

Fast Approximate Hierarchical Solutions of MDPs

Jenny Barry

Advisors: Leslie Kaelbling, Tomas Lozano-Perez MasterWorks 5/4/2009

The Problem

World Model: Hierarchical Markov Decision Processes (MDPs)

Markov Decision Process:

 $M = \{S, A, T, R, G\}$

S: The world is a finite number of states

A: Actions allow non-deterministic transitions among states

T: Function giving probability action transitions between two states

R: Each state has a reward associated with it

G: We must reach some goal state(s)

Solution: Policy giving action for each state maximizing expected reward

Hierarchical Markov Decision Process:

 $M = \{S, A, T, R\}$

S: Clusters of states (macro-states)

A: Macro actions between clusters

G: Clusters containing goal states

T: ?? R: ??

Solution: Hierarchical policy: Macro-level policy specifies next macrostate. Micro-level policy specifies how to *reach* next macro-state

Specifying MDPs:

Enumerated State MDPs

List out all states

Algorithm polynomial in number of states

Factored MDPs

Specify boolean state variables

 $n \text{ variables} = 2^n \text{ states}$

Algorithm polynomial in number of state variables

But! We know more about the structure

Results

Enumerated States

Domains:

Grid world: 1040 states, 4 actions

Factory: 1024 states, 10 actions
Discretized Mountain Care 1024

Discretized Mountain Car: 1024, 3 actions

Comparison Algorithms:

Value iteration: Optimal solution
HVI: Alternative hierarchical method

HDet: Our algorithm

	Grid World		Factory		Mountain Car	
Algorithm	Run Time (s)	Avg. Dev.	Run Time (s)	Avg. Dev.	Run Time (s)	Avg. Dev.
Value Iteration	20.46	0	25.22	0	83.00	0
HDet	1.41	0.48	2.58	0.49	25.79	4.14
HVI	10.66	0.84	40.72	0.62	78.94	12.94

Factored (Preliminary)

Coffee domain: 6 variables, 4 actions
Metric is accumulated reward
Tire domain: 12 variables, 14 actions
Metric is percent success

Domain	Without Clustering	With Clustering
Coffee	-1.71*	-1.85
Tire	35.8%	83.3%*

*Optimal solution

Objectives

Create a solver for a hierarchical MDP

Top-down

Efficient method for calculating transitions/rewards Fast, semi-accurate solution for non-primitive levels

Clustering Algorithm: Works with solver

Cluster "near" states

Efficient

Assure hierarchical policy does not strand states

Solver

Fast Upward Pass

Assume deterministic transitions Calculate "cost" of moving between each state C(i, j, a) = -R(i, j, a)/T(i, j, a)Solve using shortest path algorithm Cost between clusters = average cost

Downward Pass

Given policy, create "sub-MDP" from *i* to policy[*i*]
States in sub-MDP

All sub-states of *i*

All sub-states of policy[i] reachable in one transition from i

Goal states are states in policy[i]

Upper level: solve for policy using shortest path among clusters Primitive level: solve for policy using value iteration

Clustering

No "stranded" states
Bad Clustering:

Guarantee: If any state in cluster *i* can reach a state in cluster *j*, all states in cluster *i* can reach a state in cluster *j*

Enumerated States

Agglomerative: state begins as its own cluster Pre-process:

For each cluster add any states that
Transition into cluster, but not out
Are adjacent to the cluster in both
directions

Until done (maximum cluster size or number):

Compute cluster adjacency matrix
Find circuits in adjacency matrix
Cluster circuits

Example: Grid world

Factored

Divisive: All states start in same cluster

Cluster sets of states (fStates)

Rule: f_1 and f_2 can be clustered together if all states in f_1 can reach some state in f_2 and vice-versa

Operations:

Split cluster *C* on cluster *S* creates

$$C_{S} = C \cap S$$
$$C_{S} = C \setminus S$$

Insert cluster *N* into cluster *C*

For set S let $R_{\to S}$ be all states that can reach some state in S and $R_{\to S}$ be all states that can be reached by some state in S

$$C \leftarrow N = (C \cap R_{\rightarrow N} \cap R_{\leftarrow N}) \cup (N \cap R_{\rightarrow C} \cap R_{\leftarrow C})$$

Prune: Removes all empty and duplicate clusters

Until no more starting fStates exist:

Start fState s = new set of states with same transition probability to previous start state or goal

Find circuit *N* including *S*

Split each cluster *C* on *C*←*S* Prune