δQ ∈ (0, δD], BδQ(c

b) ⊆
D0, Qqmax ⊆ BδD(c

e), and for all j < qmax, for all cj ∈ Qj, for some Sj(cj), for all
cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs), fR(c

n, cs) ∈ Dj+1, π(cn, fR(c
n, cs)) ⊆ TδD(c

b, ce), and
the probability of sampling from Sj(cj) is at least λR

δD
(cb, ce). Now δD ≤ η so

TδD(c
b, ce) ⊆ Tη(c

b, ce) (6.448)

=
⋃

t∈[0,1]

(

Bη

((

xb
R + (xe

R − xb
R)t, y

b
R + (yeR − ybR)t

)))

R
× (Bη(c))O (6.449)

=
⋃

t∈[0,1]

(Bη (x
′
O, y

′
O −OR + (yO − y′O)t))R × (Bη(c))O . (6.450)

Now for all t ∈ [0, 1], (x′
O, y

′
O −OR + (yO − y′O)t) ∈ (π(c′, c))R so

(Bη(x
′
O, y

′
O −OR + (yO − y′O)t))R ⊆ (Tη(c

′, c))R by Corollary 6.13. Therefore

TδD(c
b, ce) ⊆ (Tη(c

′, c))R × (Bη(c))O (6.451)

⊆ (Tη(c
′, c))R × (Tη(c

′, c))O (6.452)

= Tη(c
′, c) (6.453)

using Corollaries 6.12 and 6.13.

By Lemma 6.21, we can choose {P 0, ..., P pmax} such that for some δP ∈ (0, δQ],
BδP (c

p) ⊆ P 0, P pmax ⊆ BδQ(c
b), and for all j < pmax, for all cj ∈ P j, for some

Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs), for some f ∈ F , f(cn, cs) ∈
⋃

l>j P
l,

π(cn, f(cn, cs)) ⊆ TδD(c
p, ce) ⊆ Tη(c

′, c), and the probability of sampling from Sj(cj) is
at least λO

δQ
(cp, ce). Lastly, we choose {A0, ..., Aamax} such that for some δA ∈ (0, δP],

BδA(c
′) ⊆ A0, Aamax ⊆ BδP (c

p), and for all j < amax, for all cj ∈ Aj, for some
Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs), fR(c

n, cs) ∈ Aj+1, π(cn, fR(c
n, cs)) ⊆

156

TδP (c
′, cp) ⊆ Tη(c

′, c), and the probability of sampling from Sj(cj) is at least λR
δP
(c′, cp).

Now let

{

W 0, ...,Wm
}

=
{

A0, ..., Aamax−1, P 0, ..., P pmax−1, Q0, ..., Qqmax−1, D0, ..., Ddmax
}

.
(6.454)

We have BδA(c
′) ⊆ W 0 and Wm ⊆ Bη(c). Moreover, Aamax ⊆ BδP (c

p) ⊆ P 0, P pmax ⊆
BδQ(c

b) ⊆ Q0, and Q0 ⊆ BδD(c
e) ⊆ D0. Therefore for all j < m, for all cj ∈ W j,

for some Sj(cj), for all cs ∈ Sj(cj), for all cn ∈ X, if ρ(cn, cs) ≤ ρ(cj, cs) then for
some f ∈ F , f(cn, cs) ∈

⋃

l>j W
l and π(cn, f(cn, cs)) ⊆ Tη(c

′, c) and the probability of

sampling from Sj(cj) is at least min
[

λR
δP
(c′, cp), λO

δQ
(cp, cb), λR

δD
(cb, ce), λR

η (c
e, c)

]

> 0.

The other three cases for c′O 6= cO are similar.
�

Thus the DARRT algorithm is complete in the disc pushing domain.

6.2.4 In Defense of Projection Functions

The main conclusion of the proof given in Section 6.1 and the example domains is
that we require projection functions in manipulation domains. We argued this in
Section 3.2.1 using the example that, without projection functions, the robot could
never adjust its position relative to the objects. The example in Section 6.2.3 shows
why we need projection functions for each type of manipulation. Assume we did
not use the fx and fy projection functions, but rather just fR and fI , the projection
functions used in Section 6.2.2. Now consider a known collision free path from c′

to c and assume the object’s path is entirely parallel to the y axis (almost all paths
contain some vertical segment so assume we just take one of these segments). Assume
we sample some configuration cs near c′ and use the fI projection function, and let
cn be the nearest configuration in the tree to cs. Then ysO 6= ynO with probability 1.
Therefore, the robot has to use two pushes, as in Figure 6.4f to move from cs to cn

and we cannot argue the robot’s path is near the path from c′ to c. This is shown in
Figure 6.6a.

A subtler example is a disc robot pushing a disc object. The robot can contact
the object at any point but can only push it along the ray connecting the center of
the robot to the center of the object. Now consider a path from c′ to c and assume
for simplicity’s sake that the object moves vertically. Let cs be a sample near c′ and
let cn be the nearest configuration in the tree. The probability that ysO = ynO is zero.
In fact, we cannot constrain the angle between cnO and csO at all if we use a Euclidean
distance metric. Therefore, the robot’s path might be as much as the radius of the
object from the path from c′R to cR. This is shown in Figure 6.6b.

6.3 Exponential Convergence of DARRTH(Connect)

We can also prove that the DARRTH(Connect) algorithm, discussed in Chapter 4,
is exponentially convergent. This is a simpler proof, as it is clearer that each iteration
of the algorithm has a probability of success that is independent of the iteration.

157

(a) (b)

Figure 6.6: The vertical line from c′ to c (gray disc and dashed line) is collision free
for the robot and object. (a) In the example of Section 6.2.3, the robot can only
push the object parallel to the x or y axis. The blue disc shows the object’s sampled
configuration and the red disc is the nearest configuration in the tree. The robot’s
path to push the red disc to the blue disc (solid line) is very different from its path in
moving from c′ to c because the y coordinates of the red and blue disc are different.
(b) Even if the robot is able to push the object in any direction, the robot’s path
from the configuration in the tree to the sampled configuration (solid line) may still
differ from its path from c′R to cR by as much as the radius of the object.

However, there are situations in which DARRTH(Connect) is not complete.
Firstly, it could always generate a sequence of subgoals that the lower-level plan-
ners cannot solve. We require that it have some probability of generating achievable
subgoals:

Definition 6.17 (Achievable Subgoals): A sequence {g0, ..., gm} is achievable by
an algorithm A if and only if for all i ∈ {1, ...,m}, there is some non-zero probability
that A terminates in a configuration in gi−1 from which there is a collision free path
to a configuration in gi.

Assumption 6.3: The probability that the sequence of subgoals created on Line 6
of DARRTH(Connect) is achievable by DARRT(Connect) is non-zero and con-
stant with respect to the number of DARRTH(Connect) iterations.

Secondly, DARRTH(Connect) only allows its lower-level planner,
DARRT(Connect) to run for a finite amount of time. We showed in Section 6.1
that DARRT is exponentially convergent and therefore finds a solution, if one exists,
if given infinite time. However,DARRTH(Connect) cannot allowDARRT(Connect)
an infinite amount of time. Therefore, we must assume that the time it is given is
enough to find a solution if one exists.

Assumption 6.4: If there is a collision free path from a starting configuration into
a goal set, there is a constant probability that DARRT(Connect) finds a solution

158

before DARRTH(Connect) terminates the algorithm.

Under Assumptions 6.3 and 6.4, the DARRTH(Connect) algorithm is expo-
nentially convergent.

Theorem 6.23 (Exponential Convergence of the DARRTH(Connect) Al-
gorithm):The probability that DARRTH(Connect) terminates after k iterations
if a solution exists is O(2−ak) for some positive constant a.
Proof: The probability that DARRTH(Connect) terminates on iteration k is the
probability that the sequence of subgoals it produces is achievable and the probability
that DARRT(Connect) reaches a configuration for each subgoal from which there
is a collision free path to the next subgoal. By Assumptions 6.3 and 6.4, these are
both non-zero and independent of iteration. Therefore, by the same argument used
in Theorems 2.7 and 6.7, DARRTH(Connect) converges exponentially.

�

We have found that Assumptions 6.3 and 6.4 tend to hold in practice.

159

THIS PAGE INTENTIONALLY LEFT BLANK

160

Chapter 7

Conclusion

In this thesis we presented the Diverse Action Manipulation problem and four al-
gorithms, DARRT, DARRTConnect, DARRTH, and DARRTHConnect, for
DAMA problems. These algorithms can plan for problems with multiple, non-prehensile
manipulation actions. We showed that all DAMA problems are multi-modal and de-
signed the DARRTH and DARRTHConnect to take advantage of this structure
to solve the problem hierarchically.

7.1 Summary of Contributions

The contributions of this thesis are:

We formally defined the diverse action manipulation (DAMA) problem and de-
scribed two sampling-based algorithms, the Diverse Action Rapidly-exploring Ran-
dom Tree (DARRT) algorithm and the DARRTConnect algorithm, to solve it
(Chapter 3). These algorithms are based on the RRT and RRTConnect algorithms
for non-holonomic domains in that they use empty space planners to return complete
paths from an initial configuration to a final configuration in the absence of obsta-
cles. Rather than sample uniformly from the configuration space, these algorithms
use user-defined projection functions to modify samples. The projection functions
ensure that the empty space planner can always return a plan from one configuration
to another. These modifications allow DARRT and DARRTConnect to plan for
manipulation problems on which classic sampling-based algorithms fail.

We also presented the DARRTH and DARRTHConnect algorithms for the
DAMA problem (Chapter 4). We showed that any DAMA problem can be repre-
sented as a multi-modal problem and used this to motivate our hierarchical algo-
rithms (Chapter 4). The hierarchical algorithms break each manipulation problem
into the sub-problems of achieving poses from which a particular manipulation ac-
tion is possible. The combination of the shorter planning horizons and the targeted
attempts to find collision free configurations for specific manipulation actions make
these algorithms more efficient than their flat counterparts.

We implemented the DARRT, DARRTConnect, DARRTH, and DARRTH-
Connect algorithms and showed all four could successfully plan in two complicated

161

manipulation domains (Chapter 5). As expected, DARRTConnect is more efficient
than DARRT and the hierarchical algorithms perform better than the flat searches.

Lastly, we gave a proof of exponential convergence for the DARRT algorithm
(Chapter 6). This proof provides guidelines for writing good empty space planners and
projection functions for DARRT by formally expressing the assumptions necessary
for exponential convergence. We also proved that there are two manipulation domains
in which these assumptions hold, one of which has a non-prehensile manipulation
primitive.

7.2 Future Work

There are many future avenues for research. These include:

Primitives for DARRTH: In theory, we should be able to identify the primitives
DARRTH(Connect) needs for each subgoal and only use those primitives in that
subgoal. For instance, in both the Plate World and Use Spatula World, the first
subgoal is to achieve a pushing configuration. This only requires transit. As we
discussed in Chapter 5, the projection functions do this partially, but we could try to
do it more explicitly. This has some similarities to explicit multi-modal planning [14,
15].

Planning for Uncertainty: In this thesis, we assumed manipulation primitives
were deterministic. Even with the primitives used here, that was often a bad assump-
tion. For instance, when pushing a plate in Chapter 5, the robot gripper often only
made single point contact with the plate. In this situation, the plate would rotate
away from the gripper, usually causing the execution to fail. In the Tool Use Domain,
the robot sometimes grasped the spatula incorrectly so that it was at an angle. Even
a small angle at the grasp caused the paddle of the spatula to be translated from
what the plan expected. The result was that the spatula would fail to slide under the
CD or that the CD would drop off.

It is possible that some feedback during execution could fix some of these problems.
The pushing and tool use actions were both open loop; there was no visual or tactile
feedback that could allow the robot to correct online. Feedback would also allow us
to employ a re-planning technique, re-planning from the current configuration when
the error becomes too high.

On the other hand, analysis of the pushing showed that much of the time the
error was in the perception of the plate’s location. In this case, online correction and
re-planning cannot fix the problem. Instead, the algorithm should explicitly plan for
uncertainty. For example, a more certain action should be preferred to a less certain
one. In the Plate World, it is also possible for the robot to grasp the plate by using
one gripper to press on one end and tilt it up. This tilt action is successful more
often than pushing the plate, but requires a lot of room as both arms must be able
to access the plate. A planner that could represent uncertainty should pick the tilt
action when it could and use the push action as a fall-back.

162

A more ambitious line of research is to represent uncertainty explicitly in the ma-
nipulation primitives, allowing each primitive to return a set of possible configurations
or even a distribution over these configurations. The planner should then search for
the plan with the highest probability of success. Possibly previous work on adapting
sampling-based planning to uncertain domains [1, 34, 35, 38] could also be extended
to the DARRT algorithm.

Empty Space Planner and Projection Functions: We assumed that the empty
space planner and projection functions were an input to the algorithm. We outlined a
choice of implementation for them in Chapter 3, but many key aspects are still user-
defined. A method for learning good empty space planners and projection functions or
using a symbolic planner to automatically generate empty space plans and projection
functions would make the planner easier to use.

Cluttered Domains: In this thesis, we focused on uncluttered domains. This
allowed us to assume that we had a goal pose defined only for a single object since
if we had goals for multiple objects we could run the algorithm for each one. In a
cluttered domain, we would need to consider carefully the order in which to move each
object. It might be possible to combine the work in the navigation among movable
obstacles problem [36, 46, 47, 48, 52] with our work to solve DAMA problems in
cluttered domains.

Dynamics: All of the manipulation primitives considered in this thesis only allowed
an object to move when it was in contact with the robot. In theory, more dynamic
actions like throwing or shoving should just require an empty space planner that can
describe them. In practice, our current work assumes that any time an object is in
contact with a surface, it is resting stably on it. Introducing stability calculations
into the configuration validity check would impact efficiency. Additionally, the current
algorithms require an empty space planner that can plan a trajectory between any two
configurations. In a system described by a differential equation, this is impractical. It
might not be difficult to adapt DARRT to such a situation, but DARRTConnect
relies on the empty space plans ending at the specified final configuration.

Restricted Configuration Spaces: We were able to prove exponential conver-
gence for the DARRT planner, but only with some strong assumptions about the
empty space planner and projection functions. Specifically, we have not given an ex-
ample of a domain in which contact between the robot and some objects is sometimes
disallowed but we can prove Assumptions 6.1 and 6.2 hold. The problem is creating
an empty space planner that manages contact between the robot and object and also
fulfills Assumption 6.2.

For example, consider again the Disc Pushing domain of Section 6.2.3, but this
time assume the robot is not allowed to penetrate the object. When designing the
empty space planner, we must choose how the robot moves around the object. Assume
that the robot moves around the object by moving up along the +y axis if its y

163

Figure 7.1: A poor choice for a empty space planner that avoids contact with the
object. When the robot is at or above the midpoint of the object on the y axis, the
empty space planner plans a path that moves up the y axis and then to the final
configuration. Otherwise, the empty space planner plans a path that moves down the
y axis. Here we assume cjR (red disc with black outline) and cnR (green disc with black
outline) are both in the tree and that we know the path from cjR to cR is collision
free. Assume we sample a configuration at csR (orange disc with black outline). Then
cnR is the closest configuration in the tree to csR. We would like to use the openness of
the space to argue that the empty space plan from cnR to cR must be collision free if
the empty space plan from cjR to cR is collision free, but ynR < yjR so the empty space
planner plans a empty space plan that goes in the −y direction first.

coordinate above the y midpoint of the object and down otherwise. Now assume we
have a configuration cjR in the tree where the robot is at the midpoint of the object
and that we know the empty space plan from cjR to cR is collision free. We would like
the argue that the empty space plans from configurations near cjR to cR are very close
to the empty space plan from cjR to cR and thus, using the openness of the space,
must also be collision free. Specifically, we must be able to sample a configuration csR
in such a way that for all configurations cnR no farther from csR than cjR, the empty
space plan from cnR to cR is near the empty space plan from cjR to cR. If xs

R = xj
R

and ysR > yjR, we can guarantee this is the case. However, we have a zero probability
of sampling from that set. If we allow any variation in xs

R, the nearest configuration
cnR to csR might have a y coordinate less than yjR as shown in Figure 7.1. The empty
space plan from cnR to cR goes down the −y axis first and is therefore not near the
empty space plan from cjR to cR.

We could argue that the midpoint of the robot is a zero measure set so we do not

164

have to worry about including configurations in the tree that share a y coordinate with
the object. However, this then creates regions for sampling in which the size of the
region depends on the distance from the midpoint. This size could be arbitrarily small
and we cannot guarantee that it is not dependent on iteration. Similarly, we cannot
allow the size of the regions in which we sample to depend on the configurations in the
tree without introducing a dependence on iteration. If the probability of advancing
along the path depends on iteration, we lose the guarantee of exponential convergence.

Alternatively, we could require that the robot always move the same direction
around the object but this would result in very different paths if the path barely
contacts the object or if it does not contact the object. One solution that does work
is to always have the empty space plan approach the object and move around it
regardless of whether the more direct path would have been collision free. However,
this is a very inefficient empty space planner.

Object/Robot Collisions: Similarly, requiring the empty space planner to man-
age all collisions between the robot and objects seems unnecessary. When the robot
transits, for instance, the objects should just be treated as other obstacles in the
environment. However, we have yet to be able to devise a method for allowing the
empty space planner to manage contact between the robot and objects only when
contact is necessary (i.e. grasping). If we simply define a tube as

Tδ(c
′, c) =

⋃

p∈π(c′,c)

Bδ(p) (7.1)

then the free space can have any structure we want provided it remains open. This
allows us to have a Boolean variable that, when true, disallows contact between the
robot and object and, when false, assumes that the empty space planner manages
contact between the robot and object. This is commonly done using straight line
approaches and retreats in manipulation. By positioning the robot a small distance
from the object and then moving in a straight line until contact is made, we guarantee
that although we are not doing a collision check between the robot and object - they
will be in contact after all - the contact that is made is the kind we want.

Unfortunately, if we use Equation 7.1 for the tube, we are ignoring some important
structure of the free space. Namely, if a path is collision free for the robot, the robot
never collides with stationary obstacles along this path regardless of the object’s
configuration. This allows us to disconnect the position of the robot and object
during the convergence proof and is important in Lemma 6.21. The problem is that
in that proof, we use the maximum distance in the robot’s or object’s subspace as the
total distance. This means that we can put an upper bound on the distance from the
nearest configuration in the tree to the sampled configuration but that upper bound
is the same for the robot and object. Therefore, the sampled configuration cannot be
far from the robot’s current position or the object’s current position, but the robot
moves to its sampled configuration while the object moves to some projection of its
sampled configuration. Thus we cannot maintain a constant relative configuration
between the robot and object.

165

One way around this problem might be to have the projection function also modify
the robot’s configuration when it modifies the object’s. We have not yet fully explored
this avenue of research.

Infinite Types of Manipulation: Our current proof of exponential convergence
also only works for manipulation in which there are a finite number of choices. For in-
stance, in the Disc Pushing example, the robot can push the object in four directions.
This required four projection functions. If we allow the robot to push the object
in any direction (as we did in Chapters 3 and 4), we need an infinity of projection
functions and have zero probability that the correct one is chosen.

One possibility is to use that the free space is open so that it is never necessary
for the robot to push the object at a single, precise angle, but instead there is always
a small range of angles that would work. Then we could argue that if we randomly
choose a pushing angle, there is some probability that it falls within this range. This
seems a promising approach to this problem, but it is unclear whether it works in the
general case. Can we argue that an open free space must always prevent specificity to
such a degree that randomly choosing from an infinite number of projection functions
still gives a non-zero probability of choosing a “right” one?

Assumptions for DARRTH: Lastly, our assumptions for DARRTH, especially
Assumption 6.4, are broad. We give no guidance for how to choose running times for
the lower level planners that fulfill this assumption. While in practice we have found
that it is not difficult to choose good reset times, more work in this direction could
make the hierarchical planner more effective.

166

Appendix A

Proofs

In this appendix, we give those proofs that were left out of the main text.

Lemma 6.8: For all B ⊆M0 × ...×Mn, B ⊆ B0 × ...× Bn.

Proof: Let (m0, ...,mn) ∈ B. Then mi ∈ Bi for all i by definition. Therefore,
(m0, ...,mn) ∈ B0 × ...× Bn so B ⊆ B0 × ...× Bn.

�

Lemma 6.9: For some non-empty sets Qi ⊆ Mi, let B = Q0 × ... × Qn. For any
subsets Wi ⊆ Qi, W0 × ...×Wn ⊆ B.

Proof: Let (m0, ...,mn) ∈ W0 × ... × Wn. Then mi ∈ Wi ⊆ Qi so (m0, ...,mn) ∈
Q0 × ...×Qn = B.

�

Lemma 6.10: For some non-empty sets Qi ⊆ Mi, let B = Q0 × ... × Qn. Then
Bi = Qi for i ∈ {0, ..., n}.

Proof: For all j ∈ {0, ..., n} \ {i}, choose qj ∈ Qj. This choice can be made because
Qj 6= ∅. Then for all m ∈ Qi,

(q0, ..., qi−1,m, qi+1, ..., qn) ∈ B (A.1)

so Qi ⊆ Bi. Now assume Qi ⊂ Bi. Then there is some m ∈ Bi with m 6∈ Qi. By
definition of Bi, there is an element b ∈ B with bi = m. However b 6∈ Q0× ...×Qi−1×
Qi ×Qi+1 × ...×Qn = B so we have a contradiction. Therefore, Bi = Qi.

�

Corollary 6.11: For all c ∈ X, for all δ > 0, let X = M0 × ...×Mn where each Mi

has distance metric ρi. Define

Xδ(c) = {c
′ ∈ X |∀i ∈ {0, ..., n}, ρi(c, c

′) < δ} . (A.2)

Then Xδ(c) = (Xδ(c))0 × ...× (Xδ(c))n.

167

Proof: We have that

Xδ(c) = {c
′ ∈ X |ρ0(c0, c

′
0) < δ and ρ1(c1, c

′
1) < δ and ... and ρn(cn, c

′
n) < δ} (A.3)

= {m0 ∈M0 |ρ0(c0,m0) < δ} × ...× {mn ∈Mn |ρn(cn,mn) < δ} (A.4)

= (Xδ(c))0 × ...× (Xδ(c))O (A.5)

where the last step follows by Lemma 6.10.

�

Corollary 6.12For all c′, c ∈ X, for all δ > 0, define

Qδ(c
′, c) =





⋃

p∈π(c′,c)

(Xδ(p))0



× ...×





⋃

p∈π(c′,c)

(Xδ(p))n



 . (A.6)

Then Qδ(c
′, c) = (Qδ(c

′, c))0 × ...× (Qδ(c
′, c))n.

Proof: This follows directly from Lemma 6.10.

�

Corollary 6.13: For all c′, c ∈ X, for all q ∈ π(c′, c), for all i ∈ {0, ..., n}, for all
δ > 0, (Xδ(q))i ⊆ (Qδ(c

′, c))i.

Proof: By Lemma 6.10,

(Qδ(c
′, c))i =

⋃

p∈π(c′,c)

(Xδ(p))i ⊇ (Xδ(q))i . (A.7)

�

Lemma 6.14: Let B = B0 × ...×Bn ⊆M0 × ...×Mn. If µi(Bi) > 0 and we choose
a configuration at random from M0× ...×Mn, then the probability of sampling from
B is

∏n
i=0

µi(Bi)
µi(Mi)

> 0.

Proof: The probability that a configuration sampled uniformly at random from Mi

is in Bi is
µi(Bi)
µi(Mi)

. The probability of sampling from Bi and Bj is independent if i 6= j

so the probability of sampling a configuration in B0 × ...× Bn = B is
∏n

i=0
µi(Bi)
µi(Mi)

.

�

Lemma 6.15: For i ∈ {0, ..., n}, let Mi represent a plane with the Euclidean distance
metric

ρi ((x
α
i , y

α
i) , (x

a
i , y

a
i)) =

√

(xα − xa)2 + (yα − ya)2, (A.8)

and let
τi(t) =

(

xa
i + (xb

i − xa
i)t, y

a
i + (ybi − yai)t

)

(A.9)

168

describe a straight line in subspace Mi from cai to cbi . Similarly, let

σi(t) =
(

xα
i + (xβ

i − xα
i)t, y

α
i + (yβi − yαi)t

)

(A.10)

describe a straight line from cαi to cβi . Let

(

π(ca, cb)
)

i
=
⋃

t∈[0,1]

τi(t), (A.11)

and let
(

Qδ(c
α, cβ)

)

i
=
⋃

t∈[0,1]

{m ∈Mi |ρi(σ(t),m) < δ} . (A.12)

If cai ∈
(

Qδ(c
α, cβ)

)

i
and cb ∈

(

Qδ(c
α, cβ)

)

i
, then

(

π(ca, cb)
)

i
⊆
(

Qδ(c
α, cβ)

)

i
.

Proof: The easiest way to see this is to realize from Figure 2.8 that
(

Qδ(c
α, cβ)

)

i
,

the tube around the line from cαi to cβi is convex. However, we do a formal proof. Let

ta = arg min
t∈[0,1]

ρi(τi(0), σi(t)) (A.13)

tb = arg min
t∈[0,1]

ρi(τi(1), σi(t)). (A.14)

Since τi(0) = cai ∈
(

Qδ(c
α, cβ)

)

i
and τi(1) = cbi ∈

(

Qδ(c
α, cβ)

)

i
, we must have

ρi(τi(0), σi(t
a)) < δ (A.15)

ρi(τi(1), σi(t
b)) < δ. (A.16)

For t ∈ [0, 1], we need to show that

min
s∈[0,1]

ρi(τi(t), σi(s)) =

min
s∈[0,1]

ρi

(

(

xa + (xb − xa)t, ya + (yb − ya)t
)

,

(

xα + (xβ − xα)s, yα + (yβ − yα)s
)

) (A.17)

is less than δ. We choose s = (1− t)ta + ttb. Note that since t ∈ [0, 1], ta ∈ [0, 1], and
tb ∈ [0, 1] so s ∈ [0, 1]. Then

min
s∈[0,1]

ρi

(

τi(t), σi(s)

)

≤

ρi

(

(

xa+(xb−xa)t,ya+(yb−ya)t

)

,

(

xα+(xβ−xα)((1−t)ta+ttb),yα+(yβ−yα)((1−t)ta+ttb)

))

(A.18)

169

=

ρi

(

(

(

1−t

)

xa+txb,

(

1−t

)

ya+tyb

)

,

(

(

1−((1−t)ta+ttb)
)

xα+

(

(1−t)ta+ttb

)

xβ ,

(

1−((1−t)ta+ttb)
)

yα+

(

(1−t)ta+ttb

)

yβ

)

)

(A.19)

=

ρi

(

(

(

1−t
)

xa+txb,
(

1−t
)

ya+tyb

)

,

(

(

(1−t)(1−ta)+t(1−tb)
)

xα+
(

(1−t)ta+ttb
)

xβ ,

(

(1−t)(1−ta)+t(1−tb)
)

yα+
(

(1−t)ta+ttb
)

yβ

)

)

(A.20)

=

ρi

(

(

(

1−t

)

xa+txb,

(

1−t

)

ya+tyb

)

,

(

(

1−t

)(

(1−ta)xα+taxβ

)

+t

(

(1−tb)xα+tbxβ

)

,

(

1−t

)(

(1−ta)yα+tayβ

)

+t

(

(1−tb)yα+tbyβ

)

)

)

(A.21)

=

(

(

(1−t)(xa−((1−ta)xα+taxβ))+t(xb−((1−tb)xα+tbxβ))

)2

+

(

(1−t)(ya−((1−ta)yα+tayβ))+t(yb−((1−tb)yα+tbyβ))

)2
)1/2(A.22)

≤

√

√

√

√

√

(

(1−t)(xa−((1−ta)xα+taxβ))

)2

+

(

(1−t)(ya−((1−ta)yα+tayβ))

)2

+

√

√

√

√

√

(

t(xb−((1−tb)xα+tbxβ))

)2

+

(

t(yb−((1−tb)yα+tbyβ))

)2
(A.23)

=

(1−t)

√

√

√

√

√

(

xa−(xα+(xβ−xα)ta)

)2

+

(

ya−(yα+(yβ−yα)ta)

)2

+

t

√

√

√

√

√

(

xb−(xα+(xβ−xα)tb)

)2

+

(

yb−(yα+(yβ−yα)tb)

)2
(A.24)

= (1− t)ρi (τi(0), σi(t
a)) + tρi

(

τi(1), σi(t
b)
)

(A.25)

< (1− t)δ + tδ (A.26)

= δ (A.27)

where we used the triangle inequality from Equation A.22 to Equation A.23. There-

170

fore τi(t) ∈
(

Qδ(c
α, cβ)

)

i
so
(

π(ca, cb)
)

i
⊆
(

Qδ(c
α, cβ)

)

i
.

�

171

THIS PAGE INTENTIONALLY LEFT BLANK

172

Appendix B

Tables

In this appendix, we give the running times for all 50 trials in all domains.

173

B.1 Plate Domain

Trial
World 0 World 1 World 2

DARRT DARRTConnect DARRT DARRTConnect DARRT DARRTConnect
1 24.8530082703 12.1420135498 73.1299514771 42.0676498413 249.893295 146.159210205
2 25.2604675293 25.0727005005 13.7393503189 24.6021938324 293.295013 140.922454834
3 1.39321279526 28.9283447266 113.751396179 6.79439735413 27.727839 80.7767028809
4 6.58768558502 15.3374214172 5.4530415535 13.9056224823 616.887329 31.1870918274
5 34.8496665955 4.04470157623 78.2549591064 6.70723724365 229.391235 111.829048157
6 10.5147733688 13.938741684 119.639266968 16.6826686859 34.819622 87.3661804199
7 6.9623632431 10.944934845 11.4734802246 80.6182861328 125.461395 81.9426956177
8 8.52929210663 1.57593238354 25.2328624725 3.72853970528 103.840454 165.623916626
9 6.36330938339 10.4848861694 14.1433954239 74.1298294067 110.530426 135.882659912
10 2.5048365593 6.56440258026 23.4186458588 5.14542293549 103.713783 16.28723526
11 5.85524654388 25.1558418274 88.903755188 19.3326358795 56.023216 165.524490356
12 7.23881959915 10.0918493271 11.8443155289 6.91189146042 342.727875 8.84900283813
13 7.91177129745 11.7331800461 17.1807689667 49.118019104 200.344696 51.200843811
14 11.1774396896 5.62956094742 48.4593162537 59.9919242859 549.797974 106.101425171
15 30.4044265747 8.80497550964 9.48311424255 74.9314346313 32.650772 69.6569519043
16 21.4986953735 4.03668451309 17.613407135 72.1267166138 106.684357 15.3522491455
17 14.2782850266 5.1648106575 9.73727035522 30.9724788666 205.284531 18.8743476868
18 2.69238615036 8.57702159882 18.3255405426 10.2306470871 13.920184 41.6143951416
19 4.00860548019 6.89589118958 14.7979955673 43.8586807251 33.711994 20.3964366913
20 3.57081007957 21.5716667175 38.7284088135 15.9595556259 47.907951 165.553771973
21 21.5688858032 1.82173407078 76.3397674561 46.0464286804 151.041046 14.4170322418
22 3.96931648254 52.037361145 107.836196899 3.38854384422 300.340302 11.6623382568
23 4.26936101913 6.67952632904 6.56545066833 64.5071563721 23.714552 208.241821289
24 8.13865947723 5.72200727463 252.50302124 18.6352138519 29.979578 76.7551574707
25 8.94091320038 5.43474340439 15.1236419678 57.5368003845 22.757980 16.1933917999
26 34.6880874634 15.5247335434 15.1384954453 74.0634078979 32.839401 202.743713379
27 20.4043388367 25.7725257874 88.0833435059 22.6156997681 66.574669 82.5219116211
28 3.16124796867 4.28062057495 13.2173423767 11.613699913 119.151337 21.8832569122
29 6.55652999878 26.4314022064 12.5391941071 12.778676033 383.560425 139.846054077
30 6.45152378082 8.33593273163 21.430524826 50.3813972473 109.697693 49.0341949463
31 7.31854343414 4.7619805336 20.5888805389 24.4047489166 189.968063 388.658416748
32 11.3752279282 20.3968238831 76.703125 28.1214790344 44.682709 140.810211182
33 4.94772624969 17.7540454865 17.268995285 20.6296539307 41.860809 75.3992462158
34 10.0191383362 18.434961319 76.8541641235 12.7614784241 191.846359 300.830688477
35 16.5032730103 19.5638713837 9.04199504852 78.7243270874 144.127747 11.45429039
36 6.41973495483 3.32170748711 6.60248088837 24.5229492188 26.909597 110.356903076
37 18.3793029785 5.81441640854 9.80319786072 20.9650363922 132.933868 20.7336673737
38 8.07968616486 7.17969083786 7.42400979996 22.4163188934 83.398178 298.345977783
39 2.51591491699 11.4777317047 46.6809654236 29.6807250977 19.122221 77.8001251221
40 27.8308448792 3.33804440498 8.23838329315 21.6507816315 265.117950 30.568769455
41 20.5548667908 2.11848163605 42.6840248108 48.3655166626 377.317657 115.546722412
42 7.54402828217 5.99009132385 67.6187973022 29.9604053497 53.312374 54.084941864
43 4.62053966522 10.7399549484 51.864276886 20.4585571289 32.026329 198.312072754
44 4.80425071716 4.71338653564 83.1271286011 4.14812231064 30.237673 87.2501831055
45 7.31790399551 5.49134540558 5.69688224792 19.5693855286 48.990459 41.8829841614
46 24.7185401917 8.72538757324 189.450073242 22.8749008179 20.776333 27.6178474426
47 36.4168319702 2.40024852753 5.81682348251 6.48738527298 189.714615 208.83732605
48 8.1096868515 13.3253202438 7.25219297409 98.4884567261 68.492538 26.8554801941
49 8.12162685394 8.4445734024 10.0322265625 10.3282060623 291.365051 55.2532501221
50 6.02952289581 6.77755069733 19.449678421 115.472412109 147.848297 135.318115234

Table B.1: Full results for DARRT and DARRTConnect in Plate Domain Worlds
0-2.

174

Trial
World 3 World 4

DARRT DARRTConnect DARRT DARRTConnect
1 367.583892822 210.611572266 255.725891113 15.4208374023
2 1579.33691406 193.164245605 213.909637451 11.6602878571
3 2626.99829102 174.053771973 36.8034553528 160.407226562
4 1750.4621582 715.125976562 3690.42211914 67.4789428711
5 140.23260498 385.847747803 247.963043213 165.55897522
6 558.485168457 100.527709961 298.79586792 30.642539978
7 1366.82739258 431.820556641 54.431224823 28.0328865051
8 1545.48608398 646.145446777 137.739562988 301.178222656
9 979.06262207 546.159057617 406.419555664 140.871765137
10 474.736907959 79.0073852539 105.601539612 111.674285889
11 689.461914062 562.632080078 20.778137207 1202.10192871
12 1244.3416748 59.7328414917 659.324645996 95.5570983887
13 2860.0625 697.594482422 391.571685791 281.907958984
14 1536.46118164 998.137451172 140.656173706 148.39932251
15 714.623657227 376.095458984 721.561523438 224.211212158
16 385.794433594 1020.36578369 351.111175537 167.585968018
17 899.578552246 435.392181396 624.843200684 173.573989868
18 1980.51416016 113.851020813 126.640625 153.254257202
19 1530.95275879 517.042785645 186.806182861 20.3062171936
20 1115.7824707 71.8495101929 73.9352645874 78.9277648926
21 520.011535645 530.716003418 309.613342285 752.55657959
22 181.343505859 229.849655151 204.655593872 68.4412536621
23 1678.1229248 447.050079346 105.188583374 117.597724915
24 483.055786133 442.75769043 387.530273438 140.246231079
25 1071.29772949 270.146057129 864.330383301 42.1528778076
26 467.253936768 673.564025879 571.908691406 40.4016647339
27 377.86151123 312.00958252 853.254150391 244.103271484
28 138.536392212 406.053222656 624.840576172 72.2246780396
29 995.585021973 446.509246826 111.679298401 324.235229492
30 649.400878906 835.720092773 1610.47180176 20.6438312531
31 2390.11401367 645.548522949 624.893432617 41.927570343
32 158.082061768 533.000488281 417.511016846 174.619384766
33 756.917724609 48.7792129517 668.773376465 363.991241455
34 1266.79040527 780.175170898 215.712005615 84.8227996826
35 544.521728516 325.512451172 283.296386719 32.968952179
36 307.009399414 355.85357666 345.435089111 192.707992554
37 314.2628479 914.446411133 59.9098892212 118.498603821
38 1551.80310059 76.009513855 17.3104076385 11.7908306122
39 1896.92236328 593.433410645 224.63885498 134.351104736
40 374.479309082 119.24407959 372.879180908 73.0841598511
41 1038.3560791 22.9310703278 69.5134735107 133.628219604
42 960.861206055 85.0711975098 12.1451253891 10.9917583466
43 189.159255981 61.1502380371 571.496398926 46.4175224304
44 1972.78955078 790.879516602 48.8462486267 108.626022339
45 38.9730796814 1320.57421875 89.8367614746 135.536056519
46 588.40625 1294.51367188 197.476089478 320.197631836
47 1322.61669922 112.915489197 120.623580933 89.0702362061
48 2115.43334961 187.160049438 770.010559082 253.180953979
49 1342.33959961 184.864730835 570.314575195 337.763580322
50 149.555038452 425.860870361 468.7472229 189.515106201

Table B.2: Full results for DARRT and DARRTConnect in Plate Domain Worlds
3-4.

175

World 0 DARRTH

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Total
1 10.0581483841 0.666657805443 19.6527957916 5.29871034622 35.6763123274
2 9.63562965393 0.90920650959 6.52556800842 2.55474281311 19.6251469851
3 6.95868968964 1.42499411106 11.804643631 5.23322820663 25.4215556383
4 7.3607840538 0.545476138592 6.82496213913 1.97862267494 16.7098450065
5 10.045586586 1.09755170345 5.487408638 3.34807562828 19.9786225557
6 1.93174004555 0.598107457161 5.75304794312 5.83460283279 14.1174982786
7 7.58034944534 0.672174096107 3.61913132668 7.12990188599 19.0015567541
8 10.1616106033 0.742486596107 1.05201208591 12.6282539368 24.5843632221
9 5.58162260056 0.520260632038 4.93288564682 3.24565339088 14.2804222703
10 5.73899126053 1.15896689892 4.37699794769 7.83190250397 19.1068586111
11 3.02588367462 0.677036702633 3.77662682533 1.51018798351 8.9897351861
12 10.3808097839 0.730695009232 6.80448389053 1.06954848766 18.9855371714
13 9.3824634552 0.417532444 26.6126174927 4.49890756607 40.9115209579
14 4.8500752449 1.18757665157 3.81243276596 17.4506950378 27.3007797003
15 6.8124370575 1.86716878414 4.45329046249 4.11599063873 17.2488869429
16 11.0491323471 0.686296343803 13.8456125259 5.81766891479 31.3987101316
17 6.69067430496 0.60262042284 2.7519338131 8.31369686127 18.3589254022
18 10.0256290436 1.61810386181 1.30548155308 0.548959255219 13.4981737137
19 4.00505304337 2.94864320755 4.8764257431 4.29804992676 16.1281719208
20 7.1207575798 0.566672444344 1.75462460518 6.19009542465 15.632150054
21 10.173122406 0.539880812168 6.69736194611 2.39030504227 19.8006702065
22 1.29662156105 1.21795856953 4.33400249481 2.87750196457 9.72608458996
23 5.61664676666 0.924206972122 3.19254732132 4.66183280945 14.3952338696
24 7.90370559692 0.210321336985 25.096578598 9.01231384277 42.2229193747
25 1.55820202827 0.244523867965 12.6718997955 2.08230566978 16.5569313616
26 1.82846605778 0.858703792095 3.84914016724 1.56576120853 8.10207122564
27 10.1007289886 0.967902064323 4.5346493721 1.41323590279 17.0165163279
28 11.3995447159 2.09655404091 4.45740127563 7.45681476593 25.4103147984
29 7.06721353531 0.501807749271 5.37927341461 6.10076284409 19.0490575433
30 5.46649694443 2.43378853798 9.62407112122 3.74750947952 21.2718660831
31 1.84097921848 1.42557299137 2.61807227135 4.54666471481 10.431289196
32 1.15236544609 0.431966215372 4.1535153389 0.719414234161 6.45726123452
33 7.037586689 0.736533164978 6.83439207077 5.48521995544 20.0937318802
34 10.0896091461 1.11966085434 5.36300468445 1.21149897575 17.7837736607
35 1.16219556332 1.61077439785 4.95377635956 8.17110919952 15.8978555202
36 5.65386676788 0.27796626091 2.31303119659 8.00980854034 16.2546727657
37 10.1257638931 0.630290985107 4.63465976715 7.50040531158 22.891119957
38 7.11653184891 0.559719920158 17.114944458 6.65879440308 31.4499906301
39 5.03109645844 2.48618459702 5.89921092987 2.45361304283 15.8701050282
40 3.92205190659 1.00453662872 1.09936761856 6.63079452515 12.656750679
41 5.94177436829 0.739830672741 5.98539590836 24.3135757446 36.980576694
42 10.3188638687 0.872153520584 6.55288267136 1.98886072636 19.732760787
43 6.21843910217 0.683314800262 6.2495303154 0.689108788967 13.8403930068
44 3.46734189987 1.12433445454 12.9101829529 4.76238584518 22.2642451525
45 9.0588350296 0.52515912056 3.91918802261 2.63196063042 16.1351428032
46 6.49089479446 0.68694549799 6.58229827881 5.84614038467 19.6062789559
47 1.86415433884 0.506205320358 5.6764831543 1.56766140461 9.6145042181
48 8.06334114075 1.16628205776 18.6608486176 6.34769678116 34.2381685972
49 10.9325094223 0.611809015274 7.42066907883 7.77641820908 26.7414057255
50 8.75354671478 0.680736899376 6.29850673676 14.3694257736 30.1022161245

Table B.3: Full results for DARRTH in Plate Domain World 0

176

World 0 DARRTHConnect

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Total
1 0.77250289917 0.211775064468 3.29035043716 1.00748324394 5.28211164474
2 2.65905427933 0.297981888056 11.6811294556 2.1125805378 16.7507461607
3 0.784318447113 0.337315499783 6.98726272583 1.22238337994 9.33128005266
4 1.37117481232 0.739108324051 1.7576379776 1.57804536819 5.44596648216
5 11.5213308334 0.206532031298 10.8310050964 6.5007815361 29.0596494973
6 3.53317689896 0.41279605031 1.04726982117 0.800378441811 5.79362121224
7 1.1070587635 0.494071781635 24.9291381836 1.14325928688 27.6735280156
8 1.09528696537 0.717492818832 24.4413509369 6.49080514908 32.7449358702
9 1.14446783066 2.83719134331 4.16814994812 2.44115066528 10.5909597874
10 1.41628861427 0.422903388739 6.59776353836 3.20862460136 11.6455801427
11 1.12380313873 0.312393128872 7.29653024673 4.01561641693 12.7483429313
12 1.56983590126 0.287453144789 10.1881437302 3.27692461014 15.3223573864
13 3.61839532852 0.787944734097 39.0582313538 1.49801337719 44.9625847936
14 1.33846330643 0.599414646626 6.6506357193 5.70009279251 14.2886064649
15 1.04371261597 0.257680356503 3.91077232361 1.17258238792 6.384747684
16 6.37299776077 0.171077787876 7.3791103363 6.71247911453 20.6356649995
17 0.988083004951 0.395926207304 2.18427276611 3.79027462006 7.35855659842
18 1.21800017357 0.326641589403 2.42505216599 3.0164744854 6.98616841435
19 6.08577013016 0.174622729421 5.20431375504 2.28391242027 13.7486190349
20 2.98166775703 0.609936118126 2.15495610237 3.35265374184 9.09921371937
21 1.13866317272 0.69756269455 23.443775177 2.54325461388 27.8232556581
22 2.88499116898 0.291399985552 20.2630634308 4.81859922409 28.2580538094
23 1.42451429367 0.244793385267 4.41784906387 2.44327378273 8.53043052554
24 2.28193116188 0.163116902113 51.520236969 1.63318967819 55.5984747112
25 3.22830533981 0.183196872473 3.47740912437 0.778833210468 7.66774454713
26 4.34945678711 0.2389652282 1.32717502117 1.00935506821 6.92495210469
27 1.00291192532 2.08697223663 2.42127156258 1.96620392799 7.47735965252
28 0.720756173134 0.457884252071 0.694322049618 1.02067804337 2.89364051819
29 0.958373010159 0.621207356453 7.11837863922 1.23769068718 9.93564969301
30 1.23613238335 0.251918822527 4.47292709351 3.10256028175 9.06353858113
31 1.10012340546 0.376365751028 25.2006950378 1.43509197235 28.1122761667
32 8.97057056427 0.270092070103 7.11261701584 10.3076887131 26.6609683633
33 1.63150405884 0.398513972759 68.3379745483 2.34519815445 72.7131907344
34 1.11100959778 0.36914741993 27.3090896606 3.39584326744 32.1850899458
35 1.84883570671 0.650287330151 38.2629928589 2.89310765266 43.6552235484
36 2.64778804779 0.245967850089 4.39626932144 4.9522690773 12.2422942966
37 1.01673328876 4.65399885178 6.99197244644 2.95672130585 15.6194258928
38 2.1427628994 0.5213804245 14.3709201813 3.729814291 20.7648777962
39 1.22023761272 0.283925831318 6.39967727661 0.796385109425 8.70022583008
40 0.727526664734 0.737427473068 1.85557830334 2.49234819412 5.81288063526
41 8.32415485382 0.385351628065 15.721507907 1.91111648083 26.3421308696
42 1.05238735676 0.305933386087 35.4985198975 20.750164032 57.6070046723
43 0.894856333733 0.251848012209 10.941447258 3.57214331627 15.6602949202
44 1.01995790005 0.296290397644 7.01096343994 2.38149809837 10.708709836
45 1.09640491009 0.353909611702 1.63499701023 2.91849303246 6.00380456448
46 1.24851119518 1.0046633482 6.16528940201 2.74615740776 11.1646213531
47 0.994697093964 0.279809862375 8.43884563446 0.614100456238 10.327453047
48 3.37482333183 4.64140748978 13.776389122 1.78101301193 23.5736329556
49 12.953420639 0.709335803986 5.83460283279 7.18181848526 26.6791777611
50 1.03780460358 0.721106410027 1.77448940277 1.06585085392 4.59925127029

Table B.4: Full results for DARRTHConnect in Plate Domain World 0

177

World 1 DARRTH

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Total
1 4.78764104843 0.589584708214 15.5603494644 15.0096683502 35.9472435713
2 2.82160806656 0.570531487465 3.30339431763 15.4126996994 22.1082335711
3 2.70826983452 0.441555947065 7.33828926086 25.2867889404 35.7749039829
4 5.07540559769 0.372867047787 1.52293682098 8.76914978027 15.7403592467
5 4.25285339355 2.4445836544 0.973838150501 7.06217718124 14.7334523797
6 8.75323009491 1.35064053535 7.18405199051 26.0156860352 43.3036086559
7 9.29387760162 1.4322963953 2.39652991295 24.0366592407 37.1593631506
8 3.61681127548 1.17284822464 5.6984667778 8.44541168213 18.9335379601
9 3.33641672134 0.468669861555 3.08033370972 35.1659240723 42.0513443649
10 8.18855667114 0.918941915035 8.08543205261 39.7921600342 56.985090673
11 6.12625455856 0.743388652802 3.86690807343 3.07705187798 13.8136031628
12 2.70412921906 0.518957018852 8.09117889404 14.7440042496 26.0582693815
13 5.25935840607 0.501424670219 2.41217899323 22.7931022644 30.9660643339
14 4.61229896545 1.30797874928 4.6596326828 10.8840827942 21.4639931917
15 10.3516693115 0.500996112823 7.90878915787 22.3207702637 41.0822248459
16 8.87123012543 0.302240490913 4.07279539108 40.1945419312 53.4408079386
17 3.09781312943 0.453988105059 3.71165728569 20.8898849487 28.1533434689
18 2.57711029053 0.706234514713 3.60648202896 5.2700047493 12.1598315835
19 9.2982378006 2.10246539116 3.59152436256 14.1933116913 29.1855392456
20 3.20240259171 0.593235433102 23.072807312 106.288330078 133.156775415
21 3.64880657196 1.20758855343 1.10806262493 153.517166138 159.481623888
22 4.90557527542 1.28544425964 25.585269928 14.680809021 46.457098484
23 9.8557472229 0.599272370338 2.58410286903 7.39678478241 20.4359072447
24 5.64633369446 0.493772298098 6.86467504501 7.82480573654 20.8295867741
25 2.60432291031 1.2976680994 5.92829036713 26.688369751 36.5186511278
26 7.70213031769 0.782212197781 4.90955018997 104.463027954 117.85692066
27 3.18292665482 0.700020849705 3.76881957054 24.6571846008 32.3089516759
28 3.89699149132 0.389903306961 4.59352731705 11.5032138824 20.3836359978
29 5.85106039047 0.17964720726 29.5932235718 13.9356060028 49.5595371723
30 7.57531738281 1.22707307339 5.81648254395 11.7694530487 26.3883260489
31 10.3673830032 0.84098726511 7.08808517456 29.1398391724 47.4362946153
32 10.3187980652 0.330533832312 12.9720058441 40.1392593384 63.76059708
33 10.1879711151 0.751051306725 8.20904159546 27.7105560303 46.8586200476
34 4.2794303894 0.906408667564 6.93849420547 25.8805160522 38.0048493147
35 11.1946077347 0.57596629858 22.0611419678 10.0315322876 43.8632482886
36 6.60582351685 0.859153807163 4.92367124557 9.956615448 22.3452640176
37 10.7474994659 0.424735605717 5.2021522522 8.66482639313 25.039213717
38 10.8031225204 0.49695700407 2.94008660316 10.8116436005 25.0518097281
39 1.89200341702 2.99555969238 0.935333848 26.9795227051 32.8024196625
40 7.3402466774 1.34759819508 5.73640871048 12.1646223068 26.5888758898
41 7.63870334625 1.33436799049 2.16381287575 6.12968015671 17.2665643692
42 4.28087472916 3.64208078384 11.3608522415 11.2052297592 30.4890375137
43 1.89094138145 0.441799223423 18.029384613 22.8456287384 43.2077539563
44 7.48298692703 0.529619574547 8.33093738556 5.01833057404 21.3618744612
45 6.88019609451 1.01289987564 6.70697689056 22.2716522217 36.8717250824
46 7.02991294861 0.429287642241 9.79586982727 53.0355758667 70.2906462848
47 7.30086660385 0.759940266609 2.42251324654 37.5440292358 48.0273493528
48 6.97370481491 0.361464142799 21.0186691284 13.0515708923 41.4054089785
49 4.0736413002 0.37124273181 2.62673592567 53.7460250854 60.8176450431
50 6.37729215622 0.351568162441 3.41607022285 21.4727783203 31.6177088618

Table B.5: Full results for DARRTH in Plate Domain World 1

178

World 1 DARRTHConnect

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Total
1 1.94421684742 3.77603292465 14.0128555298 11.6170558929 31.3501611948
2 5.44019556046 0.350419014692 3.04821610451 2.11226940155 10.9511000812
3 4.37092351913 0.869492828846 4.67573547363 4.89420843124 14.8103602529
4 1.80377137661 2.12239575386 1.21403455734 20.1420345306 25.2822362185
5 2.2434732914 0.431173235178 28.6069107056 12.6894006729 43.9709579051
6 2.10675191879 0.438759565353 5.48283910751 10.9249153137 18.9532659054
7 1.5807518959 0.725228130817 21.9539871216 8.20439624786 32.4643633962
8 3.0912771225 0.245635479689 18.5514125824 2.7112057209 24.5995309055
9 1.72975969315 0.32561892271 20.2341442108 13.9499969482 36.2395197749
10 1.87656617165 8.60628318787 17.6757354736 8.19093513489 36.349519968
11 7.07995223999 2.53013586998 0.988551139832 13.1831684113 23.7818076611
12 3.64275979996 0.296676278114 31.6832313538 4.32394313812 39.94661057
13 1.71306347847 0.81223076582 23.4672050476 28.0456943512 54.0381936431
14 1.6740885973 0.83359849453 14.4837779999 25.3413848877 42.3328499794
15 7.62434387207 1.1021105051 6.890846848 12.1569261551 27.7742273808
16 1.66048014164 0.532732903957 9.10782051086 3.95196390152 15.252997458
17 5.11535596848 1.4532558918 12.4902133942 28.3635349274 47.4223601818
18 1.64408016205 0.481240779161 14.3930273056 3.46645855904 19.9848068058
19 8.40407657623 0.280127972364 7.257784367 5.39804553986 21.3400344551
20 1.92864573002 0.389704942703 26.2264213562 3.26612949371 31.8109015226
21 2.5990626812 1.13657963276 12.0322732925 11.2690572739 27.0369728804
22 2.63362669945 0.221067011356 0.940578520298 9.63028907776 13.4255613089
23 3.02254104614 0.319279432297 9.70112800598 4.16278457642 17.2057330608
24 4.3726978302 0.304238468409 25.5336685181 7.13268661499 37.3432914317
25 2.02778625488 0.490239948034 6.05942058563 7.25595617294 15.8334029615
26 1.69765222073 0.404244989157 4.27059555054 9.47785949707 15.8503522575
27 2.80549764633 0.236935153604 3.47545862198 18.9721641541 25.490055576
28 2.21663117409 0.17310141027 2.7622859478 9.28174591064 14.4337644428
29 1.92056524754 0.240494117141 8.86918735504 2.73924970627 13.769496426
30 2.30223345757 0.431531727314 8.61051845551 8.16934776306 19.5136314034
31 1.72706925869 0.646061241627 4.89734649658 8.77074050903 16.0412175059
32 1.84914815426 0.50656235218 13.5989198685 13.1125926971 29.0672230721
33 1.83560967445 0.910371243954 7.3425359726 22.1429443359 32.2314612269
34 2.10268521309 0.392475008965 0.955797553062 2.26816606522 5.71912384033
35 1.86880648136 0.218884766102 4.50629091263 12.0078048706 18.6017870307
36 2.13764882088 0.343217939138 27.0759525299 14.6480827332 44.2049020231
37 2.06946706772 0.309035569429 5.97068977356 23.2849292755 31.6341216862
38 1.87508022785 0.623503684998 3.26139307022 24.1428775787 29.9028545618
39 6.58712244034 0.725449442863 21.6045875549 36.6339874268 65.5511468649
40 4.85581016541 0.264449447393 1.43847048283 3.08997511864 9.64870521426
41 2.30187797546 0.616336882114 21.9828529358 21.5434265137 46.444494307
42 2.42123174667 0.263936668634 40.9948692322 3.86170125008 47.5417388976
43 2.37802052498 3.61549496651 4.81535387039 9.16097450256 19.9698438644
44 1.95571422577 0.206673726439 6.81780290604 7.34565830231 16.3258491606
45 6.02977848053 0.449420630932 2.94046497345 5.07032632828 14.4899904132
46 4.31649017334 0.203835397959 18.0245418549 12.6641073227 35.2089747488
47 7.85996723175 0.230847686529 1.40056276321 34.9594497681 44.4508274496
48 3.0130007267 0.207042768598 38.2702560425 12.0421533585 53.5324528962
49 7.43368291855 0.220334917307 1.13951516151 9.49820423126 18.2917372286
50 2.13546180725 0.364076167345 17.03565979 24.0337791443 43.5689769089

Table B.6: Full results for DARRTHConnect in Plate Domain World 1

179

World 2 DARRTH

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Total
1 2.49189805984 1.26490223408 27.2822151184 2.13565468788 33.1746701002
2 4.51882648468 4.17787647247 17.2005615234 4.08259344101 29.9798579216
3 2.79570436478 61.430519104 1.5619045496 2.94548082352 68.7336088419
4 7.05079030991 1.10197138786 1.30066680908 10.1092996597 19.5627281666
5 10.8418712616 20.9510784149 4.64358282089 10.1970443726 46.63357687
6 3.80433154106 18.2057056427 2.13426375389 14.7150497437 38.8593506813
7 9.01696968079 5.713367939 13.7708654404 27.7856407166 56.2868437767
8 8.26310348511 2.62377238274 2.89901041985 24.8862991333 38.672185421
9 10.1786146164 3.0310280323 2.80115914345 7.00165462494 23.0124564171
10 5.52416563034 17.1764011383 6.3165397644 14.7211141586 43.7382206917
11 8.38958930969 10.2050600052 3.61300492287 9.74182128906 31.9494755268
12 6.11663007736 12.8634605408 16.3455162048 8.5377779007 43.8633847237
13 10.4378404617 24.7069740295 2.97226524353 4.35484790802 42.4719276428
14 2.85339021683 21.2144565582 1.59957408905 15.816860199 41.4842810631
15 2.88555598259 1.26814711094 33.2152557373 4.47737598419 41.846334815
16 2.76135373116 2.6442861557 4.90672969818 6.6007270813 16.9130966663
17 10.0554389954 66.7451019287 2.47155547142 15.2965812683 94.5686776638
18 3.52063918114 5.55808734894 7.83217906952 7.22442674637 24.135332346
19 3.7051076889 2.52277398109 1.79204618931 26.4379673004 34.4578951597
20 6.98112773895 18.2537956238 2.00211286545 12.4302053452 39.6672415733
21 2.45875382423 10.9334459305 3.96483874321 10.9029893875 28.2600278854
22 1.99806904793 2.24364995956 3.98862433434 38.5663414001 46.796684742
23 3.55255556107 31.1992607117 5.86001634598 23.1163711548 63.7282037735
24 9.40247631073 20.3865737915 5.72411346436 4.90935659409 40.4225201607
25 8.02344608307 1.22642028332 2.04571056366 100.181144714 111.476721644
26 5.78351545334 5.79784822464 2.19298791885 35.2073669434 48.9817185402
27 4.71351289749 6.60465478897 3.90840554237 5.8861913681 21.1127645969
28 7.59382677078 16.7812099457 4.45917034149 12.8993415833 41.7335486412
29 10.1957654953 6.4538640976 2.00347518921 41.5674591064 60.2205638885
30 4.94217586517 1.51500868797 1.34912395477 11.54155159 19.3478600979
31 2.61847639084 7.24054670334 9.28338050842 22.1961078644 41.338511467
32 5.34582042694 1.38750970364 1.57677662373 41.083114624 49.3932213783
33 4.75865697861 1.83455371857 1.96269762516 29.2322406769 37.7881489992
34 7.65729475021 19.5283870697 12.5748376846 49.6720657349 89.4325852394
35 5.42952346802 13.729970932 3.25226902962 55.4852294922 77.8969929218
36 6.35753679276 5.70624256134 9.47665405273 38.410785675 59.9512190819
37 11.0065479279 38.0491676331 5.15044879913 21.7169380188 75.9231023788
38 8.02982330322 49.0617599487 4.73487234116 12.6998577118 74.5263133049
39 10.8436203003 2.2630906105 4.21925830841 42.4823226929 59.8082919121
40 10.5298376083 17.0605373383 1.89064383507 14.9415464401 44.4225652218
41 3.59767079353 2.1459479332 1.2221852541 14.3932151794 21.3590191603
42 4.56245613098 4.06388807297 1.93878114223 10.1730947495 20.7382200956
43 4.93484258652 15.7446289062 10.247549057 29.214012146 60.1410326958
44 2.65580058098 11.7198867798 4.35440349579 6.94386053085 25.6739513874
45 3.8861811161 5.49581432343 9.55946731567 56.7083969116 75.6498596668
46 9.64785385132 1.48798286915 4.58122491837 18.7998981476 34.5169597864
47 3.24654698372 5.16654157639 24.3847408295 23.4526443481 56.2504737377
48 11.1818084717 8.91835021973 10.5822114944 14.1563501358 44.8387203217
49 4.44073629379 1.86481809616 116.019058228 7.83159637451 130.156208992
50 10.6401920319 17.5552406311 1.6051337719 3.86796617508 33.6685326099

Table B.7: Full results for DARRTH in Plate Domain World 2

180

World 2 DARRTHConnect

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Total
1 2.62128138542 12.2281827927 52.3579902649 5.83093881607 73.038393259
2 5.83433294296 1.75788235664 7.21719408035 16.0399055481 30.8493149281
3 1.88467860222 3.27892971039 11.6603183746 6.25694608688 23.0808727741
4 1.78420984745 6.74601364136 10.2235164642 7.83218717575 26.5859271288
5 5.75171995163 0.61735868454 4.27274179459 6.81009578705 17.4519162178
6 1.86637341976 12.6878967285 4.68699979782 6.75252532959 25.9937952757
7 2.45440864563 3.93575119972 13.301692009 4.37132310867 24.063174963
8 1.75813043118 2.80891942978 25.3752365112 5.32546520233 35.2677515745
9 2.13940811157 2.3551299572 17.1120376587 4.98281669617 26.5893924236
10 2.34984493256 1.85613107681 2.92092871666 9.68410205841 16.8110067844
11 4.46075487137 1.88597142696 66.4610443115 8.74144649506 81.5492171049
12 2.10559463501 30.7205600739 54.2392959595 5.66878461838 92.7342352867
13 3.68032217026 6.36663007736 17.6463851929 7.54360675812 35.2369441986
14 2.13699769974 6.57594060898 0.878984749317 9.90987586975 19.5017989278
15 2.29558205605 6.13386249542 5.26671361923 2.85487055779 16.5510287285
16 2.08367681503 3.09759497643 48.7572441101 3.23270344734 57.1712193489
17 2.17204356194 2.58675932884 12.0778112411 6.22782468796 23.0644388199
18 1.6760392189 32.1911277771 9.77958679199 3.1691942215 46.8159480095
19 2.2003531456 24.2599258423 5.23855400085 16.3572864532 48.056119442
20 1.89315116405 11.1098222733 8.24953269958 9.18325901031 30.4357651472
21 3.55238604546 0.921060562134 4.97614812851 6.64737892151 16.0969736576
22 1.92967438698 9.39532279968 12.6187314987 16.1030902863 40.0468189716
23 1.76127791405 14.4684753418 41.556137085 19.7132854462 77.499175787
24 1.93929505348 8.325715065 4.73013830185 5.3877620697 20.38291049
25 2.72310233116 12.4431858063 21.7291202545 5.62714290619 42.5225512981
26 2.72095680237 7.41942501068 15.1311330795 4.76391410828 30.0354290009
27 2.23695969582 2.83442831039 6.58376455307 9.99410915375 21.649261713
28 3.14891171455 0.969143509865 9.55314922333 29.1351852417 42.8063896894
29 4.92058801651 1.38534748554 6.22513866425 4.21352529526 16.7445994616
30 2.0279405117 6.72682476044 3.84867024422 5.49237060547 18.0958061218
31 1.76199758053 4.84352207184 28.9494895935 4.092648983 39.6476582289
32 2.47430205345 13.8257627487 1.30226385593 8.44856071472 26.0508893728
33 2.61036491394 6.24213552475 16.8004417419 9.83232879639 35.485270977
34 4.88580799103 3.01181769371 7.94941282272 2.7129483223 18.5599868298
35 2.28476166725 7.57708215714 3.57374954224 3.17116570473 16.6067590714
36 2.24936795235 7.49249982834 4.76511001587 7.49430608749 22.001283884
37 2.16188526154 1.33727908134 45.1207427979 2.97182512283 51.5917322636
38 2.07175469398 22.8791179657 36.1560707092 7.74805545807 68.854998827
39 6.65632677078 2.6889064312 48.5637016296 5.82032060623 63.7292554379
40 2.24157261848 2.20181250572 22.9069728851 17.7443714142 45.0947294235
41 1.98871457577 4.96688556671 1.3398873806 2.44067907333 10.7361665964
42 1.59272611141 2.09875798225 11.6889076233 4.20969390869 19.5900856256
43 2.45858335495 14.5244731903 1.49714040756 21.124420166 39.6046171188
44 1.72076129913 1.561165452 13.2278652191 12.2560005188 28.7657924891
45 9.61679077148 1.51999092102 8.00356483459 21.773443222 40.9137897491
46 1.99442219734 1.01003170013 2.00633621216 23.0974712372 28.1082613468
47 5.46146583557 4.43232774734 6.22928524017 4.68294000626 20.8060188293
48 1.96150839329 14.6244220734 3.51145100594 4.21796321869 24.3153446913
49 2.5375187397 8.42338466644 48.2596588135 4.99154758453 64.2121098042
50 2.4963722229 8.37486553192 2.32063221931 2.63748240471 15.8293523788

Table B.8: Full results for DARRTHConnect in Plate Domain World 2

181

World 3 DARRTH

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Total
1 7.8907327652 6.60276079178 43.193523407 57.6638069153 115.350823879
2 3.55352878571 6.19611263275 2.41009688377 47.2013549805 59.3610932827
3 5.00985336304 32.6482276917 2.78916192055 17.7699699402 58.2172129154
4 2.49162578583 2.44809651375 3.90775299072 18.2983570099 27.1458323002
5 1.1993137598 31.4413566589 4.85798549652 57.8006744385 95.2993303537
6 4.76740932465 19.3047485352 12.7128744125 143.220062256 180.005094528
7 1.27584683895 3.93491983414 2.50017023087 20.0314598083 27.7423967123
8 6.59040260315 75.9561080933 12.3115558624 382.576965332 477.435031891
9 3.07402205467 6.13657331467 4.68238067627 13.3398141861 27.2327902317
10 5.48681497574 41.6020736694 2.71635603905 55.7078170776 105.513061762
11 11.8236656189 12.1665058136 9.93705558777 437.969390869 471.896617889
12 10.035779953 32.8629302979 3.99721431732 200.005966187 246.901890755
13 2.25229930878 5.09490728378 4.96930599213 57.0300064087 69.3465189934
14 13.9763689041 57.8907852173 7.2488117218 413.253936768 492.369902611
15 4.7372879982 33.2637634277 25.8378562927 76.0091018677 139.848009586
16 7.12491464615 8.42892169952 3.16275286674 111.642303467 130.358892679
17 5.20598173141 115.453186035 4.919069767 59.2300415039 184.808279037
18 6.63941240311 1.72712635994 69.08152771 115.255226135 192.703292608
19 5.52002286911 1.24439144135 3.90033149719 201.031646729 211.696392536
20 2.9967417717 59.2021026611 4.67078208923 85.1446990967 152.014325619
21 7.98266458511 30.4395027161 19.7087631226 538.503051758 596.633982182
22 4.34829378128 4.69843053818 1.96502888203 209.980438232 220.992191434
23 3.98487830162 7.90620851517 3.81024765968 75.9319458008 91.6332802773
24 2.55937838554 38.5395355225 1.339620471 173.484268188 215.922802567
25 6.12359142303 34.2564125061 6.19843244553 211.331893921 257.910330296
26 8.43472003937 5.70338916779 2.74023723602 266.712646484 283.590992928
27 8.25444316864 41.6228027344 2.14541864395 205.651138306 257.673802853
28 4.9013209343 10.7304191589 3.8191318512 81.6245803833 101.075452328
29 7.90921354294 11.0816774368 10.8994426727 424.859588623 454.749922276
30 3.17964172363 15.8693027496 12.7671060562 107.643341064 139.459391594
31 2.62261724472 4.42181015015 2.1988825798 57.7147865295 66.9580965042
32 13.456495285 58.014213562 10.7276449203 514.249633789 596.447987556
33 2.27827906609 7.44040489197 1.66595125198 19.7986755371 31.1833107471
34 18.3355674744 5.79215431213 17.1567153931 438.56842041 479.85285759
35 10.5635261536 1.80776309967 6.07386255264 91.1371536255 109.582305431
36 5.34636688232 44.8272857666 4.73830509186 28.319683075 83.2316408157
37 13.9721441269 87.3599090576 7.37683010101 383.802856445 492.511739731
38 5.65052032471 2.38554692268 6.68625354767 86.1936340332 100.915954828
39 6.32239484787 4.42726230621 2.95774078369 92.4370117188 106.144409657
40 4.07482051849 1.46703147888 13.4812545776 47.6858940125 66.7090005875
41 8.22327613831 38.4037895203 3.45763897896 414.715087891 464.799792528
42 7.07309103012 9.84250831604 5.59563159943 49.0313911438 71.5426220894
43 8.12314796448 38.4314460754 5.70619106293 447.332275391 499.593060493
44 3.51227283478 21.9594211578 1.33872008324 181.706954956 208.517369032
45 4.83108377457 6.11396074295 6.82408857346 137.24307251 155.012205601
46 10.3953409195 8.92914772034 10.1941022873 9.75995731354 39.2785482407
47 3.49341821671 12.2583341599 1.30236148834 168.356201172 185.410315037
48 10.2254362106 3.81149935722 4.03609085083 16.4452838898 34.5183103085
49 9.02659606934 6.9449133873 6.27011013031 61.1953277588 83.4369473457
50 1.59904158115 11.1236400604 2.88460612297 180.060394287 195.667682052

Table B.9: Full results for DARRTH in Plate Domain World 3

182

World 3 DARRTHConnect

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Total
1 0.929114282131 4.74088811874 6.48641347885 12.6983690262 24.8547849059
2 1.22430670261 6.86392831802 2.53502845764 116.008399963 126.631663442
3 1.30420768261 9.11079978943 5.28566932678 49.6400375366 65.3407143354
4 0.942583978176 1.20010972023 13.2227430344 24.1811504364 39.5465871692
5 1.21112668514 7.00303506851 5.76414680481 26.6408596039 40.6191681623
6 6.84740924835 7.01873683929 12.4056348801 52.06016922 78.3319501877
7 2.46887254715 1.04820239544 12.9493494034 12.5287332535 28.9951575994
8 1.27395033836 5.1649222374 4.41120147705 79.3830566406 90.2331306934
9 3.09552168846 2.55534005165 20.8724536896 43.7585029602 70.2818183899
10 0.949756741524 30.1493415833 2.61545157433 5.1853222847 38.8998721838
11 1.79169344902 1.43177783489 10.2412624359 25.2130260468 38.6777597666
12 2.24330687523 4.15134429932 2.46278190613 66.5575637817 75.4149968624
13 3.17253565788 12.2899417877 7.10920953751 26.4891452789 49.060832262
14 2.09734249115 36.1228981018 2.43824791908 20.2479877472 60.9064762592
15 9.24330806732 10.2722387314 11.5309715271 52.8841285706 83.9306468964
16 1.89635980129 10.134303093 6.94453954697 22.2135334015 41.1887358427
17 1.85722208023 9.01490497589 3.70626044273 21.2865695953 35.8649570942
18 1.38661897182 6.14827537537 12.3438882828 31.5517654419 51.4305480719
19 1.88326323032 5.64798498154 7.34304666519 22.2931346893 37.1674295664
20 3.54475831985 5.37579059601 2.34941315651 24.385351181 35.6553132534
21 8.33368015289 6.17352962494 1.35775399208 46.6274108887 62.4923746586
22 2.18240690231 8.44568729401 14.3317203522 26.8276977539 51.7875123024
23 2.42037367821 5.25830554962 10.6564369202 13.5791044235 31.9142205715
24 1.93793201447 21.2429466248 1.35917365551 4.65693044662 29.1969827414
25 1.67767071724 7.31600999832 2.42593336105 136.478897095 147.898511171
26 6.61556768417 2.79746675491 3.47071456909 21.0511016846 33.9348506927
27 1.88492023945 4.10716199875 4.29547166824 19.5185909271 29.8061448336
28 1.44950056076 5.85103130341 8.36264896393 46.4041671753 62.0673480034
29 1.02242159843 20.0456485748 8.43298625946 38.8045806885 68.3056371212
30 1.56430494785 11.7178659439 2.57207274437 22.671667099 38.5259107351
31 1.32887220383 10.8763084412 6.09080648422 31.4054355621 49.7014226913
32 1.47244870663 5.86784696579 16.4855613708 15.7236289978 39.5494860411
33 1.1132311821 6.29814767838 9.32034873962 15.5731163025 32.3048439026
34 4.72129297256 7.49244976044 14.772605896 6.74910783768 33.7354564667
35 1.18035554886 35.2682533264 4.64648771286 106.938285828 148.033382416
36 9.21416568756 1.17567420006 2.79756379128 23.4559459686 36.6433496475
37 1.82555902004 4.12298965454 5.2324719429 53.7789382935 64.9599589109
38 1.27736711502 3.00823354721 15.6148452759 7.52915096283 27.4295969009
39 2.7960164547 10.6757974625 1.60404860973 113.809524536 128.885387063
40 4.74768447876 10.0868759155 8.46612453461 45.1031570435 68.4038419724
41 4.05335521698 2.64786434174 45.1536254883 58.9708251953 110.825670242
42 1.50410234928 7.50831317902 12.651925087 39.9401512146 61.6044918299
43 6.54908418655 16.7861366272 8.18709087372 26.9942512512 58.5165629387
44 1.59822165966 19.9258975983 8.37424373627 42.5979423523 72.4963053465
45 1.70748198032 16.3984012604 2.07405281067 54.9051933289 75.0851293802
46 1.97781300545 2.26871681213 11.4619693756 23.077703476 38.7862026691
47 1.44014799595 2.00521683693 1.24676132202 23.5902042389 28.2823303938
48 1.67306256294 2.12967061996 3.10993599892 199.058654785 205.971323967
49 1.90988004208 0.682794332504 19.3099956512 29.5457706451 51.448440671
50 1.215015769 5.99435758591 12.5405235291 47.2584457397 67.0083426237

Table B.10: Full results for DARRTHConnect in Plate Domain World 3

183

World 4 DARRTH

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Total
1 25.2843284607 78.2000045776 924.789123535 5.62371206284 1033.89716864
2 1.09546458721 17.568862915 28.0364379883 4.70013141632 51.4008969069
3 3.54665517807 8.89539432526 18.2001056671 1.18211770058 31.824272871
4 6.60044622421 10.962726593 194.37272644 2.46190190315 214.397801161
5 9.29562568665 11.674246788 187.929092407 2.28480601311 211.183770895
6 2.56353449821 62.0663223267 9.82335472107 1.67973387241 76.1329454184
7 10.3502922058 51.2245559692 14.8227319717 1.02563238144 77.4232125282
8 15.6908683777 34.611114502 196.279281616 0.824765622616 247.406030118
9 10.1499834061 69.604598999 9.35137462616 4.07552194595 93.1814789772
10 10.4952468872 40.3467216492 916.261901855 0.81055521965 967.914425611
11 6.123711586 4.88306665421 29.0124149323 11.8034439087 51.8226370811
12 19.7243232727 26.6162147522 183.82989502 2.90800189972 233.078434944
13 9.73361873627 8.16017723083 3.82040429115 16.5263767242 38.2405769825
14 16.6249313354 5.75381660461 213.280273438 3.90804219246 239.56706357
15 1.3722820282 6.77061700821 7.25317144394 5.66726970673 21.0633401871
16 5.51510286331 20.9680213928 11.1749649048 0.759667158127 38.417756319
17 5.09665870667 10.0243616104 52.9185791016 6.26924562454 74.3088450432
18 1.72661411762 10.6555185318 25.5595417023 1.15369236469 39.0953667164
19 14.007938385 13.2985801697 201.961685181 1.04935240746 230.317556143
20 5.20277738571 13.4249916077 129.23085022 24.6016254425 172.460244656
21 5.63352775574 98.6122512817 367.453704834 3.09864759445 474.798131466
22 15.1604003906 14.2281208038 198.168182373 12.3162193298 239.872922897
23 36.2528572083 96.0704956055 1089.17431641 0.447214096785 1221.94488332
24 9.97167873383 13.0851068497 6.16926670074 4.84184265137 34.0678949356
25 5.35928153992 9.09792709351 6.50700473785 3.5236518383 24.4878652096
26 11.0165157318 19.795085907 185.061935425 3.93378329277 219.807320356
27 3.06035971642 8.06404495239 4.91935920715 0.796135127544 16.8398990035
28 4.47540807724 21.533575058 3.90340805054 7.03294229507 36.9453334808
29 4.2007651329 12.7640924454 25.4298210144 10.2232923508 52.6179709435
30 7.79782152176 2.96528720856 13.9657382965 4.16791152954 28.8967585564
31 7.4377117157 10.2009534836 8.79982089996 15.1942987442 41.6327848434
32 3.12368702888 34.6879959106 29.9284191132 1.41312229633 69.153224349
33 24.0032539368 13.6701469421 545.774169922 2.66312432289 586.110695124
34 4.95538663864 3.73415923119 10.0610628128 7.49916601181 26.2497746944
35 3.60720348358 21.1913337708 6.55207777023 10.8914718628 42.2420868874
36 10.8424320221 6.43265485764 7.17212057114 1.06380951405 25.5110169649
37 2.05340147018 6.8101439476 10.1829395294 1.56842434406 20.6149092913
38 4.89312410355 11.8199510574 128.168457031 7.78244924545 152.663981438
39 8.77701282501 7.78746080399 2.10682916641 2.70132303238 21.3726258278
40 1.72717940807 5.84304904938 31.1204586029 0.72367978096 39.4143668413
41 5.19721603394 14.2569389343 2.47818493843 2.43276953697 24.3651094437
42 8.38301563263 21.5659866333 15.7159862518 1.41604673862 47.0810352564
43 10.0265522003 13.5906639099 188.193893433 5.71935796738 217.53046751
44 4.57757425308 16.9451618195 8.0528755188 7.7134809494 37.2890925407
45 25.4577865601 28.7496261597 554.601501465 7.55999469757 616.368908882
46 27.9480400085 40.0116271973 548.903137207 3.41113758087 620.273941994
47 11.6775617599 43.9597129822 562.872436523 3.60508608818 622.114797354
48 34.0974769592 88.4248123169 551.892822266 1.5200381279 675.93514967
49 20.6224784851 17.5649108887 194.774871826 9.96700191498 242.929263115
50 7.73839521408 10.123044014 34.5366668701 2.08737778664 54.4854838848

Table B.11: Full results for DARRTH in Plate Domain World 4

184

World 4 DARRTHConnect

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Total
1 2.79370617867 29.1581344604 58.0486526489 5.22528648376 95.2257797718
2 1.14843916893 5.48514986038 48.0957679749 0.598185837269 55.3275428414
3 0.962378799915 23.7769775391 14.0270814896 2.39009284973 41.1565306783
4 0.981349408627 4.63312625885 0.918997943401 0.378318428993 6.91179203987
5 3.74295926094 13.5241346359 198.559249878 1.93018639088 217.756530166
6 1.79559743404 17.1353626251 2.77829766273 1.58441281319 23.2936705351
7 5.07720518112 8.0679807663 82.1609344482 1.0740994215 96.3802198172
8 0.960819244385 0.5955119133 64.3663330078 1.51015102863 67.4328151941
9 1.16293728352 5.52789735794 56.9191665649 2.92689418793 66.5368953943
10 2.37961411476 31.5399665833 216.428436279 1.54532384872 251.893340826
11 1.42528223991 75.5756225586 224.069442749 3.21074748039 304.281095028
12 4.84707403183 5.14457511902 84.8259811401 1.06264638901 95.88027668
13 5.91220664978 24.3212947845 363.502960205 0.959941208363 394.696402848
14 4.99659252167 58.45860672 316.313415527 1.2546659708 381.02328074
15 8.63805580139 95.0071105957 652.829711914 1.57089078426 758.045769095
16 4.15634012222 20.7541160583 186.611480713 2.28306889534 213.805005789
17 4.2003493309 18.1458034515 234.793136597 1.77411818504 258.913407564
18 4.46081972122 19.2995605469 344.230865479 2.85281038284 370.844056129
19 7.81307792664 107.34262085 167.266586661 0.859200775623 283.281486213
20 2.1418762207 84.4508285522 244.038482666 0.321936994791 330.953124434
21 1.39573478699 3.3867790699 15.2276859283 1.05718064308 21.0673804283
22 0.653962731361 5.9354929924 51.7370262146 1.3844575882 59.7109395266
23 6.59463024139 21.4406280518 27.3012962341 1.32996499538 56.6665195227
24 2.89526891708 27.4189224243 375.818847656 4.22311449051 410.356153488
25 0.608731508255 2.44846200943 1.35760986805 1.40406680107 5.81887018681
26 1.4781588316 8.98510742188 1.34413206577 65.2973098755 77.1047081947
27 2.48995280266 24.94231987 4.38202428818 5.51558971405 37.3298866749
28 1.52901232243 14.7935733795 54.8340072632 3.17704296112 74.3336359262
29 2.91171216965 19.7643718719 34.2938117981 0.803237617016 57.7731334567
30 6.43197917938 8.01305294037 236.898483276 3.78359699249 255.127112389
31 3.17009329796 8.13238811493 7.772260785 2.26597499847 21.3407171965
32 4.52246999741 5.5441365242 34.0548973083 1.6529392004 45.7744430304
33 1.00285565853 63.9151535034 22.4594459534 10.1562337875 97.5336889029
34 1.72088289261 6.27627563477 43.2441673279 2.47105240822 53.7123782635
35 18.7423229218 48.9606933594 1535.03686523 0.760684967041 1603.50056648
36 5.80212402344 35.7895431519 554.976928711 6.6349029541 603.20349884
37 2.52946019173 47.0342903137 117.270454407 0.997329831123 167.831534743
38 9.49632358551 142.585144043 544.953918457 0.591139853001 697.626525939
39 6.10720825195 31.0219154358 181.157989502 1.31677877903 219.603891969
40 4.13757896423 9.24217510223 193.976959229 0.851770579815 208.208483875
41 5.99018764496 78.4101104736 452.528900146 0.712118268013 537.641316533
42 1.37486314774 10.3320093155 33.191570282 3.02038121223 47.9188239574
43 2.16749739647 37.3561820984 2.18904995918 0.64849537611 42.3612248302
44 6.01708030701 83.0595169067 258.407867432 0.876994669437 348.361459315
45 3.9473323822 31.3764533997 385.919067383 2.47415947914 423.717012644
46 2.75125336647 5.19052124023 31.7510433197 1.90741562843 41.6002335548
47 1.91474056244 19.1081142426 336.497802734 3.89570593834 361.416363478
48 5.74626350403 54.1558761597 408.561798096 0.585334658623 469.049272418
49 2.7394156456 21.4528312683 182.124938965 2.06583213806 208.383018017
50 16.5667514801 52.9311523438 362.530792236 3.25390291214 435.282598972

Table B.12: Full results for DARRTHConnect in Plate Domain World 4

185

B.2 Tool Use Domain

Trial
World 0 World 1

DARRT DARRTConnect DARRT DARRTConnect
1 128.744842529 29.4313602448 661.723937988 171.723510742
2 31.800201416 115.839874268 1275.97290039 91.6639022827
3 364.683929443 22.3649616241 1337.40576172 67.0450286865
4 71.3487091064 162.722122192 46.4863739014 21.8948993683
5 70.308380127 145.399353027 16.7018203735 40.7331924438
6 22.8180065155 111.968902588 907.831054688 221.375030518
7 23.0886058807 46.5296020508 541.991027832 219.729782104
8 80.6808547974 21.6622276306 386.573059082 120.034248352
9 87.5059051514 51.019947052 1003.07580566 155.548141479
10 175.582321167 21.8219909668 1232.90002441 299.995910645
11 403.665161133 18.489692688 194.733093262 18.1959896088
12 1320.82250977 18.7652721405 1399.0135498 159.163986206
13 158.306747437 51.4804954529 557.767578125 30.4029140472
14 181.117507935 16.2350616455 798.063354492 69.7020111084
15 359.198974609 17.634645462 1456.74169922 37.2375259399
16 76.4973602295 24.1885318756 1001.02648926 161.621765137
17 84.7786636353 20.3854198456 143.339065552 167.518753052
18 28.7031822205 80.7417755127 4526.77783203 248.263153076
19 59.3860321045 58.4194526672 297.774108887 193.262542725
20 494.49710083 25.7943515778 251.953552246 44.6461105347
21 215.654541016 26.2222290039 3003.85717773 37.2663574219
22 258.949432373 22.0622806549 135.784606934 174.794876099
23 407.551757812 25.621925354 711.129150391 21.7633304596
24 222.112350464 24.5006790161 756.480163574 109.629547119
25 229.083816528 23.7799224854 524.996459961 132.276702881
26 576.704162598 58.8769683838 333.102661133 30.2487640381
27 127.814376831 27.5070934296 3496.66674805 54.7259292603
28 101.957504272 20.1308364868 1113.41992188 162.47668457
29 273.080291748 49.6950759888 313.875823975 113.814575195
30 37.8101882935 40.1885681152 1723.27954102 69.2724990845
31 263.679595947 24.9812660217 826.719482422 70.1352386475
32 38.6792106628 27.3543128967 273.260375977 36.0677185059
33 23.6524772644 29.7633724213 89.999961853 24.2055168152
34 269.11428833 49.3139724731 473.385284424 33.0291442871
35 634.646240234 47.7568588257 452.701416016 164.471893311
36 106.406784058 54.3859558105 318.924255371 28.6685180664
37 34.6254844666 13.0172996521 857.779968262 135.334960938
38 74.9237518311 26.3803291321 1194.76147461 23.4791526794
39 181.337982178 15.0890932083 960.006652832 76.1202545166
40 15.428355217 25.2486572266 945.131591797 131.214233398
41 219.68522644 53.9824142456 263.172485352 106.167816162
42 165.917495728 8.6326084137 474.665008545 80.9223709106
43 159.517623901 17.1481361389 2047.05541992 71.1905212402
44 88.8485412598 20.873298645 260.990325928 72.5878295898
45 35.3368339539 22.9538059235 1995.91906738 37.6641426086
46 132.776687622 19.460559845 139.257141113 72.8894042969
47 211.490768433 58.17420578 4520.29003906 37.3032341003
48 260.379425049 20.0302429199 6011.09814453 221.221191406
49 439.284393311 26.6595020294 287.359191895 42.0540809631
50 260.78826904 25.8562698364 542.227416992 124.507781982

Table B.13: Full results for DARRT and DARRTConnect in Tool Use Domain
Worlds 0-1.

186

Trial
World 2 World 3

DARRT DARRTConnect DARRT DARRTConnect
1 1286.21057129 127.093536377 1257.86108398 3268.93261719
2 1914.1184082 1476.59960938 9295.03613281 10732.8027344
3 839.624084473 95.6041717529 1746.4987793 1480.79528809
4 598.991760254 685.620361328 873.557373047 3884.6003418
5 1597.32775879 317.159423828 8796.94628906 2606.15478516
6 346.323608398 777.775146484 2966.55541992 12256.6201172
7 692.842285156 170.088119507 3358.48681641 1403.51989746
8 144.832489014 96.7589569092 2333.7355957 187.341430664
9 692.469116211 583.025146484 1476.01611328 12599.8564453
10 92.7838058472 568.836975098 21444.9082031 4398.16162109
11 1558.94519043 796.438964844 8942.02050781 23343.5390625
12 97.1469268799 355.212371826 2201.55688477 3828.30395508
13 949.834594727 41.624168396 19800.8769531 4989.79736328
14 695.605285645 910.291503906 445.794403076 15206.8095703
15 572.305114746 551.908752441 1793.54980469 27451.8027344
16 481.745056152 61.3731880188 977.590148926 33851.3320312
17 524.195556641 1735.65612793 8334.00878906 8595.68847656
18 360.626464844 121.221733093 996.155639648 282.852416992
19 481.441680908 138.866149902 35246.1640625 3813.828125
20 650.980834961 371.059387207 13858.4414062 34220.03125
21 521.121887207 64.8695297241 7505.05273438 6818.56542969
22 1746.66003418 3111.66113281 10153.0273438 13799.5810547
23 587.365478516 363.02130127 885.080444336 8383.93652344
24 1940.9239502 43.4618682861 7376.87988281 5575.52685547
25 1175.59924316 265.211395264 12920.7626953 17344.0644531
26 1879.52929688 37.4944458008 49062.734375 13145.8691406
27 524.146728516 261.49822998 10474.1816406 552.820068359
28 1082.5390625 307.83694458 1406.28417969 143.325836182
29 296.878753662 926.013061523 3963.94116211 4694.44580078
30 109.998832703 68.0531539917 934.141357422 10949.9208984
31 276.393554688 119.012130737 7832.51708984 9568.05175781
32 76.2529067993 946.082214355 17434.0683594 217.215591431
33 44.0208320618 2691.68945312 985.057678223 28410.4121094
34 1822.47949219 275.866333008 4451.69287109 16469.5429688
35 899.790649414 866.778198242 10444.4931641 4151.42236328
36 68.7725372314 131.134643555 1721.62475586 2392.12158203
37 332.603515625 792.885742188 315.698455811 8304.9453125
38 456.446807861 115.37727356 1833.60009766 3576.45605469
39 163.573135376 752.110534668 2392.49902344 8375.609375
40 349.8984375 140.969802856 2213.51489258 584.387451172
41 1506.52209473 176.779373169 3402.27514648 39625.640625
42 999.343505859 443.202514648 22967.1074219 5579.88476562
43 76.633644104 277.701171875 21311.9316406 10660.5195312
44 546.519104004 144.627807617 4325.38232422 888.935424805
45 84.3584976196 986.503173828 2857.22729492 1664.37744141
46 326.308563232 43.9518051147 31373.4199219 34409.9453125
47 323.653778076 375.124206543 4344.77050781 20933.8242188
48 2736.99291992 314.051239014 21457.1601562 9795.25390625
49 1271.89575195 371.744445801 1249.69250488 5096.13671875
50 1852.5090332 278.355865479 373.957397461 7790.35546875

Table B.14: Full results for DARRT and DARRTConnect in Tool Use Domain
Worlds 2-3.

187

World 0 DARRTH

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Subgoal 4 Total
1 6.78437328339 4.06131696701 1.82976329327 1.63004243374 16.7236289978 31.0291249752
2 21.8380374908 1.79594182968 8.63844299316 1.00646996498 13.5883073807 46.8671996593
3 9.96635532379 3.35620975494 10.3352365494 2.40451788902 5.99730968475 32.0596292019
4 4.57136392593 3.21692466736 0.950329899788 0.41481500864 17.5316085815 26.6850420833
5 4.3895907402 5.60350370407 16.5989074707 1.5273938179 5.79968118668 33.9190769196
6 14.3151254654 0.895852386951 1.74430060387 1.61194288731 24.2945632935 42.861784637
7 12.6303138733 4.40542316437 41.1590423584 0.413874387741 71.7841644287 130.392818213
8 4.76948165894 2.15333175659 13.7806358337 0.647675216198 20.0066604614 41.3577849269
9 22.0997505188 7.34216165543 10.5092496872 0.4402782619 5.93517541885 46.3266155422
10 5.52796173096 5.06755542755 5.1668138504 2.94174766541 14.4980487823 33.2021274567
11 3.06760811806 6.62841176987 1.08494222164 2.68555927277 11.3620290756 24.828550458
12 11.1467161179 2.9764380455 20.1047897339 0.41400167346 10.8457555771 45.4877011478
13 15.3209724426 11.1371469498 18.182849884 2.40094971657 17.1006412506 64.1425602436
14 12.6864156723 9.51661872864 14.4199266434 0.442200958729 62.3420028687 99.4071648717
15 23.7906303406 2.28429675102 19.1340255737 0.898890972137 44.6896324158 90.7974760532
16 29.255147934 1.16846334934 1.39222383499 1.380610466 6.99711275101 40.1935583353
17 10.8075170517 15.61008358 6.65048742294 1.78249228001 14.0293865204 48.879966855
18 8.63702297211 11.0148448944 20.7372436523 0.810380578041 51.224647522 92.4241396189
19 10.3610992432 2.68842887878 19.7739181519 1.30055034161 9.1958398819 43.3198364973
20 4.5086274147 13.8005952835 15.3114452362 3.00823569298 13.7215614319 50.3504650593
21 8.80606079102 21.0813789368 1.69549906254 2.5206155777 19.2752075195 53.3787618876
22 5.26158428192 2.4681854248 20.6689872742 3.1649081707 7.9676232338 39.5312883854
23 6.20169305801 12.7202749252 27.8016281128 1.37032151222 52.4909133911 100.584830999
24 12.8612775803 12.6446523666 12.1964483261 1.27085852623 50.3483886719 89.3216254711
25 5.39513587952 2.36585712433 19.0289592743 0.646850466728 10.3934249878 37.8302277327
26 11.5886926651 2.79902291298 1.69774901867 2.55228805542 2.45076084137 21.0885134935
27 8.48848438263 2.11969637871 10.0054368973 0.441958248615 40.2324867249 61.2880626321
28 8.99137020111 5.03320264816 12.0781202316 0.424325197935 9.17531776428 35.7023360431
29 4.95359802246 5.21673154831 1.93084192276 1.18683695793 18.2747516632 31.5627601147
30 3.49432373047 9.70508956909 4.13573789597 2.6260881424 26.8740539551 46.835293293
31 5.67399692535 10.2585868835 15.0814285278 0.411943376064 1.04953575134 32.4754914641
32 4.90596961975 11.1676082611 12.5838069916 1.51441192627 11.7203969955 41.8921937943
33 5.64227485657 5.05793952942 1.01824140549 2.71012449265 41.9103164673 56.3388967514
34 11.7801942825 0.684830486774 0.975771307945 2.0399954319 23.4721412659 38.952932775
35 6.95702648163 2.40660452843 14.1061782837 1.14499914646 8.62009525299 33.2349036932
36 4.411028862 2.7533056736 17.9721317291 2.02467465401 6.41853475571 33.5796756744
37 15.4027452469 3.23140120506 8.38610744476 11.8540143967 16.7464084625 55.6206767559
38 3.14269042015 17.708480835 35.8932723999 2.77523469925 28.8001251221 88.3198034763
39 11.5222787857 3.67302274704 11.1191396713 0.723409950733 1.22857773304 28.2664288878
40 8.21352481842 0.850754201412 45.0884895325 0.697282671928 14.0715026855 68.9215539098
41 8.27512168884 2.65619468689 1.93714666367 1.00416588783 7.16723155975 21.039860487
42 13.6340522766 7.56536197662 14.5198984146 2.31148672104 0.901193797588 38.9319931865
43 13.4506950378 0.946588277817 1.80851864815 0.988283395767 12.9937152863 30.1878006458
44 7.98202610016 6.27831554413 35.2421684265 1.21968400478 3.25239372253 53.9745877981
45 8.42096424103 6.23109006882 51.1792297363 0.502514362335 10.0218458176 76.3556442261
46 4.37130641937 8.07423686981 15.2429475784 1.28159964085 11.0239019394 39.9939924479
47 9.21610927582 2.37118959427 10.8822584152 0.893675863743 7.2244591713 30.5876923203
48 9.02298736572 3.40881443024 9.27548599243 2.49980211258 26.4727897644 50.6798796654
49 9.5178861618 3.66393494606 26.236946106 3.95653939247 13.2665700912 56.6418766975
50 7.54831218719 4.26824188232 21.4016590118 0.716384232044 59.5198783875 93.4544757009

Table B.15: Full results for DARRTH in Tool Use Domain World 0

188

World 0 DARRTHConnect

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Subgoal 4 Total
1 4.07649278641 2.44679522514 8.87240314484 1.32009863853 3.1878426075 19.9036324024
2 2.01018595695 2.53020310402 4.3242764473 0.799663424492 15.3012952805 24.9656242132
3 5.396671772 1.15425539017 9.24297523499 0.477365195751 1.17736911774 17.4486367106
4 6.2740149498 5.55266666412 16.1950721741 0.444704264402 9.06650447845 37.5329625309
5 7.79952526093 0.742191195488 39.2886047363 0.615011632442 5.52198457718 53.9673174024
6 1.76420748234 1.85620367527 1.02896142006 0.511678874493 12.8815336227 18.0425850749
7 1.95402038097 7.68541288376 3.77127027512 0.51237142086 6.23980665207 20.1628816128
8 5.92714738846 5.80731630325 13.7771215439 2.81484007835 2.45827317238 30.7846984863
9 2.76693868637 5.56844139099 25.0282516479 1.44240832329 23.5099525452 58.3159925938
10 6.43841171265 3.90876293182 14.00826931 0.80803757906 15.9524688721 41.1159504056
11 6.20463943481 1.55366265774 15.2244358063 0.394286692142 15.5876588821 38.9646834731
12 8.08320045471 1.80180478096 5.35018253326 2.94497227669 3.0835711956 21.2637312412
13 2.0169980526 5.99294233322 11.0901031494 6.03276538849 11.5701198578 36.7029287815
14 2.56652736664 4.95675992966 9.89280033112 5.69849395752 21.0913887024 44.2059702873
15 2.05265855789 16.0697937012 42.07862854 1.54874920845 14.3354320526 76.0852620602
16 5.36157035828 2.33587932587 10.6040868759 0.55035418272 2.38090252876 21.2327932715
17 2.22143936157 1.54873299599 13.2000417709 0.478188127279 30.8493690491 48.2977713048
18 3.32318782806 1.88838350773 2.87834310532 0.52804595232 2.01975536346 10.6377157569
19 5.01601219177 4.7746052742 2.176633358 1.77528488636 29.6076755524 43.3502112627
20 3.48560643196 3.36172103882 21.2288360596 1.43838012218 11.4234209061 40.9379645586
21 3.30548977852 18.5593757629 6.01475477219 1.82556593418 4.5800037384 34.2851899862
22 7.42708683014 8.20492172241 5.46707630157 0.379502922297 8.9493227005 30.4279104769
23 3.63098454475 1.58574032784 0.86230802536 2.09887742996 9.51259326935 17.6905035973
24 3.60748457909 0.876603245735 0.999207496643 0.410989761353 2.00371718407 7.89800226688
25 8.66086196899 2.73296403885 17.535692215 1.25894773006 8.46644115448 38.6549071074
26 6.83641672134 9.99286460876 3.40455770493 0.495685696602 1.95255303383 22.6820777655
27 9.14774608612 4.87799596786 4.04834985733 0.963733077049 8.42443561554 27.4622606039
28 4.77172470093 1.57349693775 4.09251880646 0.935317754745 12.4711999893 23.8442581892
29 2.74964356422 2.4969189167 0.628461420536 0.660792589188 9.18777561188 15.7235921025
30 3.85335016251 1.45460271835 7.81269454956 0.88551145792 23.9120941162 37.9182530046
31 3.59524345398 5.13459014893 6.5724606514 0.924093484879 6.2843952179 22.5107829571
32 3.95110368729 3.4530518055 14.76512146 0.609861254692 7.68670463562 30.4658428431
33 2.42438721657 6.76706552505 12.8618602753 2.14635777473 3.37370562553 27.5733764172
34 4.43552589417 2.9659409523 8.28302669525 1.70787596703 3.88939881325 21.281768322
35 2.96393942833 1.56307601929 6.76755428314 1.19270730019 42.7229042053 55.2101812363
36 3.2970392704 1.4095133543 2.2867205143 1.5829668045 9.58322048187 18.1594604254
37 2.60427212715 5.19470405579 10.8216943741 0.729810893536 14.5147037506 33.8651852012
38 2.74149179459 3.55531787872 1.40292704105 1.28245890141 25.5621109009 34.5443065166
39 6.29598045349 3.33932805061 13.2711315155 0.884580373764 20.3823451996 44.173365593
40 5.93424940109 5.93538999557 4.72844600677 0.844536721706 14.8997325897 32.3423547149
41 3.60982298851 1.01246619225 3.60710906982 0.783709764481 1.71368932724 10.7267973423
42 4.14527511597 5.32298898697 2.03114128113 0.409245818853 0.344023674726 12.2526748776
43 4.79292917252 3.42419362068 19.9101600647 0.707327067852 10.5750656128 39.4096755385
44 4.64205551147 1.18400847912 6.7357211113 0.894956171513 11.4464092255 24.9031504989
45 2.41724729538 1.51256251335 5.96155881882 1.58798456192 2.34993696213 13.8292901516
46 4.4806022644 1.59254050255 11.1428813934 0.562449872494 5.79632043839 23.5747944713
47 4.52325725555 3.0407242775 1.09527909756 1.3598306179 6.35320091248 16.372292161
48 4.43269634247 4.96189117432 18.1482563019 1.40115392208 5.71113729477 34.6551350355
49 3.90623474121 5.09941625595 10.7043800354 0.823646783829 0.849557220936 21.3832350373
50 6.71340942383 2.32204294205 19.6139812469 0.602684020996 25.4893913269 54.7415089607

Table B.16: Full results for DARRTHConnect in Tool Use Domain World 0

189

World 1 DARRTH

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Subgoal 4 Total
1 6.74131059647 8.13917350769 71.7639694214 2.98054766655 9.12120723724 98.7462084293
2 10.9342842102 2.92612910271 75.8257522583 7.99224281311 48.3411407471 146.019549131
3 7.00240135193 5.46371459961 140.077804565 3.47368597984 36.293170929 192.310777426
4 14.500869751 8.35724639893 75.4184646606 14.8966035843 22.3814697266 135.554654121
5 19.1966075897 5.99921894073 249.200668335 9.90920639038 2.95590400696 287.261605263
6 7.214823246 14.2317390442 23.3613986969 0.930235385895 75.214630127 120.9528265
7 19.6058959961 8.66651439667 118.673439026 15.4647130966 10.296248436 172.706810951
8 10.02364254 4.65326118469 75.208366394 0.583560049534 33.3036994934 123.772529662
9 15.1257324219 3.89649009705 281.316040039 3.78442788124 57.3151550293 361.437845469
10 11.3736991882 6.18520832062 48.8665771484 0.699643611908 23.5360832214 90.6612114906
11 10.6657352448 5.61015415192 295.55947876 21.6621875763 7.26972675323 340.767282486
12 23.6726360321 1.21761357784 5.82931184769 2.14273834229 12.395236969 45.2575367689
13 13.7272548676 4.64020395279 54.4651794434 2.13267302513 43.6969032288 118.662214518
14 8.51401233673 10.5144367218 12.1544713974 11.0473022461 1.89832830429 44.1285510063
15 15.7803039551 1.01911604404 197.098876953 3.67468190193 2.3084936142 219.881472468
16 27.1665992737 3.30799388885 3.32925319672 0.49895876646 17.1720695496 51.4748746753
17 25.6818237305 14.7741527557 44.7299919128 0.796319782734 38.2708740234 124.253162205
18 4.93009757996 1.12652897835 5.55352306366 3.50047540665 7.36856412888 22.4791891575
19 18.1255626678 6.32430648804 129.350250244 8.50351905823 7.44248819351 169.746126652
20 10.3027591705 5.94087553024 73.6541748047 1.99937653542 10.3859558105 102.283141851
21 13.8517036438 2.26353430748 45.0016822815 1.86350739002 39.8515167236 102.831944346
22 8.42910003662 7.04644632339 21.1184635162 8.0453453064 16.6362609863 61.275616169
23 5.86315870285 3.46307659149 16.8364601135 18.2003192902 4.5906047821 48.9536194801
24 5.58257102966 11.4197225571 15.3126478195 7.30513858795 12.138710022 51.7587900162
25 17.0315151215 4.74046802521 44.3700866699 0.748897075653 5.35296964645 72.2439365387
26 8.20270061493 5.78128004074 23.3086338043 2.14705920219 8.21812057495 47.6577942371
27 7.55813550949 9.480260849 131.45161438 4.22207546234 29.2002391815 181.912325382
28 13.772939682 8.01076984406 2.12058210373 0.750220119953 23.8253154755 48.4798272252
29 14.1028223038 3.65502405167 55.6453704834 0.622055113316 2.29277348518 76.3180454373
30 11.1764554977 6.75480890274 135.964447021 8.8651676178 2.79396867752 165.554847717
31 7.98603343964 7.47775268555 344.997741699 2.37967944145 18.9458370209 381.787044287
32 9.60001754761 6.4331240654 106.407600403 21.2513847351 5.95987653732 149.652003288
33 37.8737602234 7.61984682083 112.790283203 0.711508989334 65.1992950439 224.194694281
34 11.4132490158 10.9793710709 64.1557312012 0.786167562008 10.1218976974 97.4564165473
35 11.3215093613 25.0726585388 33.6979522705 4.25920724869 20.4589538574 94.8102812767
36 15.4164953232 3.92275547981 17.5026130676 2.23229384422 12.3948459625 51.4690036774
37 28.0245819092 1.83434963226 51.0662956238 6.76596546173 47.359790802 135.050983429
38 7.18090963364 3.74167656898 85.2195358276 0.869406163692 39.3514785767 136.363006771
39 16.3231658936 3.0791079998 66.1882400513 1.66195178032 41.205581665 128.45804739
40 15.654296875 3.23327946663 140.578643799 0.936304330826 3.76143908501 164.163963556
41 12.3982362747 11.4811534882 1.59127759933 1.69704174995 19.2770061493 46.4447152615
42 7.50551462173 4.37127637863 88.2607879639 1.11559987068 86.9879302979 188.241109133
43 28.0996227264 2.81299138069 105.480377197 5.15861988068 6.77669668198 148.328307867
44 6.1600651741 5.67269420624 125.793739319 1.56150710583 34.132068634 173.320074439
45 19.1143627167 1.69050478935 93.4391326904 1.44948065281 7.21798801422 122.911468863
46 10.6479034424 8.92382717133 40.9990921021 7.46129846573 34.7816886902 102.813809872
47 5.0767159462 4.34487104416 10.8027687073 1.25498080254 57.7839050293 79.2632415295
48 7.65678501129 3.35771155357 41.0858726501 6.49284124374 6.60407018661 65.1972806454
49 4.04553985596 8.40874671936 23.993768692 27.813375473 12.7657661438 77.0271968842
50 13.8317623138 7.86381578445 64.7761993408 15.1421079636 11.0299396515 112.643825054

Table B.17: Full results for DARRTH in Tool Use Domain World 1

190

World 1 DARRTHConnect

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Subgoal 4 Total
1 6.25988912582 2.31360411644 71.7348175049 2.74802160263 2.94223022461 85.9985625744
2 3.61150717735 1.78345453739 46.1049346924 2.36589503288 18.1150512695 71.9808427095
3 4.31432437897 1.51669430733 45.9887237549 10.4794483185 12.8000421524 75.0992329121
4 3.82531380653 7.47447729111 42.9529533386 44.0012168884 6.69388008118 104.947841406
5 4.3966012001 3.65601754189 57.8081359863 1.289021492 10.742937088 77.8927133083
6 5.36013412476 2.22994351387 15.6243114471 1.37482535839 1.0786960125 25.6679104567
7 5.26048517227 2.6421277523 14.8345899582 15.3623418808 2.17320775986 40.2727525234
8 8.53739070892 2.33862352371 30.4078102112 0.548611879349 13.805355072 55.6377913952
9 4.10798978806 16.8954277039 73.6943969727 28.9065895081 3.55881524086 127.163219213
10 3.14038443565 1.17222058773 51.9582977295 3.12878537178 4.98530626297 64.3849943876
11 6.33594942093 12.3931455612 8.48969268799 0.686252653599 29.5118598938 57.4169002175
12 3.14682579041 10.090883255 21.6081218719 8.91034317017 22.1308746338 65.8870487213
13 2.63869595528 10.0282812119 129.603088379 20.4043216705 20.9347057343 183.609092951
14 3.0864803791 4.94226694107 41.611579895 3.08415961266 8.98728370667 61.7117705345
15 3.58322072029 5.59177494049 37.0179862976 2.87563252449 6.64939975739 55.7180142403
16 2.07165765762 3.50676250458 26.5666122437 2.91795229912 10.9395132065 46.0024979115
17 5.59675884247 1.94475102425 18.855381012 6.01239061356 11.5203075409 43.9295890331
18 4.83612060547 1.26781094074 39.081867218 7.22489452362 12.2447137833 64.6554070711
19 4.09472990036 1.3621045351 13.0987529755 16.3793373108 0.659521102905 35.5944458246
20 3.17092514038 1.69712674618 52.2713241577 8.7153673172 15.7281827927 81.5829261541
21 2.27222251892 20.1981182098 16.5047664642 30.8853340149 3.04340600967 72.9038472176
22 2.18958067894 0.801259696484 22.0976047516 0.79681456089 3.34836411476 29.2336238027
23 4.93903827667 1.06524813175 53.169631958 0.728730499744 1.75899219513 61.6616410613
24 2.55355596542 1.50251889229 36.0093460083 0.616511940956 2.74138879776 43.4233216047
25 5.68502759933 1.14037930965 79.397064209 17.6188259125 4.16830062866 108.009597659
26 4.41038274765 3.75361990929 54.3105545044 1.59899938107 8.49850082397 72.5720573664
27 4.24995660782 4.43832969666 6.02330875397 4.74558162689 14.0004577637 33.457634449
28 3.17618703842 4.16104841232 57.0786705017 9.72562503815 9.94784927368 84.0893802643
29 3.45861458778 1.02128517628 7.64691257477 17.3705043793 16.8484916687 46.3458083868
30 2.04714155197 3.22906112671 9.62075614929 1.84438741207 2.876039505 19.617385745
31 9.65002155304 4.36654043198 66.2931060791 17.3164196014 7.42528104782 105.051368713
32 2.73476338387 5.51476621628 11.1375112534 14.6852264404 14.1375465393 48.2098138332
33 4.01289844513 2.97220873833 3.35415959358 3.22999930382 12.350520134 25.9197862148
34 2.9750187397 2.69251084328 20.2245979309 0.892518460751 31.6972064972 58.4818524718
35 6.46788835526 16.8513393402 4.43122959137 8.20016098022 4.23327970505 40.1838979721
36 6.08333826065 0.682803273201 16.065867126 25.4700508118 6.59485578537 54.896915257
37 5.19116449356 1.87408876419 1.97022485733 1.14149522781 25.5580425262 35.7350158691
38 2.97337245941 4.48852539062 39.3931350708 2.29744505882 17.4494285583 66.601906538
39 5.12740802765 3.73846840858 111.00920105 9.18102455139 22.432849884 151.488951921
40 6.02633619308 1.1249755621 27.9093284607 1.05400729179 11.1125173569 47.2271648645
41 11.0806016922 10.7737131119 8.15114116669 13.1567020416 4.17172384262 47.333881855
42 1.97211790085 14.6202001572 11.2586765289 11.3007144928 3.42062282562 42.5723319054
43 3.47670269012 0.752612352371 32.2658233643 26.8964557648 4.02715539932 67.4187495708
44 5.58481502533 4.49624633789 83.6779556274 22.7493476868 1.3535348177 117.861899495
45 4.85086584091 3.39047694206 40.0206108093 7.38193655014 3.30500841141 58.9488985538
46 3.38050913811 1.39118027687 2.53437590599 28.7219314575 23.2291927338 59.2571895123
47 3.506752491 2.28342270851 24.6477355957 18.2854347229 30.8268146515 79.5501601696
48 10.7287988663 4.18120098114 5.33402967453 0.535456240177 26.3128547668 47.092340529
49 4.90046215057 1.30501806736 22.346031189 1.49613618851 7.72135162354 37.7689992189
50 5.4775428772 6.23041296005 17.7667102814 0.850612580776 8.9034986496 39.228777349

Table B.18: Full results for DARRTHConnect in Tool Use Domain World 1

191

World 2 DARRTH

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Subgoal 4 Total
1 15.0712633133 8.49743461609 82.337387085 1.91127955914 1.75825309753 109.575617671
2 16.106595993 5.14140176773 166.161865234 7.63293981552 0.240019217134 195.282822028
3 8.04125404358 4.26422452927 78.5476608276 2.87995958328 1.32173800468 95.0548369884
4 9.25408935547 2.30404019356 75.0247039795 1.62771737576 0.717810153961 88.9283610582
5 6.04989767075 11.4562883377 23.4119586945 6.11571884155 0.569907844067 47.6037713885
6 19.5659885406 3.43706989288 5.86837053299 21.2493019104 0.132169783115 50.25290066
7 8.72282028198 2.98958539963 108.791183472 7.89923477173 1.33913660049 129.741960526
8 10.8378019333 7.00386619568 73.7839202881 2.3487868309 0.507865309715 94.4822405577
9 5.31336069107 1.90802145004 16.8041229248 18.8584251404 0.319287568331 43.2032177746
10 16.8281269073 5.74888944626 27.2822532654 1.31487953663 3.76720428467 54.9413534403
11 4.31670379639 12.1718616486 32.8015975952 6.26282739639 1.23687160015 56.7898620367
12 8.90999984741 2.75441932678 99.1471557617 1.45010471344 0.225288659334 112.486968309
13 7.51049900055 1.09070670605 112.969741821 2.5811727047 5.35004472733 129.50216496
14 10.0463371277 4.68086671829 162.715270996 12.9998931885 0.370177865028 190.812545896
15 6.56373119354 8.22097492218 190.861679077 2.81146001816 0.191611230373 208.649456441
16 8.66177940369 10.8030939102 342.786834717 1.99998855591 0.83494591713 365.086642504
17 17.1734695435 2.14430618286 15.9691171646 4.13085699081 3.70780611038 43.1255559921
18 18.1896495819 2.36244940758 50.1503410339 0.752250432968 5.22183704376 76.6765275002
19 5.94596576691 5.88955068588 26.8326416016 3.95399260521 1.333101511 43.9552521706
20 20.6454658508 13.6427097321 31.8015136719 6.96356630325 2.37249350548 75.4257490635
21 8.35697078705 2.4159116745 220.833984375 1.57167804241 0.786989629269 233.965534508
22 9.27654361725 2.34545493126 85.0493164062 2.56751704216 2.25440692902 101.493238926
23 8.09968185425 4.55953168869 17.0564041138 3.3576271534 0.461191684008 33.5344364941
24 8.64199924469 8.29708003998 13.3690500259 1.24557578564 0.305305480957 31.8590105772
25 8.47316455841 2.68873143196 612.541015625 3.57484197617 6.1104221344 633.388175726
26 10.4198074341 4.44538116455 171.850692749 2.1906273365 2.41511321068 191.321621895
27 10.05402565 3.80821466446 126.274368286 6.8594326973 1.39950621128 148.395547509
28 23.3198680878 3.58433842659 119.38671875 11.851313591 0.539755225182 158.681994081
29 14.6783733368 2.86547017097 135.712554932 2.89054179192 0.433516800404 156.580457032
30 15.8137388229 3.43647742271 108.885353088 11.7215957642 1.16750884056 141.024673939
31 21.8811721802 1.3831974268 6.69278097153 8.39197540283 0.512256801128 38.8613827825
32 14.2202644348 4.92369937897 120.19367981 2.8338227272 0.48155105114 142.653017402
33 6.37805461884 2.08203887939 470.166534424 4.09275484085 1.60717129707 484.32655406
34 24.3271274567 2.56274294853 169.190063477 5.11345624924 3.36662077904 204.56001091
35 6.68665790558 4.04071187973 96.347442627 10.4881343842 0.602676093578 118.16562289
36 14.8788757324 7.67409658432 37.4011497498 1.85786402225 0.619324088097 62.4313101768
37 5.73770332336 3.28454566002 59.2764472961 0.882383882999 1.17542552948 70.356505692
38 9.41666984558 11.7773694992 30.7938289642 2.47470927238 0.333074212074 54.7956517935
39 12.2423725128 4.71194696426 36.1559715271 8.44540214539 0.264993876219 61.8206870258
40 20.3908863068 7.94864559174 91.5554428101 2.12176251411 0.408545911312 122.425283134
41 7.59320878983 4.0382027626 167.762969971 8.36852645874 0.914403259754 188.677311242
42 9.19406795502 7.50651788712 99.377746582 9.09192371368 0.573326289654 125.743582428
43 10.1298799515 1.07583975792 16.6296043396 6.14312696457 1.67611169815 35.6545627117
44 9.54915618896 5.20874595642 21.2422447205 5.67717218399 1.9720441103 43.6493631601
45 16.6057357788 10.3803672791 19.3710346222 2.48324370384 2.31695604324 51.1573374271
46 24.5293159485 4.5826420784 74.2897109985 3.36141610146 0.787619709969 107.550704837
47 15.500828743 6.32451438904 72.8318252563 3.32917714119 2.35594034195 100.342285872
48 10.8586816788 3.85756754875 69.8522033691 6.89896392822 0.734478294849 92.2018948197
49 11.1775989532 9.03844070435 105.98210144 7.69353199005 0.684578180313 134.576251268
50 6.87521219254 10.0513820648 26.4559726715 8.47065353394 0.745603501797 52.5988239646

Table B.19: Full results for DARRTH in Tool Use Domain World 2

192

World 2 DARRTHConnect

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Subgoal 4 Total
1 2.43685460091 1.27639663219 11.87931633 4.73056268692 0.367667853832 20.6907981038
2 4.76190662384 1.1765730381 33.4952850342 6.09020662308 0.193191945553 45.7171632648
3 2.68863987923 2.73669695854 5.63141822815 13.7300338745 0.357801765203 25.1445907056
4 5.33990859985 12.001616478 10.5261087418 3.96822762489 0.47197791934 32.3078393638
5 5.14939022064 4.71309232712 64.8652191162 0.851758539677 0.394594311714 75.9740545154
6 6.17936134338 1.49659407139 58.6399917603 2.6172478199 0.33976405859 69.2729590535
7 2.68170881271 1.20517325401 6.26643276215 11.7392244339 1.54101538658 23.4335546494
8 5.75252723694 4.6505408287 72.4319152832 0.7777556777 0.221729233861 83.8344682604
9 9.94447135925 0.529910385609 10.6227684021 4.03640031815 0.138101235032 25.2716517001
10 2.88113927841 3.02086186409 8.36651134491 2.51830863953 0.276952207088 17.063773334
11 1.69183075428 3.97775125504 64.0194625854 3.76956415176 1.38432788849 74.842936635
12 5.02024745941 3.58547306061 98.6455307007 3.25984406471 0.441693812609 110.952789098
13 2.26957392693 7.39141082764 19.6954727173 4.29714822769 0.308256477118 33.9618621767
14 2.94373750687 4.14621591568 17.0907058716 1.45888435841 0.821606636047 26.4611502886
15 2.0860850811 5.73893404007 6.79432153702 1.31071996689 0.669729471207 16.5997900963
16 5.59946870804 7.74267911911 16.704208374 0.823318839073 0.783191025257 31.6528660655
17 5.37317085266 0.674676597118 23.3035106659 1.74498164654 0.189035743475 31.2853755057
18 5.38960981369 3.18443369865 16.9838466644 39.5874176025 0.26919952035 65.4145072997
19 6.24373817444 2.62390375137 3.4277973175 4.09250450134 0.698185265064 17.0861290097
20 9.510222435 6.35331344604 17.3933677673 9.34238910675 0.231868907809 42.8311616629
21 2.72842431068 2.23375272751 22.0462474823 4.56494379044 0.258704960346 31.8320732713
22 3.22023582458 12.0301485062 42.8279876709 0.551497936249 0.47698572278 59.1068556607
23 8.10684967041 1.06972754002 36.3658561707 12.3682689667 0.510928213596 58.4216305614
24 2.82507658005 2.75321054459 5.74545812607 1.1378518343 1.28774487972 13.7493419647
25 4.54391813278 0.974942982197 8.75590705872 3.43698978424 0.251670747995 17.9634287059
26 3.25465917587 8.70685005188 12.0253944397 4.92019224167 0.144467160106 29.0515630692
27 2.01884293556 0.871699869633 50.1918754578 3.79603981972 0.712153613567 57.5906116962
28 4.90106534958 6.68321561813 14.5646762848 3.04355621338 0.192241773009 29.3847552389
29 2.64110064507 2.31155872345 8.01370429993 2.51274585724 0.266343325377 15.7454528511
30 3.75056624413 3.64764499664 2.54826617241 5.9946436882 0.805759966373 16.7468810678
31 2.84352731705 4.08623552322 62.9956665039 4.68936395645 0.189830482006 74.8046237826
32 4.11888790131 6.57702827454 17.6632556915 2.33316326141 0.491930663586 31.1842657924
33 3.38081359863 8.99559783936 60.3507385254 1.27838003635 0.402624666691 74.4081546664
34 2.7343070507 2.02334499359 5.11948060989 1.26782178879 0.139822050929 11.2847764939
35 4.80195426941 1.98665893078 6.85260057449 7.49053764343 0.335084617138 21.4668360353
36 5.32885980606 4.83683633804 51.5598678589 16.4625396729 0.489582479 78.6776861548
37 7.08903169632 11.198797226 19.8558979034 9.53225708008 0.257266908884 47.9332508147
38 5.44460868835 3.15131473541 11.5013647079 2.71476912498 1.15783929825 23.9698965549
39 5.87576675415 3.91621899605 123.572380066 5.8648109436 0.392152607441 139.621329367
40 7.53019762039 0.865674972534 46.6289024353 8.68226051331 0.2887981534 63.9958336949
41 4.72920370102 2.14843845367 11.0889358521 0.784203588963 0.479307174683 19.2300887704
42 8.67640304565 1.51594388485 27.1710929871 5.39192724228 0.21511015296 42.9704773128
43 2.25151753426 4.59303665161 18.4426136017 1.76748812199 1.40956318378 28.4642190933
44 2.8755402565 4.68758392334 6.76784610748 4.0382733345 0.194589018822 18.5638326406
45 4.52245187759 2.60040235519 8.23013591766 3.68065261841 0.143365368247 19.1770081371
46 4.46262741089 1.08616805077 12.4022769928 1.91712939739 0.34875074029 20.2169525921
47 5.30988693237 3.99247670174 10.138092041 3.19696116447 0.242464587092 22.8798814267
48 4.18911933899 2.68851852417 35.577293396 1.50336945057 0.389340937138 44.3476416469
49 4.82964324951 1.08711051941 3.83707094193 1.04890632629 0.152316451073 10.9550474882
50 4.51693153381 4.17544221878 17.1994934082 11.4623908997 0.163787260652 37.5180453211

Table B.20: Full results for DARRTHConnect in Tool Use Domain World 2

193

World 3 DARRTH

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Subgoal 4 Total
1 10.7607030869 42.7542877197 203.124649048 92.0725708008 8.7206697464 357.432880402
2 19.0999565125 28.060836792 6.78773546219 2.08718895912 45.7033119202 101.739029646
3 20.2769527435 49.5246391296 448.639801025 13.3447904587 38.8151702881 570.601353645
4 14.6408185959 36.4726295471 293.362487793 16.10430336 20.8814601898 381.461699486
5 6.09371948242 21.4710960388 671.531494141 5.76589202881 3.12544941902 707.98765111
6 23.1173019409 35.4879341125 89.1042633057 29.8821926117 18.2198448181 195.811536789
7 14.0300655365 42.1122207642 28.6020908356 21.6693477631 4.74996948242 111.163694382
8 9.90807151794 18.4436168671 27.7076931 48.6489868164 51.5559082031 156.264276505
9 7.79870462418 31.7665691376 369.905975342 6.99106740952 76.4846343994 492.946950912
10 14.5926504135 149.622894287 29.3342227936 5.84766244888 41.2392578125 240.636687756
11 3.90508031845 53.3474845886 492.712860107 44.7238998413 6.54337787628 601.232702732
12 11.1596031189 35.9479942322 190.731750488 114.190216064 6.04286956787 358.072433472
13 10.7832450867 40.3736457825 317.65536499 77.234046936 0.746406137943 446.792708933
14 15.1528778076 73.4733734131 13.8244781494 32.664478302 21.2957687378 156.41097641
15 9.75694942474 206.283828735 82.5913085938 71.3162231445 11.2805089951 381.228818893
16 15.6637659073 54.7341690063 141.065063477 7.75407171249 70.4347915649 289.651861668
17 8.87819766998 22.3151817322 49.5642738342 13.7726011276 7.07289838791 101.603152752
18 6.79013204575 22.1916294098 165.788513184 3.53474259377 17.7124652863 216.017482519
19 28.5362434387 11.6231565475 25.6954841614 1.1361079216 20.9693374634 87.9603295326
20 7.7124786377 11.3134231567 103.776367188 8.99368095398 2.38947987556 134.185429811
21 13.1900539398 19.5979919434 115.13621521 15.9367580414 2.4215028286 166.282521963
22 11.343834877 205.648223877 20.8805789948 23.6328411102 9.80379199982 271.309270859
23 16.5068721771 10.4440870285 82.6850967407 4.13965797424 4.40268993378 118.178403854
24 18.038312912 97.7183609009 154.177871704 111.429519653 23.6210975647 404.985162735
25 9.76899337769 26.6111545563 159.635116577 3.69771718979 64.338104248 264.051085949
26 6.11855459213 26.4100112915 435.002929688 118.586990356 34.0428161621 620.16130209
27 11.0803489685 102.809967041 11.92146492 118.898345947 34.4017677307 279.111894608
28 9.10174560547 8.88621997833 15.1332511902 26.6688728333 9.92617893219 69.7162685394
29 5.66953802109 149.944030762 248.841583252 2.12759613991 29.7782917023 436.361039877
30 12.9052629471 23.8197631836 8.43099975586 3.45653796196 72.6406555176 121.253219366
31 10.4267206192 18.5411491394 159.173080444 34.2062911987 28.4734287262 250.820670128
32 24.0691585541 51.1746559143 79.0422515869 10.6822090149 62.2327575684 227.201032639
33 18.1967601776 57.9455375671 83.7688903809 55.1583900452 4.29209852219 219.361676693
34 9.29942893982 81.100479126 89.6875 47.5161819458 88.7559509277 316.359540939
35 10.8228826523 97.03175354 453.136688232 5.80380439758 10.84678936 577.641918182
36 21.4685726166 57.9309158325 298.201751709 5.48412179947 38.9037284851 421.989090443
37 14.9870595932 99.2542419434 146.750778198 9.2744178772 13.4508066177 283.71730423
38 6.97922086716 169.901397705 31.128370285 40.0161514282 2.59292888641 250.618069172
39 7.9559044838 59.7129364014 33.6995620728 18.7674884796 28.3913955688 148.527287006
40 10.0094060898 22.058429718 1142.97851562 9.96306419373 23.8140201569 1208.82343578
41 11.3974733353 29.4578304291 69.0092163086 38.2444839478 27.2562084198 175.36521244
42 15.0604343414 47.4411354065 144.190994263 9.46560001373 34.7198944092 250.878058434
43 11.5210008621 170.503570557 28.9172897339 9.80007648468 42.7904090881 263.532346725
44 8.40588569641 91.8651351929 374.312103271 16.6317806244 0.98995923996 492.204864025
45 16.5871639252 106.202507019 230.682647705 65.7913131714 5.69114303589 424.954774857
46 9.55940341949 111.350730896 9.04644680023 33.7193832397 9.74722862244 173.423192978
47 17.6375102997 119.207397461 13.6779069901 2.38249158859 10.1683921814 163.073698521
48 11.5754127502 46.5596046448 144.787902832 35.8114318848 41.5422515869 280.276603699
49 13.1706266403 13.4096231461 79.6026306152 36.1369628906 45.7147674561 188.034610748
50 11.2688312531 89.3865356445 149.700149536 111.329467773 58.590637207 420.275621414

Table B.21: Full results for DARRTH in Tool Use Domain World 3

194

World 3 DARRTHConnect

Trial Object Time Subgoal 1 Subgoal 2 Subgoal 3 Subgoal 4 Total
1 6.31830215454 29.9770584106 14.556801796 0.854779303074 0.641179084778 52.348120749
2 5.35546970367 12.8878440857 287.896820068 9.81659317017 18.2631626129 334.219889641
3 10.4704217911 11.6491670609 89.1675415039 4.91392946243 23.171453476 139.372513294
4 6.33593654633 16.4113330841 30.739118576 16.5742053986 13.6530666351 83.7136602402
5 5.74918794632 41.0780525208 13.8825073242 68.1302108765 11.3777227402 140.217681408
6 6.65925264359 19.8991661072 78.1554870605 63.9911231995 7.58030128479 176.285330296
7 3.61024641991 21.1646251678 153.414001465 36.9319953918 8.40286064148 223.523729086
8 4.75511169434 25.3264827728 114.386856079 57.0791244507 37.4338150024 238.981389999
9 5.5899643898 85.7066802979 237.201049805 44.8885879517 23.9535388947 397.339821339
10 6.88067674637 109.807266235 23.8739280701 26.3838539124 8.65630817413 175.602033138
11 5.68321275711 60.418182373 39.9975776672 32.7177696228 61.6395874023 200.456329823
12 12.6772756577 85.7739562988 35.7159538269 22.759847641 68.6863708496 225.613404274
13 4.81549406052 23.2929439545 66.6019897461 76.5305480957 5.24829816818 176.489274025
14 5.24766397476 5.696352005 19.7186584473 3.00083041191 27.7948436737 61.4583485126
15 4.37740135193 3.52992486954 17.1635990143 13.227560997 2.81110453606 41.1095907688
16 4.28545999527 51.6308517456 37.0356559753 16.0953273773 8.24178123474 117.289076328
17 8.07359695435 66.4815750122 9.04209804535 5.89723110199 1.44529426098 90.9397953749
18 4.16209220886 107.11681366 29.4289321899 71.1009902954 7.52958917618 219.33841753
19 13.9263801575 113.951469421 107.58089447 36.9551277161 28.7166404724 301.130512238
20 9.03417682648 34.2395553589 11.2814226151 22.6888027191 140.117492676 217.361450195
21 5.80626153946 3.74549794197 22.588684082 25.456413269 13.9245271683 71.5213840008
22 6.11937952042 38.6085624695 24.785987854 22.5180969238 30.847120285 122.879147053
23 9.78820419312 33.8861083984 28.2545986176 2.06852221489 13.1613454819 87.1587789059
24 4.89494943619 6.26033687592 6.05459737778 12.467206955 27.8530902863 57.5301809311
25 6.18716049194 51.0528373718 12.6916313171 1.11204767227 11.437253952 82.4809308052
26 6.60920095444 32.7861747742 105.034698486 64.41796875 18.391872406 227.239915371
27 5.1724524498 29.1951351166 69.6720428467 52.0367507935 10.5354204178 166.611801624
28 3.44226789474 12.8302679062 103.307411194 22.3866386414 22.4833335876 164.449919224
29 5.27383422852 84.7227172852 36.9780349731 10.5937643051 35.5571861267 173.125536919
30 5.06947135925 61.5303535461 45.0382804871 18.8410377502 27.0653896332 157.544532776
31 8.72538566589 38.215587616 34.8237609863 234.289916992 18.5719738007 334.626625061
32 5.03977489471 18.8146934509 39.5308227539 38.0473518372 44.2943687439 145.727011681
33 10.9161863327 16.0610160828 32.5157737732 6.96833086014 17.8064155579 84.2677226067
34 5.42342710495 38.8842658997 78.8359069824 11.0998334885 9.61551856995 143.858952045
35 8.57485866547 43.2159881592 11.2930660248 16.490487248 44.9990653992 124.573465496
36 7.17452955246 23.6220207214 31.5759429932 7.55734729767 0.762651503086 70.6924920678
37 5.62911748886 38.6545448303 5.19581413269 4.22777366638 7.64607286453 61.3533229828
38 4.33323335648 47.4028015137 96.1017456055 111.455482483 21.6749229431 280.968185902
39 11.6670627594 7.06906938553 7.58625364304 4.88362312317 62.5526199341 93.7586288452
40 6.55490112305 15.416686058 52.4597892761 5.96877717972 77.9572906494 158.357444286
41 3.68283772469 43.0821914673 73.326385498 5.94779825211 77.8433609009 203.882573843
42 9.44822597504 58.6459922791 35.304725647 5.39638710022 18.3001308441 127.095461845
43 10.614780426 20.5740203857 190.541381836 0.980843484402 21.1529140472 243.863940179
44 6.3016076088 14.8238039017 30.4470481873 243.43586731 6.64205598831 301.650382996
45 9.00475120544 29.8349914551 18.8119926453 2.17339920998 15.0161504745 74.8412849903
46 4.72807788849 39.0589027405 18.5354290009 9.88052845001 58.9352836609 131.138221741
47 6.52924251556 6.62394189835 40.0198135376 5.81892728806 21.0217647552 80.0136899948
48 9.97854042053 109.077095032 142.020294189 50.3177108765 51.2555961609 362.649236679
49 14.159362793 8.89634799957 7.41119003296 1.87581825256 3.21600580215 35.5587248802
50 5.53671360016 3.09226870537 59.0564193726 11.1506748199 22.3433208466 101.179397345

Table B.22: Full results for DARRTHConnect in Tool Use Domain World 3

195

THIS PAGE INTENTIONALLY LEFT BLANK

196

Bibliography

[1] R. Alterovitz, T. Siméon, and K. Goldberg. The Stochastic Motion Roadmap: A
Sampling Framework for Planning with Markov Motion Uncertainty. In Robotics:
Science and Systems III, June 2007.

[2] J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez. Manipulation with
Multiple Action Types. In International Symposium on Experimental Robotics,
2012.

[3] J. Barry, L. P. Kaelbling, and Tomás Lozano-Pérez. A Hierarchical Approach
to Manipulation with Diverse Actions. In International Conference on Robotics
and Automation, 2013.

[4] D. Berenson. Constrained Manipulation Planning. PhD thesis, Carnegie Mellon
University, 2011.

[5] D. Berenson and S. S. Srinivasa. Probabilistically Complete Planning with End-
Effector Pose Constraints. In International Conference on Robotics and Automa-
tion, May 2010.

[6] V. Boor, M. H. Overmars, and A. F. van der Stappen. Gaussian Sampling for
Probabilistic Roadmap Planners. In International Conference on Robotics and
Automation, pages 1018–1023, 1999.

[7] R. C. Brost. Automatic Grasp Planning in the Presence of Uncertainty. Inter-
national Journal of Robotics Research, 7(1), 1988.

[8] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential Composition
of Dynamically Dexterous Robot Behaviors. International Journal of Robotics
Research, 18(6):534–555, June 1999.

[9] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman. Push Planning for Object
Placement on Cluttered Table Surfaces. In International Conference on Intelli-
gent Robots and Systems, 2011.

[10] I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library.
Robotics & Automation Magazine, 19(4):72–82, December 2012.

197

http://goldberg.berkeley.edu/pubs/rss-Alterovitz2007_RSS.pdf
http://goldberg.berkeley.edu/pubs/rss-Alterovitz2007_RSS.pdf
http://people.csail.mit.edu/jbarry/papers/iser2012.pdf
http://people.csail.mit.edu/jbarry/papers/iser2012.pdf
http://people.csail.mit.edu/jbarry/papers/jbarry_icra2013.pdf
http://people.csail.mit.edu/jbarry/papers/jbarry_icra2013.pdf
http://arc.wpi.edu/download.php?p=1
http://www.ri.cmu.edu/pub_files/2010/5/berensonICRA2010.pdf
http://www.ri.cmu.edu/pub_files/2010/5/berensonICRA2010.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2001/2001-36.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2001/2001-36.pdf
http://ijr.sagepub.com/content/7/1/3.short
http://ijr.sagepub.com/content/18/6/534.short
http://ijr.sagepub.com/content/18/6/534.short
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6094737
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6094737
http://ompl.kavrakilab.org

[11] M. Dogar and S. Srinivasa. Push-Grasping with Dexterous Hands: Mechanics
and a Method. In International Conference on Intelligent Robots and Systems,
2010.

[12] M. R. Dogar and S. S. Srinivasa. A Framework for Push-Grasping in Clutter. In
Robotics: Science and Systems, 2011.

[13] Willow Garage. PR2 Robot for Research and Innovation. http://www.

willowgarage.com/pages/pr2/overview.

[14] K. Hauser. Motion Planning for Legged and Humanoid Robots. PhD thesis,
Stanford University, 2008.

[15] K. Hauser and V. Ng-Throw-Hing. Randomized Multi-Modal Motion Planning
for a Humanoid Robot Manipulation Task. International Journal of Robotics
Research, 30(6), 2011.

[16] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The Bridge Test for Sampling Narrow
Passages with Probabilistic Roadmap Planners. In International Conference on
Robotics and Automation, pages 4420–4426, 2003.

[17] D. Hsu, J-C Latombe, and R. Motwani. Path Planning in Expansive Configura-
tion Spaces. International Journal of Computational Geometry & Applications,
9(4-5):495–512, 1999.

[18] W. Huang, E. Krotkov, and M. T. Mason. Impulsive Manipulation. In Interna-
tional Conference on Robotics and Automation, 1995.

[19] W. Huang and M. T. Mason. Experiments in Impulsive Manipulation. In Inter-
national Conference on Robotics and Automation, volume 2, 1998.

[20] S. Karaman and E. Frazzoli. Sampling-based Algorithms for Optimal Motion
Planning. International Journal of Robotics Research, 30:846–894, 2011.

[21] L. E. Kavraki, M. N. Kolountzakis, and J-C Latombe. Analysis of Probabilis-
tic Roadmaps for Path Planning. In International Conference on Robotics and
Automation, pages 3020–3026, 1996.

[22] L. E. Kavraki, P. Švestka, J-C Latombe, and M. H. Overmars. Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces. Trans-
actions on Robotics and Automation, 12(4):566–580, August 1996.

[23] J. J. Kuffner and S. M. LaValle. RRT-Connect: An Efficient Approach to Single-
Query Path Planning. In International Conference on Robotics and Automation,
2000.

[24] H. Kurniawati and D. Hsu. Workspace Importance Sampling for Probabilis-
tic Roadmap Planning. In International Conference on Intelligent Robots and
Systems, pages 1618–1623, 2004.

198

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5652970
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5652970
http://www.roboticsproceedings.org/rss07/p09.html
http://www.willowgarage.com/pages/pr2/overview
http://www.willowgarage.com/pages/pr2/overview
http://www.iu.edu/~motion/papers/thesis.pdf
http://ijr.sagepub.com/content/30/6/678.short
http://ijr.sagepub.com/content/30/6/678.short
http://robotics.stanford.edu/~latombe/cs326/2003/class6/bridge.pdf
http://robotics.stanford.edu/~latombe/cs326/2003/class6/bridge.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=619371&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=619371&tag=1
http://www.ri.cmu.edu/pub_files/pub2/huang_wesley_1995_1/huang_wesley_1995_1.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=677233
http://sertac.scripts.mit.edu/web/wp-content/papercite-data/pdf/karaman.frazzoli-ijrr11.pdf
http://sertac.scripts.mit.edu/web/wp-content/papercite-data/pdf/karaman.frazzoli-ijrr11.pdf
http://www.kavrakilab.org/sites/default/files/kavraki1996analy-prob-networks.pdf
http://www.kavrakilab.org/sites/default/files/kavraki1996analy-prob-networks.pdf
http://www.kavrakilab.org/sites/default/files/kavraki1996prm-high-dim-conf.pdf
http://www.kavrakilab.org/sites/default/files/kavraki1996prm-high-dim-conf.pdf
http://personalrobotics.ri.cmu.edu/courses/papers/Kuffner00-rrtconnect.pdf
http://personalrobotics.ri.cmu.edu/courses/papers/Kuffner00-rrtconnect.pdf
http://bigbird.comp.nus.edu.sg/pmwiki/farm/motion/uploads/Site/iros04.pdf
http://bigbird.comp.nus.edu.sg/pmwiki/farm/motion/uploads/Site/iros04.pdf

[25] H. Kurniawati and D. Hsu. Workspace-based Connectivity Oracle: An Adap-
tive Sampling Strategy for PRM Planning. In International Workshop on the
Algorithmic Foundations of Robotics, 2006.

[26] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive Path Deformation for
Nonholonomic Mobile Robots. Transactions on Robotics, 20(6):967–977, Decem-
ber 2004.

[27] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[28] S. M. LaValle and J. J. Kuffner Jr. Rapidly-Exploring Random Trees: Progress
and Prospects. In Algorithmic and Computational Robotics: New Directions,
pages 293–308, 2000.

[29] T. Lozano-Pérez. Spatial Planning: A Configuration Space Approach. Transac-
tions on Computers, 32(2), February 1983.

[30] T. Lozano-Pérez, J. L. Jones, E. Mazer, and P. A. O’Donnell. Handey: A Robot
Task Planner. MIT Press, Cambridge, MA, 1992.

[31] K. M. Lynch and M. T. Mason. Stable Pushing: Mechanics, Controllability, and
Planning. International Journal of Robotics Research, 15(6):533–556, December
1996.

[32] M. T. Mason. Manipulator Grasping and Pushing Operations. PhD thesis, MIT,
1982.

[33] M. T. Mason. Mechanics of Robotic Manipulation. MIT Press, Cambridge, MA,
August 2001.

[34] N. Melchior and R. Simmons. Particle RRT for Path Planning with Uncertainty.
In International Conference on Robotics and Automation, pages 1617–1624, April
2007.

[35] P. E. Missiuro and N. Roy. Adapting Probabilistic Roadmaps to Handle Un-
certain Maps. In International Conference on Robotics and Automation, pages
1261–1267, Orlando, FL, May 2006.

[36] K. Okada, A. Haneda, H. Nakai, M. Inaba, and H. Inoue. Environment Manipu-
lation Planner for Humanoid Robots Using Task Graph That Generates Action
Sequence. In International Conference on Intelligent Robots and Systems, 2004.

[37] J. Ota. Rearrangement of Multiple Movable Objects: Integration of global and
Local Planning Methodology. In International Conference on Robotics and Au-
tomation, volume 2, 2004.

[38] S. Prentice and N. Roy. The Belief Roadmap: Efficient Planning in Belief Space
by Factoring the Covariance. International Journal of Robotics Research, 28(11-
12), 2009.

199

http://www.wafr.org/wafr2006/papers/p37.pdf
http://www.wafr.org/wafr2006/papers/p37.pdf
http://homepages.laas.fr/florent/publi/03ieee-tra-submitted.pdf
http://homepages.laas.fr/florent/publi/03ieee-tra-submitted.pdf
http://planning.cs.uiuc.edu/
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01.pdf
http://lis.csail.mit.edu/pubs/tlp/spatial-planning.pdf
http://dl.acm.org/citation.cfm?id=130121
http://dl.acm.org/citation.cfm?id=130121
http://ijr.sagepub.com/content/15/6/533.short
http://ijr.sagepub.com/content/15/6/533.short
http://dspace.mit.edu/handle/1721.1/6853
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8580
http://cs.cmu.edu/afs/cs/user/reids/www/home/papers/ICRA07Melchior.pdf
http://people.csail.mit.edu/patrycja/icra2006.pdf
http://people.csail.mit.edu/patrycja/icra2006.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1389555
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1389555
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1389555
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=1308111&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Drearrangement+of+multiple+objects
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=1308111&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Drearrangement+of+multiple+objects
http://ijr.sagepub.com/content/28/11-12/1448
http://ijr.sagepub.com/content/28/11-12/1448

[39] S. Schaal and C. G. Atkeson. Open Loop Stable Control Strategies for Robot
Juggling. In International Conference on Robotics and Automation, volume 3,
pages 913–918, Atlanta, GA, May 1993.

[40] S. Schaal and C. G. Atkeson. Robot Juggling: Implementation of Memory-Based
Learning. Control Systems, 14(1):57–71, February 1994.

[41] J. Scholz, S. Chitta, B. Marthi, and M. Likhachev. Cart Pushing with a Mobile
Manipulation System: Towards Navigation with Moveable Objects. In Interna-
tional Conference on Robotics and Automation, Shanghai, China, May 2011.

[42] T. Senoo, A. Namiki, and M. Ishikawa. High-Speed Throwing Motion Based on
Kinetic Chain. In International Conference on Intelligent Robots and Systems,
pages 3206–3211, Nice, France, September 2008.

[43] T. Siméon, J-P Laumond, J. Cortés, and A. Sahbani. Manipulation Planning
with Probabilistic Roadmaps. International Journal of Robotics Research, 23(7-
8), 2004.

[44] S. S. Srinivasa, C. R. Baker, E. Sacks, G. B. Reshko, M. T. Mason, and M. A.
Erdmann. Experiments with Non-Holonomic Manipulation. In International
Conference on Robotics and Automation, 2002.

[45] M. Stilman. Task Constrained Motion Planning in Robot Joint Space. In Intel-
ligent Robots and Systems, 2007.

[46] M. Stilman and J. Kuffner. Navigation Among Movable Obstacles: Real-Time
Reasoning in Complex Environments. In HUMANOIDS, 2004.

[47] M. Stilman and J. Kuffner. Planning Among Movable Obstacles with Artificial
Constraints. International Journal of Robotics Research, 27(11-12), 2008.

[48] M. Stilman, J-U Schamburek, J. Kuffner, and T. Asfour. Manipulation Plan-
ning Among Movable Obstacles. In International Conference on Robotics and
Automation, 2007.

[49] J. Tan and X. Ning. Unified Model Approach for Planning and Control of Mo-
bile Manipulators. In International Conference on Robotics and Automation,
volume 3, pages 3145–3152, 2001.

[50] J. Tan and X. Ning. Integrated Sensing and Control of Mobile Manipulators.
In International Conference on Intelligent Robots and Systems, volume 2, pages
865–870, Maui, HI, October 2001.

[51] J. Tan, N. Xi, and Y. Wang. Integrated Task Planning and Control for Mobile
Manipulators. International Journal of Robotics Research, 22(5):337–354, May
2003.

200

http://pdf.aminer.org/000/354/796/open_loop_stable_control_strategies_for_robot_juggling.pdf
http://pdf.aminer.org/000/354/796/open_loop_stable_control_strategies_for_robot_juggling.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=257895
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=257895
http://www.cs.cmu.edu/afs/.cs.cmu.edu/Web/People/maxim/files/cartplanner_icra11.pdf
http://www.cs.cmu.edu/afs/.cs.cmu.edu/Web/People/maxim/files/cartplanner_icra11.pdf
http://www.k2.t.u-tokyo.ac.jp/members/senoo/paper/senoo_iros08.pdf
http://www.k2.t.u-tokyo.ac.jp/members/senoo/paper/senoo_iros08.pdf
http://ijr.sagepub.com/content/23/7-8/729.abstract
http://ijr.sagepub.com/content/23/7-8/729.abstract
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1014841
http://www.cc.gatech.edu/~mstilman/papers/stilman-IROS-07-TCRRT.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1442130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1442130
http://ijr.sagepub.com/content/27/11-12/1295.abstract
http://ijr.sagepub.com/content/27/11-12/1295.abstract
http://smartech.gatech.edu/bitstream/handle/1853/36482/stilman-schamburek-ICRA07.pdf
http://smartech.gatech.edu/bitstream/handle/1853/36482/stilman-schamburek-ICRA07.pdf
https://www2.lirmm.fr/lirmm/interne/BIBLI/CDROM/ROB/2001/ICRA%202001/PDFFILES/PAPERS/ICRA_PAPERS/J1042.pdf
https://www2.lirmm.fr/lirmm/interne/BIBLI/CDROM/ROB/2001/ICRA%202001/PDFFILES/PAPERS/ICRA_PAPERS/J1042.pdf
https://www2.lirmm.fr/lirmm/interne/BIBLI/CDROM/ROB/2001/IROS_2001/pdf/0461_tan.pdf
https://www2.lirmm.fr/lirmm/interne/BIBLI/CDROM/ROB/2002/ICRA_2002/pdffiles/PAPERS/061.PDF
https://www2.lirmm.fr/lirmm/interne/BIBLI/CDROM/ROB/2002/ICRA_2002/pdffiles/PAPERS/061.PDF

[52] J. van den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha. Path Plan-
ning among Movable Obstacles: A Probabilistically Complete Approach. In
International Workshop on Algorithmic Foundations of Robotics, 2008.

[53] S. Walker and J. K. Salisbury. Pushing Using Learned Manipulation Maps. In In-
ternational Conference on Robotics and Automation, pages 3808–3813, Pasadena,
CA, May 2008.

[54] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A Probabilistic
Roadmap Planner with Sampling on the Medial Axis of the Free Space. In
International Conference on Robotics and Automation, pages 1024–1031, 1999.

[55] Y. Yang and O. Brock. Adapting the Sampling Distribution in PRM Planners
Based on an Approximated Medial Axis. In International Conference on Robotics
and Automation, volume 5, pages 4405–4410, May 2004.

[56] Z. Yao and K. Gupta. Path Planning with General End Effector Constraints:
Using Task Space to Guide Configuration Space Search. In International Con-
ference on Intelligent Robots and Systems, pages 1875–1880, 2005.

201

http://www.springerlink.com/content/pq2k30qm36277422/
http://www.springerlink.com/content/pq2k30qm36277422/
https://www2.lirmm.fr/lirmm/interne/BIBLI/CDROM/ROB/2008/ICRA_2008/data/papers/1385.pdf
http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/Web/People/motionplanning/papers/sbp_papers/w/00772448.pdf
http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/Web/People/motionplanning/papers/sbp_papers/w/00772448.pdf
http://www-robotics.cs.umass.edu/Papers/maprm.pdf
http://www-robotics.cs.umass.edu/Papers/maprm.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1545305&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1545305&tag=1

	Introduction
	Problem Overview
	Approach
	Thesis Organization

	Background
	Configuration Space and Sampling-Based Search
	Rapidly-exploring Random Tree Algorithm
	General Conditions for Exponential Convergence
	Exponential Convergence in Holonomic Spaces
	The RRT Algorithm in Non-Holonomic Spaces
	RRTConnect Algorithm

	Related Work
	Non-Prehensile Manipulation
	Re-Grasping
	Navigation Among Movable Obstacles
	Sampling and Constrained Motion Planning
	Multi-Modal Planning

	Sampling-Based Algorithms for Diverse Action Manipulation
	Diverse Action Manipulation Problem
	Diverse Action Rapidly-exploring Random Tree Algorithm
	Motivating Example
	Overview
	Distance Function
	Empty Space Planner
	Projection Functions

	DARRTConnect Algorithm
	Motivation
	Algorithm

	A Hierarchical Approach to Diverse Action Manipulation
	Manipulation as Multi-Modal Planning
	MM-DAMA Problem
	Explicit Multi-Modal Planning

	DARRTH Algorithm
	Finding an Object Path
	Manipulation Primitive Subgoals
	DARRTH(Connect) Algorithm

	DARRT as a Multi-Modal Planner

	Diverse Action Manipulation Experiments
	Plate Domain
	Implementation Details
	Results

	Tool Use Domain
	Implementation Details
	Results

	Discussion
	Problem Difficulty
	Forward vs Bi-Directional Planners
	Flat vs Hierarchical Planners
	Reset Times

	Exponential Convergence of the Search Algorithms
	Exponential Convergence of the DARRT Algorithm
	DARRT Input
	DARRT Analysis

	Examples
	Preliminaries: Notation and Cross Product Spaces
	Point Rigid Transfer
	Disc Pushing
	In Defense of Projection Functions

	Exponential Convergence of DARRTH(Connect)

	Conclusion
	Summary of Contributions
	Future Work

	Proofs
	Tables
	Plate Domain
	Tool Use Domain

