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Thesis Overview

“Monte Carlo” (MC) methods are nondeterministic algorithms for simulating various phenomena in the
physical and social sciences. In this study, we evaluated several MC methods for simulating a light particle
in a Lennard-Jones (LJ) fluid. We began this research in possession of a basic code that modeled the
fluid and light particle in a canonical ensemble. It used Metropolis sampling to equilibrate the fluid and
Path Integral Monte Carlo (PIMC) to sample the light particle. This method has been used successfully
to calculate positronium lifetimes in spherical and cylindrical pores, but, like all computer simulations, it
has its limitations. The canonical ensemble limits us to a fixed number of fluid atoms, making it difficult
to simulate a multi-phase system at coexistence, and Metropolis sampling allows us to simulate only one
temperature at a time.

Our first major modification to this program was to introduce an option to allow simulation of the fluid
within a grand canonical ensemble. Using the Widom Test Particle Insertion Method, we were able to
show that these grand canonical simulations agreed with the original canonical simulations for average
quantities of density and chemical potential. We then used the grand canonical ensemble simulation to
find a point on the phase coexistence curve for the fluid.

Metropolis sampling is inefficient at phase coexistence because the simulation is slow to overcome the free
energy barriers. Therefore, we next implemented a method that modifies Metropolis sampling by using a
weighting function to help the system explore the whole energy space. We were able to show that, given
the optimal weighting function, this “Multicanonical sampling” allows the system to reach every point
in the space with equal probability, sampling evenly even in systems with high free energy barriers.

The usefulness of Multicanonical sampling is limited by a fundamental ignorance of this optimal weighting
function. To combat this difficulty, we implemented Wang-Landau sampling, which constructs the density
of energy states as the simulation proceeds. The results of a Wang-Landau simulation can therefore be
used to find ensemble averages at any temperature. We were able to show that one Wang-Landau
simulation for the fluid could generate literature results that would require many different Metropolis
simulations.

We also implemented Wang-Landau for a light particle in a simple harmonic potential and obtained
results matching analytical calculations. The analytical calculation we used was specific to the Path
Integral approach, showing that our work agrees with the previous work in this field. In particular,
we found excellent agreement with the computational and analytical work of Vorontsov-Velaminov and
Lyubartsev [30].

We then extended these techniques to the combined system, simulating helium as a light particle in an ar-
gon LJ fluid. A comparison of classical Metropolis sampling, PIMC, and Quantum Wang-Landau showed
agreement between PIMC and Quantum Wang-Landau and classical sampling at high temperatures, but
only between Wang-Landau and PIMC at low temperatures. From this we conclude that helium must be
modeled as a quantum particle at low temperatures in this environment and that our different techniques
are consistent.

Finally, we report on efforts to benchmark the PIMC and Quantum Wang-Landau algorithms. We found
that, for any individual temperature, Quantum Wang-Landau is 100 to 500 times slower than PIMC.
Keeping in mind that we did not use a system that would be too inefficient for PIMC and that Wang-
Landau gives information about almost any temperature, while PIMC only gives information about one,
these are not unpromising results. Clearly, the next step is to choose a system that is time-consuming
for a standard PIMC algorithm to see if the Quantum Wang-Landau benchmark is even more favorable
in comparison.
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1 Introduction

“Monte Carlo” (MC) is a collection of computational methods that simulate complex statistical behaviors.
Radiation damage, the stock market, phase transitions in materials, and many other such problems have
all been the subjects of MC simulations [16].

Here we describe different sampling methods for a light particle in a fluid. In this context “light” means
that the particle’s state can only be accurately described with quantum mechanics. Specifically, for this
project, our model of the light particle will correspond to a helium atom in a system of heavier atoms.
Our goal was to allow efficient sampling of this system under as many different conditions as possible.

We model both the light particle and an environment, a Lennard-Jones (LJ) fluid. The LJ fluid has been
the focus of a number of numerical studies [[15], [29], [34], [35]], as it is a realistic model of atomic fluids.
Many groups, including our own, have written codes to simulate a LJ fluid in a canonical ensemble using
a basic Metropolis sampling algorithm [[6], [10]]. However, this type of simulation is slow to converge
under certain conditions, such as a high-density fluid or a fluid at a phase coexistence point. In this
thesis, we study other methods of simulating a LJ fluid in an attempt to circumvent these problems.

Physicists need simulation techniques that are consistent with not just classical, but also quantum me-
chanical behavior. For example, we might want to use a simulation to explore such quantum properties
as tunneling and light particle lifetimes that cannot be modeled accurately using classical methods. The
problem of simulating a quantum particle using MC methods has been widely studied [[22], [23], [24],
[26], [30]]. In previous work, this lab has used the Path Integral Monte Carlo (PIMC) method, which
treats each quantum particle as a “polymer” made up of a number of “beads” [[6], [7], [8], [10], [17], [18],
[36]]. Using this method, modeling “one” particle actually requires modeling anywhere from five to two
thousand beads. Because the basic accept/reject MC algorithm (described in Section 3.3.1) is somewhat
computationally inefficient, many programs use a modified version of this algorithm, such as threading
or staging [[9], [26]]. Our lab has a history of modeling positronium (the bound state of a positron and
electron) in a fluid using PIMC with the threading technique and has used these simulations to success-
fully calculate the lifetime of positronium in spherical and cylindrical pores [[6], [10], [36]]. However, even
this algorithm is inefficient in certain systems. For example it may take prohibitively many time steps to
converge in a system with a light particle made up of a large number of beads, a dense fluid and/or in a
large pore. Thus, in my thesis work, we explore other sampling techniques that are designed to overcome
these limitations and allow for a simulation that can work at a range of temperatures, fluid densities and,
perhaps, pore sizes.

In the course of developing our research codes, we have written programs that allow us to simulate the
fluid and the light particle, separately or together, using a variety of techniques, including Metropolis,
Multicanonical, and Wang-Landau sampling. This ability to simulate the classical and quantum parts of
our system individually allows us to use our codes, not only to study a light particle in a fluid, but also
to study certain properties of the fluid or light particle alone. For example, in this thesis we begin to use
our techniques to study a fluid at a phase coexistence point. This work could be expanded in the future
to trace out the fluid coexistence curve for a LJ fluid or even more interestingly, isotherms for such a
fluid absorbed into pores in a model of a porous solid. In addition, in this thesis we test our techniques
by simulating a quantum particle in a simple harmonic potential. Were we to change that potential to
the appropriate cubic or quartic form, we might be able to use the new techniques to study tunneling.
Whether for the classical or the light particle or both, our algorithms (which are all “modern” in the
sense that they have been developed in the last decade or two) allow the system to explore regions that
are thermodynamically important, but might not be visible in a reasonable amount of computation time
with more conventional MC methods.

The most prevalent application of this work is to the study of positronium (the bound state of a positron
and an electron) in a fluid. Although our light particle is currently being modeled as helium, we could
turn it into positronium by decreasing the mass of the particle, increasing the number of beads and using
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the appropriate interaction potential with the fluid to give us a simulation similar to that of Miller and
Reese [[22], [23]]. We could then use the simulation to investigate such properties as bubble formation and
positronium lifetimes in a fluid [[21], [23]]. Knowledge of positron or positronium lifetimes is important in
many fields, including industry and medicine. PET (Positron Emission Tomography) scans, for example,
which are used to detect brain tumors, rely on the annihilation of positrons. We could also use positron
lifetimes to explore defects in nickel [28]. If we filled nickel with a gas, the lifetime of a positron in a void
in the metal would be correlated with the size and shape of the cavity and we could use this technique
to explore the integrity of the nickel.

Previously in this field there has been concentration on sampling techniques for a LJ fluid alone. Wilding
pioneered the technique of combining histogram reweighting and Multicanonical sampling to trace the
phase coexistence curve [35]. Landau and Wang introduced what is now known as the Wang-Landau
method as a technique for constructing the density of states for an Ising model [32]. In 2002, Shell et al
[27] extended this technique to continuous systems and tested it on a LJ fluid.

Less work has been done on extending more modern MC sampling techniques to quantum particles.
Vorontsov-Velyaminov and Lyubartsev [30] used the Wang-Landau technique for a quantum particle in
a simple harmonic potential. There appears to have been little investigation into more complicated
potentials. To date, no one has tried to use these techniques for sampling a system comprised of a
quantum particle and a LJ fluid as we do in this thesis.

This thesis is arranged in five more sections. We discuss the theory of basic MC sampling and present an
overview of the necessary quantum mechanics and thermodynamics in the Theory section. We then treat
specific MC sampling algorithms for both the classical and the quantum particles in the Methods section.
In the Results and Discussion section, we first present results for the fluid and light particle individually,
including showing agreement with analytical or literature values where appropriate. We then explain our
results from the combined system and show benchmarks to evaluate the computational efficiency of our
algorithms.

For the Theory and Methods portions of this thesis, we are presenting computational algorithms that may
be considered “common knowledge” to a computational physicist. As a result, we do not give specific
citations for every derivation, but, rather, at the end of each subsection refer the reader to a list of
references.

2 Theory

We begin this section with an overview of the theory behind MC algorithms and then present a short
review of the necessary thermodynamics and quantum mechanics. In Section 3 we will tie these together
and give algorithms for classical and quantum Monte Carlo.

2.1 Monte Carlo Sampling Algorithms

All of the simulations we discuss in this thesis can be said to use Monte Carlo sampling algorithms. Monte
Carlo algorithms are nondeterministic methods for simulating various phenomena and they are widely
applied. For example, there is a rich history behind using Monte Carlo algorithms to calculate the value
of π [2]. The method presented below [1], whimsically known as “integration by darts,” is intended to
introduce the reader to the concept of using probabilistic techniques to construct an estimate of a result
we may not be able to obtain analytically.

Consider a unit circle inscribed in a square as shown in Figure 2.1. To calculate π, we “throw darts” at
this square and count the number that fall within the unit circle. In other (more mathematical) words, we
randomly generate τ pairs of numbers where each member of the pair is chosen randomly to fall between

6



Figure 2.1: We count the number of darts that “hit” within the first quadrant of the unit circle and use
this value to estimate π.

0 and 1, and count the number τhit that are less than a distance of one away from the origin. Clearly, if
we repeat this process long enough

π ≈ 4×Area of circle in first quadrant =
4τhit

τ
. (1)

Viola! A Monte Carlo method for computing the value of π. Of course, this is not the most efficient
method for calculating π (even after ten million repetitions the answer is only exact to two decimal places
[1]), but it is a MC method.

In general, however, we need not depend on sampling in such a blind fashion. In many calculations,
including those we are going to be using in this thesis, we are interested in functions that are negligible
in all but a small fraction of the total space. Basically, instead of sampling randomly we would like
to sample according to some probability distribution. Focusing on only the “important” regions of the
space (if known) is a way of reducing the variance of an estimation technique; it is known as “importance
sampling.”

Notice that in calculating π above, we were calculating an average, of sorts. Now consider a general
average of the form:

< A >=
∫
A(x)ρ(x)dx∫
ρ(x)dx

. (2)

The probability of finding the system around x is given by the probability density

W (x) =
ρ(x)∫
ρ(x)dx

. (3)

Now if we were somehow able to generate configurations {xi} according to W (we will address exactly
how we do that in a moment), we would have a distribution such that we are sampling much more often
in those areas of the space in which the function is likely to be non-negligible. If we sample a total of n
points, the average is:

< A >= lim
n→∞

1
n

n∑
i

A(xi) (4)

Notice that we were able to calculate < A > without explicitly calculating
∫
ρ(x)dx. This will be very

important later.

Now we come to the question of how we generate points according to W . We first assume the system
can be set up as an “irreducible Markov chain.” A Markov chain is a sequence of trials that fulfills two
conditions: (1) the outcome of each trial belongs to a finite set of possible outcomes (the “state space”),
and (2) the outcome of each trial depends only on the outcome of the trial immediately preceding it [1].
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A Markov chain is considered “irreducible” (or “ergodic”) if every state in the chain can eventually be
reached from every other state. If we have a system that satisfies these requirements, we can use an
“accept/reject” method known as a Metropolis method to calculate points distributed according to W .
Suppose we start with the system in state o and randomly generate the next possible state n. We need
a criterion that determines whether we transition to (“accept”) n or stay in o (thereby “rejecting” n).
After a large number of trials, we want the probability of finding the system in state n to be proportional
to W (n).

Let the transition probability from o to n be denoted by π(o → n). Once we reach an equilibrium
distribution, we do not want π(o→ n) to destroy that distribution. Therefore, in equilibrium, the average
rate of transitions into n must equal the average rate of transitions out of n (the balance condition). This
“balance” condition is sufficient, but most working algorithms rely on the stronger “detailed balance”
condition [13] and thus we use that here. We let the number of moves from n to o be equal to the number
of moves from o to n:

W (o)π(o→ n) = W (n)π(n→ o). (5)

Now we need to construct π(o→ n). We let

π(o→ n) = α(o→ n)× acc(o→ n) (6)

where acc(o → n) is the probability that we accept a trial move from o to n and α can be chosen to
be any function such that α(o → n) = α(n → o) (when writing these formulas in matrix form, α is a
symmetric matrix). Since α is symmetric, we can substitute equation (6) for π in (5) and cancel the α
terms:

W (o)acc(o→ n) = W (n)acc(n→ o). (7)

Therefore:
acc(o→ n)
acc(n→ o)

=
W (n)
W (o)

. (8)

While infinitely many choices of acc(o → n) satisfy equation (8), the choice made for the Metropolis
algorithm is [13]:

acc(o→ n) =

{
W (n)
W (o) W (n) < W (o)

1 W (n) ≥W (o).
(9)

To decide whether to accept or reject a trial move, we first compute W (n)
W (o) . If this is greater than or equal

to one, we automatically accept the move. Otherwise, we generate a random number between 0 and 1.
If this number is less than W (n)

W (o) , we accept the move, if not, we reject it. This is the basic Metropolis
sampling algorithm and will form the foundation for many of the sampling techniques we use.

References for this section: Allen and Tildesley Ch. 4 [1], Frenkel and Smit Ch. 3 [13], Gould et. al
Ch. 11 and 16 [14], Kalos and Whitlock [16]

2.2 Random Number Generator Tests

From the last section it is clear that random numbers are extremely important to Monte Carlo simulations
and thus we need a good pseudo-random number generator. The question is then, of course, what do we
mean by “good”? The definition of a “good” generator is going to depend on the application, but for the
purposes of this research, there are a number of tests we can use to determine the properties of a random
number generator. If our generator passes these tests, described below, we can be fairly sure that we are
getting an adequately random distribution of numbers.

2.2.1 Periodicity Test

The first test we do is a test for the period of the random number generator. If the period is shorter than
the length of our run, the generator could potentially cause problems. This test is easy to implement;
we simply plot a random walk from the origin using the random number generator. When we reach the
period of the random number generator, the plot will start to repeat itself.
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2.2.2 Uniformity Test

It is also of vital importance to us that the random number generator generate all machine representable
numbers between 0 and 1 with equal probability. We can test for uniformity simply by creating a
histogram of how often numbers fall within a certain interval. If the histogram is flat, the generator is
uniform. That brings up the question of how flat is “flat,” which leads us to our next test.

2.2.3 Chi-Square Test

The Chi-Square Test tells us whether the distribution of numbers into the histogram bins in the “Uni-
formity Test” is consistent with the laws of statistics. If we distribute the numbers into M bins, yi is the
number in each bin and Ei is the expected number in each bin, then the chi-square statistic is

χ2 =
M∑
i=1

(yi − Ei)2

yi
. (10)

In general each of the terms in Equation (10) should be of order 1. Thus to pass this test, χ2 should be
of the same order as M . Clearly, a smaller χ2 is better, but a χ2 of zero or very nearly zero is actually
probably indicative of a short period. In other words, we are seeing such a low χ2 because, if we are
generating N random numbers, N is either very close to a multiple of the period of the generator or
(more likely) N is much larger than the period of the generator.

2.2.4 Hidden Correlations Test

The last property we check for is hidden-correlations. We do not want k successive random numbers to
be correlated in any way. The easiest way to check for these “hidden correlations” is simply to plot xi+k

against xi. If there is an obvious pattern to the plot, there is probably something wrong with the random
number generator.

References for this section: Gould et al Ch. 7 [14]

2.3 Thermodynamics Review

In this section, we briefly review the two thermodynamic ensembles we are interested in simulating in
this thesis.

2.3.1 Canonical Ensemble

We begin with the canonical ensemble. Suppose we want the average of an observable A and, for the
moment, that we can describe the system using classical mechanics (we will address quantum mechanics
later in this thesis). The partition function for a canonical ensemble of N particles is

Q =
1

Λ3NN !

∫
exp

(
−H(rN ,pN )

kBT

)
drNdpN , (11)

where Λ is the thermal de Broglie wavelength
√

h2

2πmkBT , H(rN,pN) is the Hamiltonian of the system,
kB is the Boltzmann constant, and T is the temperature. The average value of an observable in the
system < A > is then

< A >=
∫
A(rN ,pN ) exp(−βH(rN ,pN ))drNdpN∫

exp(−βH(rN ,pN ))drNdpN
(12)

where β = 1/(kBT ). Notice that this average is in a form to which we could easily apply the Metropolis
algorithm. From equation (12) the probability density of finding configuration rN and momenta pN for
the canonical ensemble is clearly

WN,V,T (rN ,pN ) =
exp(−βH(rN ,pN ))∫

exp(−βH(rN ,pN ))drNdpN
. (13)
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As a point of interest, notice that if we can split the Hamiltonian into two pieces, a kinetic energy piece
κ(pN ) that depends only on momentum and a potential U(rN ) that depends only on position:

H(rN ,pN ) = κ(pN ) + U(rN ) (14)

our probability distribution and partition function will likewise “split”:

WN,V,T (rN ,pN ) =
(

exp(−βκ(pN ))∫
exp(−βκ(pN ))dpN

)(
exp(−βU(rN ))∫

exp(−βU(rN ))drN )

)
(15)

and

Q =
1

Λ3NN !

(∫
exp

(
−κ(pN )
kBT

)
dpN

)(∫
exp

(
−U(rN )
kBT

)
drN

)
. (16)

If we have an ideal gas (U = 0) then the potential energy parts of Q and W vanish. Therefore, if we are
modeling a fluid as a system of particles with the kinetic energy of an ideal gas, but also some “excess”
potential that depends only on position (pair interactions for example), we can write the probability
distribution and partition function for that system as

WN,V,T (rN ,pN ) = WidealWexcess (17)

and
Q = QidealQexcess. (18)

where Wideal is the probability distribution for an ideal gas and Qideal is the partition function for an
ideal gas. Since both of these quantities can be solved for analytically, that leaves us with only the task
of finding the “excess” quantities. We will discuss in the Methods section how we use the Metropolis
algorithm to do this.

References for this section: Allen Tildesley Ch. 4 [1], Frenkel and Smit Ch. 3 [13], McQuarrie Ch.
3 [20]

2.3.2 Grand Canonical Ensemble

In a simulation of the grand-canonical ensemble, we hold chemical potential µ, volume V , and temperature
T fixed, but allow the number of particles N to change. The chemical potential is the derivative of the
Helmholtz free energy F with respect to particle number when we hold V and T constant:

µ =
(
dF

dN

)
V,T

. (19)

Recall that Helmholtz free energy is defined as

F = U − TS (20)

where U is the internal energy of the system, T is the temperature and S is the entropy. Basically, µ is
the amount by which the free energy will change if we add another particle to the system while holding
the volume and temperature constant. In other words, the chemical potential is how much a system
“wants” more particles. Note that if we have a fluid in phase coexistence, the chemical potential must
be the same for both phases. Were it not, one phase would “want” particles more and the particles
would diffuse to that phase until the chemical potentials equilized. Thus equal chemical potentials are a
stability criterion for phase coexistence.

The complete grand canonical partition function, given a hamiltonian H(rN ,pN ) is [20]

Qµ,V,T =
∞∑

N=0

1
N !Λ3N

exp(βµN)
∫

exp(−βH(rN ,pN ))drNdpN . (21)
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where N indexes the number of particles. In our simulation N will vary in a manner described in Section
3.2.2. We will not derive equation (21) here, but we will give an idea of how it might be derived by
deriving a simpler (and more applicable to this thesis) case.

For this derivation, we first assume that when adding and removing particles, we are actually just ex-
changing particles with a reservoir of an ideal gas. We assume that in our subsystem of interest we have
particles with the kinetic energy of an ideal gas interacting via a potential U(rN ) that is not dependent
on momentum.

First, just consider a system of N such identical atoms. The partition function is

Q(N,V, T ) =
1

Λ3NN !

∫ L

0

· · ·
∫ L

0

exp(−βU(rN )drN . (22)

If we let s represent r scaled by L equation (22) becomes

Q(N,V, T ) =
V N

Λ3NN !

∫ 1

0

· · ·
∫ 1

0

exp(−βU(sN ;L)dsN (23)

where U(sN ;L) indicates that U depends on the real rather than the scaled distances. The Helmholtz
free energy is

F (N,V, T ) = −kBT lnQ

= −kBT ln
(

V N

Λ3NN !

)
− kBT ln

(∫
exp(−βU(sN ;L))dsN

)
= F id(N,V, T ) + F ex(N,V, T ). (24)

As shown in the last line of equation (24), the free energy can be written as the free energy of an ideal gas
plus an excess free energy. Thus assume the system is separated by a piston from an ideal gas reservoir.
The total volume of the system plus the reservoir is held at V0 and there are a total of M particles
(see Figure 2.2). In other words, we have M − N ideal gas molecules in a volume of V0 − V . We take
the product of the partition function of our system and that of the ideal gas to find the total partition
function of the ideal gas plus the reservoir

Q(N,M, V, V0, T ) =
V N (V0 − V )M−N

Λ3MN !(M −N)!

∫
dsM−N

∫
exp(−βU(sN ;L))dsN . (25)

Note that the factor
∫
dsM−N is equal to unity and that we have assumed the thermal wavelength of the

ideal gas is also equal to Λ.

Now we allow the two systems to exchange particles. Basically, we assume that the particles are identical,
but inside the volume V they interact with one another and outside they do not. Thus a transfer from a
coordinate outside to a coordinate inside changes the potential energy from U(sN ;L) to U(sN+1;L). The
partition function taking into account all possible distributions of the M particles over the two volumes
is

Q(M,V, V0, T ) =
M∑

N=0

Q(N,M, V, V0, T ) =
M∑

N=0

V N (V ′)M−N

N !(M −N)!Λ3NΛ3(M−N)

∫
exp(−βU(sN ;L))dsN .

(26)
Using the definition of µ from equation (19) and that of F id from equation (24), we find that for an ideal
gas

µid = kBT ln(Λ3ρ). (27)

We define

eCM = Λ3M MM

V M
0

= Λ3MρM = eβµM . (28)

11



Figure 2.2: We model the grand canonical ensemble as applying to an “interacting” gas of N particles
(where N is variable) in a volume V that can exchange particles with an ideal gas. The total volume of
the ideal plus interacting gas is V0 and the total number of particles is M .

Using eCM , we can rewrite Q as

Q(M,V, V0, T ) = e−CM

∑
N

V N (V0 − V )M−N/V M
0

(N !(M −N)!/MM )(Λ3NΛ3(M−N)/Λ3M )

∫
exp(−βU(sN ;L))dsN . (29)

Thus if we take the limit that the ideal gas is much larger than the interacting one (M → ∞, V ′ →
∞, (M/V ′) → ρ), we come up with an expression for Q(µ, V, T )

Q(M,V, V0, T ) = e−CM

∑
N

V NV M−N
0 /V M

0

N !(MM−N/MM )

∫
exp(−βU(sN ;L))dsN (30)

= e−CM

∑
N

V NMNΛ3N

N !V N
0 Λ3N

∫
exp(−βU(sN ;L))dsN (31)

= e−CM

∑
N

V N

N !Λ3N
eβµN

∫
exp(−βU(sN ;L))dsN (32)

= Q(µ, V, T )e−CM (33)

The only worrisome part of this derivation is the inclusion of the extra e−CM term. The argument of
the exponent represents the free energy of the total system (V0 in its entirety). If we always consider a
system where M is extremely large (as we are doing), this term does not affect the physics in any way as
it will be the same for any system we are studying and we drop it. Thus the partition function we use
for this system is

Q(µ, V, T ) =
∞∑

N=0

exp(βµN)V N

Λ3NN !

∫
exp(−βU(sN ;L))dsN . (34)

From this partition function, we can calculate the probability density for having N particles in the
configuration sN :

Wµ,V,T (sN , N) ∝ exp(βµN)V N

Λ3NN !
exp(−βU(sN ;L)). (35)

From this probability distribution, the average value of an observable in this system is

< A >=
∑

N

∫
A(rN )Wµ,V,T (rN , N)drN∑

N

∫
Wµ,V,T (rN , N)drN

. (36)

12



Another quantity useful to introduce here is the activity z defined as

z =
exp(βµ)

Λ3
. (37)

In chemistry and physics, the activity can tell us something about the partial pressure of a gas. At low
pressure, the activity is equal to the ratio of the partial pressure of the gas to the standard pressure.
Thus in some ways activity is a measure of how “close” our gas is to an ideal gas. In practical terms,
using z instead of µ makes the mathematics slightly simpler and allows us to use units in which Λ = 1.
In terms of z the probability density is

Wµ,V,T (sN , N) =
(zV )N

N !
exp(−βU(sN )). (38)

Notice that there is no dependence on Λ in this expression.

To calculate z without involving Λ look again at equation (24). Since µ = dF/dN , it is clear that at
large N , we can write the chemical potential as

µ = −kBT ln
(
QN+1

QN

)
. (39)

Substituting for Q and solving gives

µ = −kBT ln
(
V/Λ3

N + 1

)
− kBT ln

(∫
exp(−βU(sN+1))dsN∫
exp(−βU(sN ))dsN

)
(40)

= µideal + µexcess

Using this expression for µ in equation (37) we find

z = exp(βµexcess)
exp

(
ln
[

(N+1)Λ3

V

])
Λ3

(41)

=
(N + 1) exp(βµexcess)

V

Thus z has no dependence on the thermal de Broglie wavelength and we can calculate it either from
knowledge of the excess chemical potential and the volume of the system or from the excess chemical
potential and the ideal chemical potential expressed in a units system where Λ = 1.

We will explain how to use Metropolis sampling with these two ensembles in the Methods section.

References for this section: Allen and Tildesley Ch. 4 [1], Frenkel and Smit Ch. 5 [13], McQuarrie
Ch. 3 [20]

2.4 Quantum Mechanics Review

Here we present a brief overview of a few topics in quantum mechanics that are relevant to our simulations.

In quantum mechanics, the expected value < Â > of an observable Â is given as [5]

< Â >= Tr(Ŵ Â) (42)

where Ŵ is the density operator for the system. Recall that the density operator Ŵ is defined as a
positive, self-adjoint operator. Here we will usually use the coordinate representation of the density
operator:

W (r, r′, β) =< r|Ŵ |r′ >=
∑

n

ψ∗n(r)Ŵψn(r′) (43)
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where the ψn are a complete set of quantum states.

For the canonical ensemble (and we always simulate our light particle in a canonical ensemble), the
quantum mechanical density operator is

Ŵ = exp(−βĤ) (44)

where Ĥ is the Hamiltonian operator for the system.

In this thesis, we use a discretization of the path intregral form of the density operator for our numerical
calculations. We begin with the partition function. In quantum statistical mechanics, rather than having
the trace of the density operator equal to unity as is often the case, the trace is instead interpreted as
the partition function of the system. To obtain the trace of the density operator (and hence the partition
function), we set r equal to r′ in equation (43) and integrate over the coordinate

QNV T =
∫ ∑

n

ψ∗n(r)Ŵψn(r)dr. (45)

This is not an easy partition function with which to work since, except for specific, special cases of Ĥ,
we have no easy way of doing the integral in equation (45). We attempt to put it into a more tractable
form for approximation by breaking the exponent into P parts:

Q1V T =
∫
< r1|e

−βĤ
P ...e

−βĤ
P ...e

−βĤ
P |r1 > dr. (46)

Note that equation (46) is written just for N = 1 particles. Generalization is possible, but only the
N = 1 case is relevant to this thesis so we will concentrate on that. If we insert the identity in the form∫
|r >< r|dr between each exponent in equation (46), our expression becomes

Q1V T =
∫
< r1|e

−βĤ
P |r2 >< r2|e

−βĤ
P |r3 > ... < rP|e

−βĤ
P |r1 > dr1dr2...drP (47)

which we can simplify to

Q1V T =
∫
W (r1, r2, β/P )W (r2, r3, β/P )...W (rP, r1, β/P )dr1dr2...drP. (48)

At first glance this expression may seem anything but “more tractable.” However, we now have P different
density matrices all corresponding to lower β (ie, higher temperature) than the original. At sufficiently
large P , and therefore high temperature, we can use the approximation1

W (ra, rb, β/P ) ≈Wfree(ra, rb, β/P ) exp
(
− β

2P
(U(ra) + U(rb))

)
(49)

where U(ra) is the classical potential energy and Ŵfree is coordinate representation of the density matrix
for a free particle

Wfree(ra, rb, β/P ) =
(

Pm

2πβh̄2

) 3
2

exp
(
− Pm

2βh̄2 r
2
ab

)
. (50)

1A short derivation of this approximation [25]. We begin with the identity:

e−τ(A+B) = e−τU/2e−τKe−τU/2 + O(τ3).

Then
W (r, r′; τ) =< r|e−τ(U+K)|r′ >=< r|e−τK |r′ > e−τ/2(U(r)+U(r′)).

The first term is just Wfree(r, r
′; τ).
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where r2ab = |ra − rb|. We can now write the full expression for Q1V T as

Q1V T =
(

Pm

2πβh̄2

) 3P
2
∫

exp
(
− Pm

2βh̄2 (r212 + r323 + ...+ r2P1)
)

exp
(
− β
P

(U(r1)+ (51)

U(r2) + ...+ U(rP))
)
dr1...drP.

To make this slightly clearer, we rewrite Q1V T as

Q1V T =
∫

exp(−βV (r))dr1...drP (52)

and W in the coordinate representation as

W (r) = exp(−βV (r)) (53)

where V is given by

V (r) =
1
P
U(r) + κ(r). (54)

Here U(r) is the classical potential and κ(r) can be written as

κ(r) =
(

Pm

2β2h̄2

)
(|r12|2 + |r23|2 + ....+ |rP1|2) (55)

=
(

Pm

2β2h̄2

) P∑
a=1

|ra − ra+1|2. (56)

where rP+1 = r1. Notice that equation (56) appears similar to the harmonic oscillator potential; this is
a point we will make great use of in the Methods section when we fully explain how to use Monte Carlo
methods to equilibrate quantum particles.

References for this section: Allen and Tildesley Ch. 10 [1], Boccio Ch. 6 [5]

We now have all the pieces we need to develop sampling algorithms for our system. In the next section
we put these pieces together to describe our various simulation techniques.

3 Methods

In this section we discuss the application of the theory to actual sampling techniques. We give details of
our fluid simulation and of the different sampling methods we have employed.

3.1 Fluid Simulation

We simulate an argon fluid of temperature T and volume V . We assume a kinetic energy whose thermo-
dynamic average value is 3

2NkBT and a pair-pair potential, known as the Lennard-Jones potential

ULJ(r) = 4ε
((σ

r

)12

−
(σ
r

)6
)
. (57)

A diagram of this potential is shown in Figure 3.1. Clearly at large r, this potential is proportional to
r−6; at this range all we are modeling is the attractive dipole-induced dipole (London dispersion) force
between the molecules2. The exact form of the non-assymptotic behavior, including the repulsion term,

2An easy way to see that the dipole-induced dipole potential goes as r−6 is that for a dipole E ∝ r−3. Then

< U >=
1

2

∫
all space

E2dτ ∝ r−6.
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Figure 3.1: The Lennard-Jones potential. The parameters ε and σ are marked on the diagram.

however, is empirical. The parameters ε and σ are specific to the fluid(s) being modeled, where ε is the
depth of the well and σ is the hard sphere diameter (also known as the van der Waals Radius). For argon,
ε = 3.794 · 10−4 au and σ = 6.433 au. We use both atomic units and reduced units in this thesis; for a
full discussion, see Appendix A. For the parameters used during simulation, see the modules FLInfo.f95
and LPInfo.f95 in Appendices B.1 and B.2 respectively.

In order to speed the simulation and to work sensibly with a periodic boundary condition, we also use a
cutoff of rcut = 2.5σ, giving us a potential energy for the entire fluid of

Ufluid =
N∑

i=1

N∑
j>i

4ε

{ (
σ

rij

)12

−
(

σ
rij

)6

rij ≤ rcut

0 rij > rcut

(58)

If we can approximate the structure of the fluid for r > rcut, we can correct for this cutoff later by
adding a correction utail to the calculated energy. In this thesis, for utail we use the simplest possible
approximation, given, for each individual particle in the fluid, by

utail =
1
2
4πρ

∫ ∞

rcut

r2U(r)dr (59)

=
8
3
πεσ3ρ

(
1
3

(
σ

rcut

)9

−
(

σ

rcut

)3
)

where ρ is the number density of the fluid.

We can also calculate the pressure of the fluid during the simulation by using the virial. The pressure P
of the fluid is given by

P =
ρ

β
+
vir

V
(60)

where β = 1/kBT and vir is the virial defined by

vir =
1
3

∑
i

∑
j>i

f(rij) · rij . (61)
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Here
f(rij) = − dU

drij
. (62)

The tail correction to the pressure is [13]

P tail =
16
3
πρ2εσ3

(
2
3

(
σ

rcut

)9

−
(

σ

rcut

)3
)
. (63)

Thus equations (60)-(63) give us a way of sampling the pressure during the simulation.

We simulate the fluid as a bulk and hence we use periodic boundary conditions. In other words, we take
a cubic cell and assume that the cell repeats itself infinitely. However, in computing the potential, we
use the minimum image convention [1] that we only consider the potential from the closest “image” of a
given atom. Since we are using a truncated potential, it is clear that so long as our cutoff radius is less
than half the box size, the minimum image convention is a consistent method for obtaining the properties
of a bulk.

In the next sections we discuss different methods for sampling the fluid.

References for this section: Allen and Tildesley Ch. 4 [1], Frenkel and Smit Ch. 3 [13]

3.2 Techniques for Sampling Classical Particles

We use a wide variety of techniques to sample our fluid. In all of them, we treat the fluid using classical
statistical mechanics (we will discuss sampling for quantum particles in Section 3.3).

3.2.1 Metropolis Canonical Monte Carlo

Recall from the Theory section that Metropolis Sampling is an algorithm for sampling according to a
probability distribution. We derived the probability distributions for our thermodynamic ensembles of
interest in the Theory section as well; all that remains is to write down the specific sampling algorithms
for each.

Recall from equation (13) that the probability density in the canonical ensemble is

WN,V,T (rN ,pN ) =
exp(−βH(rN ,pN ))∫

exp(−βH(rN ,pN ))drNdpN
.

As explained in Section 3.1, we can split the Hamiltonian for our fluid into two pieces, a kinetic energy
κ =

∑
N p2

i /(2m) and the Lennard-Jones Potential energy U(rN ):

H(rN ,pN ) = κ+ U(rN ) (64)

We know that κ integrates to a known constant and thus do not need to calculate it in the simulation.
Therefore, we can use equation (15) to write the probability distribution function for this system:

WN,V,T (rN ) ∝ exp(−βU(rN )). (65)

Now WN,V,T (rN ) is of a form to allow us to use the Metropolis algorithm to equilibrate the fluid. The
Metropolis canonical Monte Carlo (CMC) algorithm that we use is:

For each particle in the system:

1. Calculate the potential energy of the system U

2. Give the particle a random displacement r′ = r + ∆

3. Calculate the new energy of the system U ′

4. Accept the move with probability:

acc(r → r′) = min(1, exp(−β(U ′ − U))) (66)
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This procedure has been shown to satisfy balance (although not detailed balance) [13]. Our Fortran 95
implementation of it can be found in Appendix B.1, in the FLFluidFncs.f95 module on pages 11-13.

References for this section: Allen Tildesley Ch. 4 [1], Frenkel and Smit Ch. 3 [13], Gould et. al Ch.
11 and 16 [14], McQuarrie Ch. 3 [20]

3.2.2 Metropolis Grand Canonical Monte Carlo

From the Theory section (equation (38)) the probability density of the grand canonical ensemble (with
only pair interactions) is

Wµ,V,T (sN , N) =
(zV )N

N !
exp(−βU(sN )).

The exact Metropolis algorithm for this ensemble is the similar to that for CMC except that this time
we can choose to move, create, or destroy a particle. In this simulation, we do each of these with equal
probability (ie, we move a particle 1/3 of the time, create a particle 1/3 of the time, and destroy a particle
1/3 of the time). In our code in Appendix B.1, we make this choice on line 81 of the FLFLuidFncs.f95
module in the flMCStep subroutine on page 12.

For moving a particle the ratio of distributions is

W (s′N , N)
W (sN , N)

= exp(−β(U(s′N ;L)− U(sN ;L)),

and thus acc(s → s′) is the same as for the canonical ensemble

acc(s → s′) = min(1, exp(−β(U(s′;L)− U(s;L)))). (67)

To create a particle:

W (sN+1, N + 1)
W (sN , N)

=
zV

N + 1
exp(−β(U(sN+1;L)− U(sN ;L))),

and to destroy:
W (sN−1, N − 1)

W (sN , N)
=

N

zV
exp(−β(U(sN−1;L)− U(sN ;L))).

The corresponding acceptance probabilities are:

acc(N → N + 1) = min
(

1,
zV

(N + 1)
exp(β(−U(sN+1;L) + U(sN ;L))

)
(68)

acc(N → N − 1) = min
(

1,
N

zV
exp(−β(U(sN−1;L)− U(sN ;L))

)
. (69)

We now have all of the theory required to implement GCMC. For our implementation of this GCMC
algorithm see Appendix B.1, pages 11-13.

The Metropolis method is a useful simulation technique, but, like all such techniques, it has its weaknesses.
For our purposes, the main limitation of the Metropolis algorithm is its inefficiency in exploring spaces
with high free energy barriers. Thus we now discuss modifications of, and alternatives to, the Metropolis
method, beginning with the Multicanonical method.

References for this section: Allen and Tildesley Ch. 4 [1], Frenkel and Smit Ch. 5 [13], Gould et. al
Ch. 11 and 16 [14], McQuarrie Ch. 3 [20]
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3.2.3 Multicanonical Method

The Multicanonical method is a modification of the Metropolis method that, for example, when used
on a fluid at a phase coexistence boundary, artificially enhances the probability that the system will be
found in a mixed state. When using this method we sample, not from a distribution with our usual
Hamiltonian, but rather from a modified distribution with effective Hamiltonian [35]

H̃(rN ,pN ) = H(rN ,pN ) + η(N). (70)

Here η(N) is a preweighting function chosen such that the associated probability distribution

W̃ (N |V, β, µ, η(N)) =
1
Q̃

∫
e−βH̃(rN ,pN )drNdpN . (71)

is a constant. Here V is volume, β is 1
kT where T is temperature and k is Boltzmann’s constant, and µ is

chemical potential. Note that Q̃ is the partition function for the modified distribution using H̃. Clearly
the choice η(N) = lnW (N) gives a constant W̃ , where W (N) is the original unmodified probability
distribution function appropriate for the ensemble

W (N |V, β, µ, η(N)) =
1
Q

∫
e−βH(rN ,pN )drNdpN . (72)

However, calculating this optimal η(N) must in principle be as difficult as solving the original problem
since it is simply the logarithm of the function we are trying to find. There are many methods for making
sensible choices for η(n); we will discuss one such method in section 3.2.4. We introduce this weighting
function in our code as the variable eta in the subroutine flMCStep in the FLFluidFncs.f95 module on
pages 11-13 of Appendix B.1.

Once we have found a good choice for η(N) we need a method of regaining W (N) from data for W̃ (N).
Given that we know η(N) the conversion is actually very simple:

W (N |V, β, µ) = eη(n)W̃ (N |β, µ, η(N)). (73)

Simulating a fluid in a grand canonical ensemble using this algorithm is similar to Metropolis GCMC with
a modified Hamiltonian H̃. Using this modified Hamiltonian, the acceptance probabilities of creation and
destruction are modified to

ãcc(N → N + 1) = min(1, exp(η(N)− η(N + 1))
zV

N + 1
exp(β(−U(sN+1;L) + U(sN ;L))) (74)

ãcc(N → N − 1) = min(1, exp(η(N)− η(N − 1))
N

zV
exp(−β(U(sN−1;L)− U(sN ;L))). (75)

In a 2001 paper Wilding used this method to calculate a number of points on the phase coexistence curve
for a fluid [35], effectively demonstrating that the Multicanonical method helps surmount the phase
transition barrier. We follow his lead in testing this algorithm in section 4.3.2.

References for this section: Berg and Neuhaus [4], Wilding [35]

3.2.4 Histogram Reweighting

Histogram reweighting is a technique that allows us to use histograms with one set of model parame-
ters to estimate histograms with other values of those parameters. In this case, our parameters are β
(temperature) and µ. Consider a histogram taken at parameters β0 and µ0. The probability density is
[35]

W (N,U |V, β0, µ0) =
1
Q0

∫
δ(U − U(rN ))e−β0(U(r)−µ0N)drN . (76)
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To find the probability density at β1 and µ1 we can simply reweight the histogram

W (N,U |V, β1, µ1) =
Q0

Q1
exp(−(β1(U −Nµ1)− β0(E −Nµ0))p(N,E|V, β0, µ0). (77)

This allows us then to extrapolate from known data to obtain histograms at different temperatures and
chemical potentials.

One use for this technique, proposed by Wilding [35], is to combine histogram reweighting and Mul-
ticanonical simulations. In this method, we reweight a histogram from one run into the preweighting
function for a Multicanonical simulation at a different temperature and chemical potential. Although
this sounds at first like an ideal solution, the process is slower and more cumbersome than it first appears.
By the time we have data on which we can do histrogram reweighting, we have lost enough precision to
make reweighting to anything but a β1 near to our original β0 difficult. For a full explanation of this
process and its limitations, see section 4.3.2.

References for this section: Ferrenberg and Swensden [11], [12], Wilding [35]

3.2.5 Classical Wang-Landau Method

The Wang-Landau Method is an alternative to using Metropolis importance sampling. This algorithm
solves for the density of states g(E) where g(E) is defined such that the probability that a system has
energy E is

P (E, β) =
g(E)e−βE

Q
. (78)

An algorithm designed to compute g(E) is a different approach from the Metropolis algorithm. Note that
were we able to find just g(E) we would not have to run simulations at more than one temperature; we
could simply vary the value of β in our post-analysis. Wang and Landau [[31], [32]] propose a method
for finding g(E) that we outline here.

This method for determining g(E) is through a random walk in state-space. At every state visited, the
energy is noted and the appropriate bin in an energy histogram H(E) is marked. However, since unlikely
states rarely get visited in an unweighted random walk, we need to weight the random walk in some
way that allows all the states to be visited with approximately equal probability [[31], [32]]. The easiest
way to do this is simply to weight by 1

g(E) , giving a flat histogram for the energy distribution H(E). Of
course, we do not know g(E) so we must construct it “on the fly” during the simulation.

We begin with an arbitrary state and an initial guess at g(E) (in general we set g(E) = 1 for all E). We
then do a Monte Carlo move and compute the energy before the move E0 and after the move E1 and
accept the move with probability

acc(E0 → E1) = min
(

1,
g(E0)
g(E1)

)
. (79)

We update g(E) by multiplying the accepted energy Eacc (E0 if the move is rejected and E1 if the move
is accepted) by a modification factor f > 1:

g(Eacc) = fg(Eacc), (80)

and increment our histogram. Generally we begin with an initial value for f of f0 = e. We continue until
we have produced a “flat” histogram. We define “flat” to mean that the minimum value of the histogram
divided by the mean value of the histogram is greater than some set constant (we use 0.93 for most runs).
Once we have a flat histogram we reset the histogram by setting H(E) = 0 for all E and reduce f with
the rule fn+1 =

√
fn. We stop the simulation when f falls below a preset value. Note that in practice

we work with the logarithms of g(E) and f rather than their full values to avoid losses of precision. The
code for this is in Appendix B.1. The Wang-Landau move itself is part of the code in flMCStep in the
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FLFLuidFncs.f95 module on pages 11-13 with the histogram and density of states being updated by the
function updateWL on page 14. Checking to see if the histogram is flat and incrementing accordingly
is done in FLMain.f95 on page 2. We use the function binE in FLFluidFncs.f95 on page 11 to put the
energy into the correct histogram bin.

Unlike Metropolis sampling, the data from a Wang-Landau run is not useful without some post-processing
analysis because all of our data needs to be reweighted by that factor of e−βE . Fortunately, this is a
quick and simple computation. Suppose we have data for an observable x. We need two pieces of data
for each step i: the value of x at that step xi and the energy Ei at that step. We then construct the two
dimensional histogram H(E, x). The average value of x, < x >, for a particular value of β can be found
from this histogram using

< x >=
1∑

i

∑
j g(Ej)e−βEjH(Ej , xi)

∑
i

xi

∑
j

g(Ej)e−βEjH(Ej , xi)

 (81)

An example of this reweighting can be found in Appendix B.4 on line 40 of the Matlab function reweight.m.

References for this section: Gould et al Ch. 15 [14], Wang and Landau [31], [32]

3.2.6 Entropic Sampling

In many papers one will find references to “entropic sampling” so, although we did not implement
this sampling technique, we give a brief mention of it here. This technique, first proposed by Jooyoung
Lee in 1993 [19], is similar to Wang-Landau sampling. As with Wang-Landau sampling, we construct
S(E) = ln(g(E)) and we sample in the same manner

acc(E0 → E1) = min
(

1,
exp(S(E0))
exp(S(E1))

)
. (82)

However, for this method we do not construct S(E) during the simulation. Instead, we run one short
simulation with S0(E) = 0 for all E and construct the histogram H0(E). We then make a new estimate
S1(E) for S(E) as

S1(E) =
{

S0(E) H0(E) = 0
S0(E) + ln(H0(E)) else (83)

For our next run we can use this as the estimate of S(E), which, in turn, generates a better guess at
S(E). Thus this algorithm is thus a cross between Wang-Landau and Multicanonical sampling.

References for this section: Lee [19]

3.3 Methods for Sampling Quantum Particles

3.3.1 Path Integral Monte Carlo (PIMC)

Recall from the Theory section (equation (53)) that we can treat a quantum particle as a chain made up
of P pseudo-particles (or “beads”). If we use this approximation, we can write the probability density
for quantum particles in a canonical ensemble as we did in equation (53).

W (r) = exp(−βV (r))

where V is given by equation (54)

V (r) =
1
P
U(r) + κ(r).
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Here U(r) is the classical potential and κ(r) can be written for a single quantum particle as shown in
equation (56)

κ(r) =
(

Pm

2β2h̄2

) P∑
a=1

|ra − ra+1|2.

As we mentioned in the Theory section, this equation is reminiscent of a harmonic oscillator potential. In
fact, in our simulation we make use of that analogy, visualizing the single quantum particle as a “polymer”
of P beads in which neighboring beads are held together with a spring. The full chain contributes its
harmonic potential and each bead also contributes 1

P U to the total energy of the system. Thus, we can
write down a Monte Carlo algorithm for sampling a single quantum particle in a potential U that is very
similar in concept to our CMC algorithm:

For each bead:

1. Calculate the energy of the system E = κ+ 1
P U

2. Give a bead a random displacement r′ = r + ∆

3. Calculate the new energy of the system E′ = κ′ + 1
P U

′

4. Accept the move with probability:

acc(r → r′) = min(1, exp(−β(E′ − E))) (84)

Our implementation of PIMC is the function move in the module LPFncs.f95 on page 40 of Appendix
B.2.

References for this section: Allen and Tildesley Ch. 10 [1], Boccio Ch. 6 [5], Coker et al [9], Cronin
[10], Larrimore [18], Miller and Reese [22], Miller et al [23], Wolfson [36]

3.3.2 PIMC with Threading

When using PIMC, a large number of moves are rejected because the “springs” between the beads are
usually very “stiff” thanks to the “kinetic” part of the energy. One method of fixing this, proposed by
Pollock and Ceperley [24], is to use “threading.” Threading involves directly sampling from the kinetic
energy propagator rather than accepting and rejecting moves based on kinetic energy.

Consider the kinetic part of the density matrix Wκ. By direct substitution, we can write Wκ(r, r′) as

Wκ(r, r′) =
∫
Wκ(r, r′;β − β′)Wκ(r′′, r′;β′)dr′′. (85)

If we iterate this process P times, we find

Wκ(r, r′) =
∫
...

∫
Wκ(r, r1; τ)Wκ(r1, r2; τ)...Wκ(rP−1, r′; τ)dr1...drP−1. (86)

Now we can write the integrand of equation (86) as

W (r, r′;β)
(
W (r, r1; τ)W (r1, r′;β − τ)

W (r, r′;β)

)(
W (r1, r2; τ)W (r2, r′;β − 2τ)

W (r1, r′;β − τ)

)
...

(
W (rP−2, rP−1; τ)W (rP−1, r′;β − τ)

W (rP−2, r′; 2τ)

)
. (87)

where τ = β/P . Note that the extra terms all cancel. Now the nth term brackets in equation (87) is the
properly normalized probability that, given endpoints rn and r′, the next internal point chosen will be
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Figure 3.2: The “chain” of possible next states. There are a total of P steps in the chain.

at rn+1. To lowest order in τ these terms are Gaussians:

f(rn+1, τ) =
W (rn, rn+1; τ)W (rn+1, r′;β − (n+ 1)τ)

W (rn, r′;β − nτ)

=
1√

2πσ2
n+1

exp
(
−(rn+1 − r̄n+1)2

2σ2
n+1

)
(88)

Now we just need expressions for r̄n+1 and σn+1. Clearly, the average value for r̄n+1 should be one step
along the chain from rn to r′. The chain has a total of P steps with P − n steps between rn and r′ (see
Figure 3.2). Thus

r̄n+1 = rn +
1

P − n
(r′ − rn). (89)

Rearranging equation (89) and multiplying by τ/τ

r̄n+1 =
β − (n+ 1)τ
β − nτ

rn +
τ

β − nτ
r′. (90)

We can find σn+1 by normalizing f . We find

σ2
n+1 = τΛ2

(
β − (n+ 1)τ
β − nτ

)
(91)

Pollock and Ceperley [24] show this algebraically.

Thus we can use equation (88) to approximate the acceptance probability for a single bead move as a
Gaussian. Then, instead of doing trial moves and explicitly calculating “kinetic” energy, we just pick trial
moves from the appropriate Gaussian distribution. To speed up the process, we actually move a number
of sequential beads (a “thread”) at one time. This guarantees that we will have the correct distribution
of moves under the kinetic energy propagator. We then accept and reject moves explicitly based only
on the potential energy U . Our implemenation of threading is the moveThread function of the module
LPFncs.f95 on pages 40-41 of Appendix B.2. We pick trial moves from the correct Gaussian distribution
in the function tryboth on page 44 and calculate potential energy in the function lpflPot on page 39.

References for this section: Cronin [10], Pollock and Ceperly [24], Wolfson [36]

3.3.3 Quantum Wang-Landau

We can also adapt the Wang-Landau method to simulate a quantum particle. However, now we have β
both in the numerator and denominator of the exponent in the integrand of our partition function:

Q =
∫

exp
(
−κ(r

N ,pN )
β

− βU(rN )
)
drNdpN . (92)

Vorontsov-Velyaminov and Lyubartsev [30] point out that this difference in β dependence does not pre-
vent us from using Wang-Landau, but does require that we sample a two-dimensional density of states
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g(E1, E2), where E1 corresponds to kinetic energy, and E2 corresponds to potential energy. Rewriting
the partition function in terms of E1, E2 and g(E1, E2) gives

Q =
∫

exp
(
−E1

β
− βE2

)
g(E1, E2)dE1dE2 (93)

Thus, because g is a function of two variables, we must construct a two-dimensional histogram when
carrying out the Wang-Landau method in order to find observables. Reweighting the simulation data to
find the average value of an observable is similar to the classical case, but now we need to store the kinetic
and potential energies separately so that they can be properly reweighted at the end of the simulation.
When we actually reweight an observable we now need a three-dimensional histogram consisting of kinetic
energy, potential energy, and the observable. See the function reweightSHO.m in Appendix B.4 for an
example of how this is implemented. Otherwise, however, we do not need to modify our algorithm for
the Wang-Landau method from the classical case. A Wang-Landau move is implemented in the function
moveWL on page 43 of Appendix B.2 in the module LPFncs.f95. We calculate energies in this same
module using the functions kinEnergy, kin1 and potEnergy on pages 38 and 44 and bin them using the
functions binKin and binPot in the LPGenFncs.f95 module on page 46.

References for this section: Gould et al Ch. 15 [14], Vorontsov-Velyaminov and Lyubartsev [30],
Wang and Landau [31], [32]

3.4 Methods for Determining Chemical Potential

For simulations in a grand canonical ensemble we need to input a chemical potential and therefore we
require a method for determining the chemical potential of a system. Here we discuss algorithms that
can be used to find the chemical potential for a simulation.

3.4.1 Widom Test Particle Insertion Method

The Widom Test Particle Insertion Method is a simple way of calculating the chemical potential during
a simulation. We start from the thermodynamic definition of chemical potential

µ =
(
∂F

∂N

)
V T

(94)

where F is the free energy of the system. Recall from equation (41) that we can write µ as

µ = −kBT ln
(

V

Λ3(N + 1)

)
− kBT ln

(∫
exp(−βU(sN+1;L))dsN+1∫

exp(−βU(sN ;L))dsN

)
= µid + µex,

separating µ into an ideal gas component (which we can solve for analytically) and an “excess” component.
Now let ∆U = U(sN+1;L)− U(sN ;L). Then we can write the excess chemical potential as

µex = −kBT ln
(∫

< exp(−β∆U) >N dsN+1

)
(95)

where < · · · >N is the canonical ensemble average over the N -particle system. Therefore, we now have
µex in a form we can compute using Monte Carlo sampling. To carry out this calculation, we create an N -
particle system and then compute the change in energy that would result if we added another the particle
to the system in a random location. Note that we do not actually add the particle to the simulation; the
particle number always remains fixed at N . The average of exp(−β∆U) over all random locations gives
the value for the integral in equation (95). Note that this method is efficient and reasonably accurate,
but only suited to low density simulations. Our implementation of the Widom Method can be found in
the function widomTest on page 15 of Appendix B.1 as part of the FLFluidFncs.f95 module.

References for this section: Frenkel and Smit Ch. 7 [13], Widom [33]
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3.4.2 Bennet Method

The Bennet Method, or the Overlapping Distribution Method, is another method for determining chemical
potential that, unlike the Widom Method, does not fail at high density. However, it is less efficient as it
requires that two different simulations be run.

Consider two N -particle systems, system 0 and system 1, with partition functions Q0 and Q1. For
convenience’s sake, we assume these systems have the same volume. The difference in free energy between
these systems is given by

∆F = −kBT ln
(
Q1

Q0

)
= −kBT ln

(∫
exp(−βU1(sN ;L))dsN∫
exp(−βU0(sN ;L))dsN

)
. (96)

Consider the energy difference ∆U = U1(sN ;L) − U0(sN ;L) between the two systems. The probability
density function for ∆U when sampling system 1 is given by

W1(∆U) =
∫

exp(−βU1)δ(U1 − U0 −∆U)dsN

q1
(97)

where Q1 =
∫

exp(−βU1(sN ))dsN . Using properties of the delta function we can rewrite W1 in the
following manner:

W1(∆U) =
∫

exp(−β(U0 + ∆U))δ(U1 − U0 −∆U)dsN

Q1

=
Q0

Q1
exp(−β∆U)

∫
exp(−βU0)δ(U1 − U0 −∆U)dsN

Q0

=
Q0

Q1
exp(−β∆U)W0(∆U) (98)

where W0 is the probability of finding ∆U when sampling from system 0. Now ∆F = −kBT ln
(

Q1
Q0

)
and

therefore
ln(W1(∆U)) = β(∆F −∆U) + ln(W0(∆U)). (99)

We define the quantities f0 and f1

f0(∆U) = ln(W0(∆U))− β∆U
2

(100)

f1(∆U) = ln(W1(∆U)) +
β∆U

2
(101)

such that
f1(∆U) = f0(∆U) + β∆F. (102)

If we have two systems, we can find ∆F by fitting a polynomial in ∆U to the data for f1 and f0 and
looking at the difference between them. This difference should be a constant equal to β∆F .

For the particular problem of calculating chemical potential, we can consider system 1 to have N + 1
particles and system 0 to have N particles. From equation (95) it is clear that the difference in free
energy between these systems is µex. Thus

βµex = f1(∆U)− f0(∆U). (103)

In practice, we run two simulations, one with N particles and one with N + 1 particles. Similar to the
Widom Method, in the N+1 particle system, we record the change in potential energy were we to destroy
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one of the particles. Conversely, in the N particle system we record is the change in potential energy
were we to create a particle. While it might seem that this could all be done in the same system (by
recording the energy change both when we remove and when we create a particle), it turns out at that
at a relatively low number of particles (hundreds), the exact size of the system can make a difference and
we really do need two simulations, one with N particles and one with N + 1.

References for this section: Bennet [3], Frenkel and Smit Ch. 7 [13]

Other sampling methods for classical and light particles can be found in the literature. We have given
a broad overview of the topic and have discussed enough possible sampling methods to explain the
significance of our results.

4 Results and Discussion

4.1 Random Number Generator Tests

Firstly, we discuss our results from the random number generator tests. These are not research results,
but a working random number generator is a prerequisite to all of the results that follow in the next
sections. We use a Mersenne Twister (MT) generator in our simulations, but for comparison, we here
present tests of both the MT generator and a linear congruential (LC) generator with reshuffling, the
algorithms for which can be found in Appendix B.3.

4.1.1 Periodicity

We ran random walks using the MT and LC generators. The two plots are shown in Figures 4.1(a)
and 4.1(b). The period of the linear congruential generator is very clear; it looks to be approximately

4.1(a) Periodicity test for linear congruential random
number generator.

4.1(b) Periodicity test for Mersenne Twister generator.

Figure 4.1: Periodicity Tests

250,000 steps. However, despite running the Mersenne Twister for a hundred million steps, we are unable
to identify the length of the period. Since most of our runs are on the order of a million steps and
approximately one billion random numbers, it is clear that the Mersenne Twister is better suited to our
needs.

4.1.2 Uniformity

The histograms for the linear congruential generator and the Mersenne Twister generator for ten million
random numbers are given in Figures 4.2(a) and 4.2(b). These both appear somewhat “flat,” and we can
confirm that appearance if we define the “flatness” of a histogram as the minimum value of the histogram

26



4.2(a) Uniformity Test for linear congruential random
number generator.

4.2(b) Uniformity Test for Mersenne Twister generator.

Figure 4.2: Uniformity Tests

divided by the mean value. With that definition, the linear congruential generator has a flatness of 0.9995
and the Mersenne Twister has a flatness of 0.9923.

4.1.3 Chi-Square Test

We compute χ2 for the linear congruential and the Mersenne Twister generator using the histogram
created when we tested for uniformity. For the Mersenne Twister χ2 = 76.8599 and for the linear
congruential generator χ2 = 0.5263. Since, in this case, M = 100, the Mersenne Twister generator passes
this test. However, the linear congruential generator has an incredibly tiny χ2 confirming our hypothesis
that we are running close to a multiple of the period. However, since the period is so small, this is hard
to avoid.

4.1.4 Hidden Correlations

Neither generator appears to have any hidden correlations. The plots are not included because they are
simply filled-in unit squares.

For all of the results presented in the remainder of this section, we have used the MT generator.

4.2 CMC Simulation Results

4.2.1 Comparison of Average Potential Energy

We begin with a simple comparison of our original Metropolis CMC simulation with literature values. We
ran the simulation with 864 particles at a reduced density of 0.45 and a temperature of 1.764 (parameters
picked to match [29]) for 15000 time steps starting from an ordered configuration and recorded the average
potential energy per particle at each time step. The resulting graph of particle energy at each time step
is shown in Figure 4.3. The tail correction (equation (59)) has been included in the graph.

We find an average energy of 2.91 ± 0.03. For these same parameters, Verlet [29] found an average
potential of -2.89, which is within the error of our result.

We also must ask ourselves how we know that our simulation has run long enough. We first must make
sure the system is equilibrated. Here, we do this by plotting the running average and considering the
system “equilibrated” when the running average is always within 5% of the time average (this run took
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Figure 4.3: Average potential energy for our Metropolis CMC simulation.

Figure 4.4: Time correlation function for a CMC run.

approximately 500 steps to equilibrate). Once we have an equilibrated system, we need to know how long
we should run the system afterwards to allow it to fully explore the state space. We do this in two steps.

We first compute the normalized time correlation function of the data, which is shown in Figure 4.4.
From this, we estimate how many time steps are “correlated” by finding the first point where the time
correlation function drops below 0.01. For the potential energy for this fluid simulation, we find that
energies separated by at least 80 times steps are uncorrelated.

We then arrange our data into “blocks” of large numbers of data points in an attempt to find how long
we need to run a simulation (see the function blocking.m in Appendix B.4). Basically, we want blocks for
which the error between the means of the blocks is of the same order as the error of the means within
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Figure 4.5: Blocks for a CMC run. The error bars show the error within each block.

the blocks. To compute the error of the mean within a block, we divide the standard deviation of a block
by the square root of the number of uncorrelated data points in the block. Figure 4.5 shows data blocks
of 1000 time steps (corresponding to 1000/80 = 12.5 uncorrelated points). Here the average error within
one block is 0.0092 while the standard deviation of the block means is 0.0031. These are “on the same
order” and we conclude that the system needs approximately 1000 steps to explore the full space.

4.2.2 Calculation of Pressure

As a matter of practical interest, as well as a test of our fluid simulation, we can compute the pressure
at different densities. Using a temperature of T ∗ = 2 and N = 500 particles, we ran simulations at 9
different densities and computed the pressure using equation (60) and adding in the correction given in
equation (63). We ran the simulations for 2000 time steps, allowing 500 time steps for the system to
equilibrate. A comparison of our data with that of the molecular dynamics simulations from [15] is given
in Figure 4.6

Once again, our simulation data is acceptably close to data given in the literature, showing that the basic
CMC simulation is sound. Further, we can say something about the physics of the situation. At low
densities, the fluid should behave as an ideal gas and P/ρ should be equal to 3

2kT . Looking at Figure 4.6,
we do see this linear relationship in this region. As the density increases, pressure scales as ρ/β + Aρ2

where A is a constant. To see this relationship, consider equation (60). The virial is basically a measure
of the number of interactions. The number of interactions per particle should scale linearly with density
and the virial is N times this quantity. Thus the term vir/V scales as a function of density squared, and
we can see this relationship in Figure 4.6.

4.3 GCMC Simulation Results

4.3.1 Widom Test Particle Insertion

The first test of our GCMC simulation involved a comparison to runs of our CMC simulation. We ran
several CMC simulations at different densities and, as a run at a given density proceeded, used the Widom
method to determine the corresponding chemical potential, µ. The simulations were done for a total of
2000 steps using a temperature of T ∗ = 2. For the CMC simulation, we used N = 500 Lennard-Jones
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Figure 4.6: A comparison of pressure data between our simulation and literature.

particles. We then ran independent GCMC simulations at the chemical potentials calculated from the
CMC simulations, and recorded the average density of the GCMC runs. The data are shown in Table 1.
Graphical presentation of the data shown in Table 1 is given in Figure 4.7.

CMC Density ( N
σ3 ) GCMC Density ( N

σ3 ) Error (%)
0.1 0.0974 2.6
0.15 0.1514 0.93
0.2 0.2070 3.5
0.25 0.2700 8.0
0.3 0.3029 1.0
0.35 0.3529 0.83
0.4 0.3926 1.7
0.45 0.4681 4.0
0.5 0.4909 1.8

Table 1: The average density of GCMC simulations (middle column) run at chemical potentials found
from CMC simulations (density left column).

We see from Table 1 and Figure 4.7 that the density obtained from the GCMC simulation is close to
the original density of the CMC simulation. This is a good indication that both the grand-canconical
sampling and the Widom method are working correctly, and give a consistent picture of the fluid in
equilibrium.

As another test, we can use the Widom method during the GCMC simulation to calculate chemical
potential as the run proceeds. If the Widom Method is working properly, it should calculate the same
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Figure 4.7: Density from GCMC simulations compared with density from CMC simulations. Here “tar-
get” density refers to the density from the CMC simulations that we hope is matched by the GCMC
simulation.

chemical potential as originally input. For these simulations, we actually use the activity z = exp(βµ)
Λ3

where Λ is the thermal deBroglie wavelength (see the code in Appendix B.1). The results of this test are
given in Table 2 and Figure 4.8.

Input Activity ( 1
σ3 ) Widom Test Activity ( 1

σ3 ) Error (%)
0.0820 0.0827 0.85
0.1184 0.1193 0.76
0.1541 0.1575 2.2
0.1956 0.1769 9.6
0.2178 0.2090 4.0
0.2585 0.2707 4.7
0.3002 0.2768 7.8
0.4211 0.4258 1.1
0.4608 0.4162 9.7

Table 2: The activity calculated by the Widom method (middle column) and the original inputted activity
(left column). The agreement between these two columns is an indication that our Widom method and
GCMC simulation are performing correctly.

Once again, we have evidence that our simulation, and in particular our implementation of the Widom
method, is sound. The GCMC simulations give back almost exactly the same activity as was originally
input. However, we do see a tendency for the error in activity to increase at higher density. This tendency
owes to the issues with the Widom method at higher densities discussed in section 3.4.1. Should one need
a method more accurate at high densities one could implement the Bennet method described in 3.4.2.

4.3.2 Multicanonical Results

In order to get interesting data for the Multicanonical runs, we first had to find a point near the liquid-gas
phase transition. For the truncated Lennard-Jones potential for argon, the critical point is at β = 0.842
and z = 0.0388 [35]. We chose a temperature just a little below the critical temperature and adjusted the
value of µ until we found the value of µ that would place us on the coexistence curve. This “adjustment”
of µ was an iterative process. We started with the value of µ almost at the critical point and did a
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Figure 4.8: Activity as calculated by Widom Test vs the input (“target”) activity.

run. When that run finished, we took the resulting histogram (which did not show phase coexistence)
and used histogram reweighting as in equation (77) until we found a value of µ that produced a density
histogram with two peaks of roughly the same height. We then used this value of µ in simulation and
repeated the process until we found a value for µ where the simulation produced a density histogram
with two peaks of approximately the same height with the same area underneath. The input parameters
of z = 0.0597103 (this precision is needed) and β = 0.855 eventually produced the density plot shown in
Figure 4.9. Note that nothing yet discussed has actually involved Multicanonical sampling; we were still
just attempting to find a first guess for a preweighting function.

Just observing the data in Figure 4.9 by eye, we can conclude that the system appears to be spending
approximately equal time in the liquid and gas phases. We can do a better analysis, however, computing
the histogram shown in Figure 4.10.

As a last step in implementing the Multicanonical technique, we used a smoothed version of the histogram
shown in Figure 4.10 as a preweighting function for a Multicanonical simulation run with the same
parameters (β = 0.855 and z = 0.0597103). A summary of that run is shown in Figure 4.11.

With the exception of the large left-hand spike in the raw data histogram shown in the bottom-left of
Figure 4.11, we obtain a flat histogram of raw densities. The “spike” is caused because in the original
(unweighted) simulation, the simulation was never able to explore that area. The “perfect” histogram
for these parameters would have slightly-larger-than-zero values in this region, but our simulation never
explored that space at all. Note that we will almost always have this “edge” to our data. This is the
region that Multicanonical sampling is “pushed” into where it really should not be. Looking closely at
Figure 4.11, we see that there is also a jagged edge on the high density side. However, this edge is damped
down because the energy is higher in this region and the e−βH term in equation (71) forces the height
of the spike down. However, the spikes do not affect the data in the area of interest (they are, in fact,
there because they are not in the area of interest); the re-biased histogram in the bottom-right of Figure

32



Figure 4.9: Reduced density over the GCMC run

Figure 4.10: Density histogram

4.11 is similar in form to the original simulation. We conclude that the Multicanonical simulations of the
fluid are giving accurate results.

4.4 Wang-Landau Results

4.4.1 Classical Wang-Landau Results

The Multicanonical method is not as useful as it first appears. Simply finding that first point to create
figure 4.10 took a number of simulations because we had to iteratively calculate µ. Should we wish
to explore a system at a different temperature, we would have to reweight the histogram to a different
temperature and chemical potential before we could use it as our preweighting function. However, this
reweighting in temperature does not give a completely accurate histogram; the reweighting only varies
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Figure 4.11: Top-left: The preweighting function. Top-right: Raw densities over the simulation. Bottom-
left: The density histogram of the raw density data before unweighting it with the preweighting function.
Bottom-right: The density histogram after unweighting with the preweighting function.

the heights of the peaks without moving them further apart. In fact, if we look at the mathematics of
the situation, reweighting cannot move the peaks further apart. The top of the peak is a maximum and
thus the first derivative with respect to number of particles is zero. Therefore, there is no set “direction”
for the peaks to move with changing temperature. Thus changes in temperature have to be very small
so that the fluid and gas densities are approximately the same in order to have this method work at all.
Trying to use Multicanonical sampling and histogram reweighting to trace a coexistence curve or find
a stable point low on the curve can be done [35], but it is a long and tedious process. Adding a light
particle to the system would triple the number of preweighting functions required (since we need one for
kinetic and potential energy of the light particle) and, in all probability, make simulation at more than
a few temperatures extremely difficult.

Thus we consider another sampling method that does not require a preweighting function or a temperature
of simulation. The Wang-Landau method takes longer than any single Multicanonical simulation, but
gives information about all temperatures and thus does not require the iterative methods of multicaonical
sampling.

Our first step upon implementing Wang-Landau sampling for the argon fluid was to try to compare
our results with those in the literature. We ran one Wang-Landau simulation for a canonical ensemble
(ρ∗ = 0.1, N = 100) and used the resulting density of states to calculate the average potential energies
at numerous different temperatures. For this system, we could pick “all E” by looking at our data from
previous Metropolis runs, such as that shown in Figure 4.3. From these data, we chose a lower bound of
-4 reduced units per particle and an upper bound of 0 (recall that we are bounded above by zero). The
density of states as it evolved over the run is shown in Figure 4.12. In this figure, an “iteration” refers
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Figure 4.12: Evolution of density of states for a Wang-Landau simulation.

to a point in the run where we have a flat histogram and are about to decrease our f value in Equation
(80). In the calculations and results presented below, we used g(E) after 13 iterations.

From equation (78), the potential energy U(β) at a particular value for β is given by

U(β) =
∫

allE

1
Q
g(E)e−βEdE. (104)

Since g(E) is necessarily discrete in a numerical simulation, we can evaluate this integral as a sum in
post-processing (see reweight.m in Appendix B.4). Doing so for a range of temperatures gives average
potential energy as a function of temperature. Making use of the data in Johnson, et al [15] for comparison
purposes once again, we get the results shown in Figure 4.13. Most of the results we compare to are
from Molecular Dynamics (MD) simulations, but we also included the few Monte Carlo simulation data
points.

This is a very impressive result. One Wang-Landau simulation gives data that would, for this particular
figure, take 12 MD or Metropolis sampling MC simulations to reproduce.

Looking at the figure, we do see that Wang-Landau appears to be less accurate at low temperatures. This
is for a variety of reasons. First of all, the simulations from [15] to which we are comparing have slightly
different parameters, which could cause some minor differences in results. The MD simulations utilize
another algorithm entirely and even the MC simulations use a different cutoff radius than we do. We
guess that the greatest inaccuracy occurs, however, because, of necessity, the Wang-Landau simulation
has a lower and upper bound set on the energies it can explore. We set up the historgram for the density
of states before running the simulation. Thus we, as the programmer, artificially set bounds on how low
and how high the energy in the simulation can reach by the bounds we set on the density of states. In
this case, they were U∗ = 0 and U∗ = −4. Clearly, U∗ = −4 was not quite low enough and the system
might, if we had let it, have spent time in a lower energy state. It is true that there is an absolute lowest
energy for this configuration; however, if we allowed the simulation to explore all the way down to that
energy, the simulation would take much longer to run without generating much more useful data. If we
were to run a simulation where we knew we wanted high temperature results, we would use a lower lower
bound on energy (and probably a lower upper bound as well to keep the simulation from running too
long).
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Figure 4.13: Average internal energy as obtained from a Wang-Landau simulation at different tempera-
tures.

4.4.2 Quantum Wang-Landau Simulation Results

Our eventual goal is to use Wang-Landau to simulate a light particle in a fluid. Thus, we first implemented
Wang-Landau PIMC for a light particle in a one-dimensional, simple harmonic oscillator (SHO) potential.
Interestingly, the SHO has an analytical solution not just for the “exact” case of P = ∞ but even at
a finite number of beads P [30], though this expression can be difficult to evaluate as P increases. We
tested our implementation of Wang-Landau on a system with 8 beads. For this system, the analytical
solution for average potential energy < U > is

< U >P=8=
β

4P 2

32C7 − 48C5 + 20C3 − 2C
4C8 − 8C6 + 5C4 − C2

(105)

where C = 1 + 1
2

(
β
P

)2

. This equation is derived in [30]. Qualitatively we can see that the behavior is
correct. At large β, < U > goes as 1/β. The low temperature limit is therefore 0 and not 0.5 as it would
be for the P = ∞ case. At low β, the expression goes to the equipartition theoretical limit3 1

2kT .

As with our testing of the classical simulation, we ran one Wang-Landau simulation and used that to
calculate potential energy at a variety of different values of β. The two-dimensional density of states is
shown as a surface plot in Figure 4.14. One potential issue we address here is the that the density of
states appears to peak where we cut off kinetic energy and that if we allowed higher kinetic energies,
the peak would increase in height. This is true, but it really only effects low values of β where the term
exp(−E1/β) is far from one and therefore a significant factor in the partition function. As a result, so
long as we are interested in higher values for β, we can cut off the energy where we do without having
it affect the solution too greatly. Note also that the density of states is not discrete, although harmonic
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oscillator energy levels are. This is because, although the kinetic and potential energy should always add
to a multiple of 1

2 h̄ω, their ratio to each other is not fixed. Thus the two dimensional density of states
is, in theory, continuous.

Figure 4.14: Density of states for SHO Wang-Landau simulation.

Finding average potential energy from the density of states in this case is similar to the classical case
except that now we need to do the two dimensional integral (see reweightSHO.m in Appendix B.4 for an
idea of how we might do this integral)

U(β) =
∫

allE1

∫
allE2

1
Q
E2g(E1, E2) exp (−E1/β − E2β) dE1dE2 (106)

where E1 is kinetic energy and E2 is potential energy.

For comparison, we also ran a Metropolis sampling PIMC at β = 0.5 and reweighted the resulting
histogram with different values of β. The graph comparing analytical potential energy, energy from the
Wang-Landau simulation, and energy reweighted from a Metropolis simulation is shown in Figure 4.15.
Even in this simple system where we might expect histogram reweighting to be quite effective, it appears
that Wang-Landau does a much better job than histogram reweighting. We can make this even clearer by
plotting the fractional error of the Wang-Landau and histogram reweighted runs against the analytical
value. This plot is shown in Figure 4.16.

From the plot of error, we conclude that Wang-Landau is much more accurate than histogram reweighting;
it almost never shows more than a 0.1 fractional error. The reweighted results of a Metropolis sampling
run have a consistently larger error except right around β = 0.5, where the run actually took place. The
high error in Wang-Landau at low β arises from the reason discussed above; the range over which we
sampled kinetic energies was not quite broad enough to get an accurate result at this high a temperature.
Breadth and good resolution are competing needs for the histogram used in the Wang-Landau method.

4.5 Light Particle in a Frozen Fluid

Finally, we put the light-particle in a non-trivial potential. In order to have a physical identity for our light
particle, we simulated helium with five beads interacting with a fluid via the Lennard-Jones potential. As
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Figure 4.15: Average potential energy for Wang-Landau simulation, reweighted Metropolis sampling, and
analytical solution of a simple harmonic oscillator.

Figure 4.16: The fractional error between the analytical solution and the simulations for potential energy.

a first step, we allowed only the helium to move; we kept the fluid frozen and did both Quantum Wang-
Landau and PIMC with threading sampling runs. We used the same analysis as in section 4.4.2 to find
average potential energy at many different temperatures from the Wang-Landau data. This potential has
no analytical solution so we ran our PIMC algorithm for a range of different temperatures and recorded
the average potential energies. We also ran a classical Metropolis sampling to determine whether it was
necessary to treat He as a quantum particle. The comparison between classical Metropolis, PIMC, and
Quantum Wang-Landau is shown in Figure 4.17.

This plot shows agreement between the Wang-Landau and PIMC algorithms, although we see that the
Wang-Landau algorithm is plagued by the same problems at high values of β as we have been seeing
throughout this thesis. Once again, our potential energy setting was too high to capture the full range
at these lower temperatures. To lower it, however, would require either a substantially longer running
time or less accurate answers at lower β. Note that we can, in the same running time, obtain accurate
answers at high β, we would just need to sacrifice accuracy at the lower values.

The agreement between classical Metropolis and PIMC is also good at low values for β and falls away
at higher values. Here, however, we cannot fix this disagreement by changing the parameters of our
simulation; we are finding that at low temperatures we can no longer approximate helium as a quantum
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Figure 4.17: Average potential energy for Wang-Landau, PIMC, and classical Metropolis sampling for a
light particle in a frozen fluid.

particle. We can see this more quantitatively by explicitly calculating de Broglie wavelengths for the
particles. In order that we model the particles as classical particles, the mean separation between the
particles needs to be much greater than their wavelength. For our system, an approximation of the mean
separation R̄ between particles is just

R̄ =
(
V

N

)1/3

=
(

1
1.127 · 10−3

)1/3

= 9.609 au. (107)

The relevant de Broglie wavelength is actually the sum of the de Broglie wavelengths of the quantum and
fluid particles

λ̄ = λAr + λHe =
h

p̄Ar
+

h

p̄He
=

h√
3mArkT

+
h√

3mHekT
(108)

where we have just used 1
2m p̄

2 = 3
2kT for the last step. Plugging in β = 500 au−1 into this, we find

λ̄ = 1.25 au, and the condition R̄ >> λ̄ is satisfied. If, however, we move out to β = 8000 au−1, λ̄ = 5.011
au. This is only a factor of two smaller than R̄ and, therefore, at this value for β, we are no longer in
a region in which classical approximations apply. This is reflected in Figure 4.17 where we see that the
classical and PIMC results diverge at high β.

Having established agreement between PIMC and Quantum Wang-Landau, we can also do benchmarking
tests to compare the computational efficiency of the two quantum algorithms. In other words, it is hoped
that Wang-Landau allows us to simulate the light particle in potentials requiring infeasible equilibration
times by conventional Metropolis algorithms, which makes computation time of interest here. Wang-
Landau and PIMC are roughly equivalent in terms of the amount of time per MC step. Wang-Landau
takes on the order of 60 seconds for 100000 steps and PIMC takes 40 seconds. Thus here we compare
MC steps.

We ran a Wang-Landau simulation, recording the density of states each time we reduced f and calculated
average potential energy for each iteration of the density of states. With Wang-Landau sampling, there
is no way to get a running average for potential energy. Rather we only get successively better and better
estimates for g(E) at discrete points when the energy histogram is flat. Our calculations for potential
energy for β = 5272 au are shown as a function of MC steps in Figure 4.18.
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Figure 4.18: Average potential energy as a function of MC steps for a Wang-Landau simulation. Stars
are the data points showing the average using successively better estimates for g(E). The system appears
to reach a steady average around 60 million MC steps.

To estimate how long this run takes, we use the following procedure. We consider the expected value of
potential energy to be the value at the last data point in Figure 4.18. We then find the standard deviation
of all the points in Figure 4.18 from this expected value and plot the number of standard deviations each
point is from the expected value in Figure 4.19. The run is considered long enough when we are within
one standard deviation of the expected value. This occurs at approximately 60 million MC steps.

Figure 4.19: Simulation error as a function of MC steps for a Wang-Landau simulation. Stars are the
data points showing the error at successively better estimates for g(E). The system appears to reach a
steady average around 60 million MC steps.

For PIMC sampling, we are able to calculate the energy every MC step, but just looking at that graph
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Figure 4.20: Time correlation function for a PIMC run.

Figure 4.21: Average potential energy as a function of MC steps for a PIMC blocks of 200000 data points.

is not very enlightening. Thus we use the technique described in section 4.2.1 to estimate how long we
need to run the simulation before it has fully explored the space. The time correlation function for a
PIMC run is shown in Figure 4.20. From it, we found that steps at least 900 steps apart are uncorrelated.
Then, using blocks of size 200000 for a 1000000 step run, we obtain the graph shown in Figure 4.21. Here
the standard deviation of the means is 2.8 · 10−6 and the average error per block is 8.2 · 10−6. Blocks
any smaller have a standard deviation of the means that is greater than the average error per block and
we conclude that for this sampling technique, the simulation requires approximately 200000 MC steps
to successfully explore the whole space. We used the function blocking.m in Appendix B.4 to do the
calculations and generate figure 4.21.

Thus, for each individual temperature, Wang-Landau sampling is about two orders of magnitude slower
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(by MC steps) than Metropolis sampling. However, Wang-Landau sampling is not limited to a single
temperature; we could generate data for almost any temperature whose accessible range is consistent
with the histogram we generate. In addition, we are using a density of 1.127 · 10−3 au and only five
beads for this test, making our space relatively easy to explore. Were we to increase the complexity of
the simulation by increasing the density or the number of beads, we would see a large decrease in the
efficiency of Metropolis sampling. Wang-Landau sampling in principle is advantageous by a system with
energy barriers. The hope is that it will still perform well under conditions where conventional sampling
is unacceptably slow.

5 Conclusion

We have discussed a number of MC techniques for sampling both classical and quantum particles. Begin-
ning with basic CMC sampling for classical particles and PIMC sampling using threading for quantum
particles, we have extended our simulation codes to allow Multicanonical and Wang-Landau sampling
for classical particles in either a canonical or grand canonical ensemble and Quantum Wang-Landau for
light particles.

We first showed that our basic CMC simulation was producing results that agreed with literature values,
and, using the Widom Test Particle Insertion Method, we demonstrated that our GCMC simulations
gave results consistent with this CMC code. We then used the GCMC simulation to locate a point on
the argon liquid/gas coexistence curve.

In an effort to sample efficiently in a larger variety of environments, we also introduced Multicanonical
sampling into our code. This allowed us to use information about the system to “push” the simulation into
regions that were energetically unfavorable. However, problems in acquiring the necessary information
about the system led us to try other sampling techniques.

Our last modification of the classical codes, was the Wang-Landau sampling method which allowed us
to run one simulation to find average quantities at almost any temperature. We used this method to
generate data about the potential energy of a fluid that agreed with literature results from MD and other
MC simulations.

With these sampling algorithms working for classical particles, we began to explore algorithms for sam-
pling quantum particles. The basic algorithms discussed in this thesis were PIMC, PIMC with threading,
and Quantum Wang-Landau. Of these, threading was implemented by another researcher so our main
interest was in the Quantum Wang-Landau results.

We began our research into Quantum Wang-Landau using a light particle in a simple harmonic potential.
When we found that our results closely matched the analytical solution for finite bead numbers, we went
on to try a more complex and interesting potential. We put the light particle into a fluid and used a
Lennard-Jones potential to describe interactions between the particle and the fluid. Comparisons between
Quantum Wang-Landau and PIMC with threading for this potential were favorable.

We lastly presented a benchmarking technique for Quantum Wang-Landau and PIMC with threading.
We found that for a system of 5 beads in an argon fluid with a density of 1.127 · 10−3 au, Quantum
Wang-Landau is on the order of 100 to 500 times slower than PIMC with threading. However, these tests
were done in a system that was fairly easy to equilibrate. In future work we hope to choose a system
that is more time consuming for traditional PIMC algorithms and see if the Quantum Wang-Landau
benchmark is more favorable in comparison.

Future work might also include allowing the fluid to move in simulation and trying to model the light
particle as positronium (rather than helium). This work could also be extended to the two-chain approach
pioneered by this lab in earlier work [17].
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Glossary

Activity In thermodynamics, the quantity exp(βµ)/Λ3

where µ is the chemical potential, β = 1/(kT )
and Λ is the thermal de Broglie wavelength. It
gives information about the partial pressure of
a gas.

13, 30

Bennet Method A method used to find the chemical potential of
a simulation that is computationally more inten-
sive than the Widom Method, but works better
at higher density.

25, 31

Canonical Ensemble A thermodynamic ensemble in which we fix vol-
ume, temperature and number of particles.

9, 17, 27–29

Chemical Potential In thermodynamics, the derivative of free energy
with respect to particle number. Equal chemi-
cal potentials are a stability criterion for phase
coexistence.

10, 24–26

Complete A set of states (or vectors) {ψ} is complete if
every other state in the system can be written
as a linear combination of the ψi.

13

Entropic Sampling A cross between Wang-Landau and Multicanon-
ical sampling that constructs the density of en-
ergy states during simulation.

21

Ergodic See Irreducible 7

Grand Canonical Ensemble A thermodynamics ensemble in which we fix vol-
ume, temperature and chemical potential.

10–13, 18, 29–31

Importance Sampling A method of sampling where focus on areas we
consider more “important”.

7, 8

Irreducible A system is “irreducible” (or “ergodic”) if every
state can eventually be reached from every other
state.

7

Light/Quantum Particle A particle whose dynamics can only be accu-
rately modeled using quantum mechanics.

5

i



Markov Chain A sequence of trials that fulfills two conditions:
(1) the outcome of each trial belongs to a finite
set of possible outcomes (the “state space), and
(2) the outcome of each trial depends only on
the outcome of the trial immediately preceding
it.

7

Metropolis Sampling An accept/reject method of importance sam-
pling.

7, 17, 18

Monte Carlo (MC) Algorithms Nondeterministic algorithms used for simulating
various phenomena.

6–8

Multicanonical Sampling An modification of Metropolis sampling where
we sample from a modified distribution to help
the system explore energetically unfavorable
states.

18, 31, 32

Overlapping Distribution Method See Bennet Method 25

Path Integral Monte Carlo (PIMC) An MC algorithm for simulating quantum par-
ticles by visualizing them as a polymer of beads
connected by “springs”.

21–23, 35, 37, 39, 41

Positive Operator All eigenvalues of the operator are positive. 13

Self-Adjoint Operator The operator and the hermitian conjugate of the
operator are equal.

13

Threading A modification of PIMC that increases the speed
of the algorithm.

22, 37, 39, 41

Wang-Landau Sampling An alternative method to Metropolis sampling
where we construct the density of energy states
during simulation.

20, 21, 23, 33–35, 37, 39, 41

Widom Method A method used to find the chemical potential of
a simulation.

24, 29

ii



A Units

We use two sets of units predominantly in this thesis: reduced units and atomic units. For the fluid
simulations with no light particle, we use reduced units, as this allows the quantities in which we are
interested (namely, β = 1/(kT ), energy, density, and position) to all be of order unity. Reduced units
for a Lennard-Jones fluid have distance in terms of the hard sphere diameter σ and energy in terms of
the well depth ε. This gives us densities that vary between 0 and 1. In addition, we consider “reduced
temperature” to actually be the quantity T ∗ = kBT , where kB is Boltzmann’s constant. For argon, the
conversions from standard units to reduced units are

ρ∗ =
ρ

σ3
=

ρ

(3.405 · 10−10 m)3
=
(
2.53 · 1028 m−3

)
ρ

β =
ε

kBT
=

119.8 K
T

U∗ =
U

ε
= (6.05 · 1020 J−1)U

Notice that quantities, with the exception of β, expressed in reduced units are usually denoted with a ∗

after the variable name.

When we introduce the light particle, reduced units no longer make sense and we use atomic units instead.
In atomic units, we write mass in terms of the mass of an electron, angular momentum in terms of h̄,
and charge in terms of the charge on the electron. The conversions from standard units are

mau =
m

me
= (1.10 · 1030 au (mass)·kg−1)m

lau =
l

h̄
= (9.48 · 1033 au (angular momentum)·J−1·s−1)l

qau =
q

qe
= (6.24 · 1018 au (charge)·C−1)q

We also need the conversions between atomic units and reduced units for density, energy, and temperature.
For argon, these conversions are

ρ∗ = σ3
auρau = 6.4333ρau = 266.23ρau

β∗ = εauβau = 3.79 · 10−4βau

U∗ =
Uau

εau
= 2635.87Uau

A.1



B Source Code1

B.1 Fluid Codes

PROGRAM FLMAIN
c Adapted from Ar cylinder.f90 by Jenny Barry, Summer 2006

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜c
c Modules (in alphabetical order):
c FLFluidFncs.f95 (˜350 lines) - functions and subroutines dealing with a fluid
c interacting via the Lennard-Jones potential
c FLGenFuncs (˜200 lines) - functions less specific to this code but still
c involving physics (calculating average
c energy for example) 10

c FLInfo.f95 (˜150 lines) - all global variables and constants
c FLMain.f95 (˜100 lines minus comments) - main method
c FLInitEnd (˜400 lines) - functions and subroutines required to initialize
c and/or end the program
c FLUtil.f95 (˜100 lines) - functions and subroutines of general use (doubling
c the size of an array for example)
c Mac types.f90 (˜10 lines) - Types definitions

cINPUT:
c COMMAND FILE: 20

c The prompt requires a loop file that contains a list of data file names.
c This allows the program to run many data runs at once
c Example file: ./example/flloop.in
c
c FLUID DATA FILE:
c This file has information about the fluid and the options for simulation
c Examples: ./example/basic/flbasic.in
c ./example/cyl/flcyl.in
c ./example/grand/flgrand.in
c ./example/multi/flmulti.in 30

c
c INIT DATA FILE
c Line 1: starting step size
c Rest of file: positions of atoms (note that it is important to get the number of atoms right
c in the main input file as well)
c Example: ./example/init.in
c
c MULTI DATA FILE (when running a MULTICANONICAL simulation):
c Line 1: number of bins in the eta weighting function
c Line 2: the file name with the data for the eta weighting function 40

c Example: ./example/multi/multi.in
c
c ETA DATA FILE (when running a MULTICANONICAL simulation):
c Contains the eta function when using multicanonical weighting
c Example: ./example/multi/eta.in
c
cOUTPUT (9 files):
c flposn: contains the x, y, z coordinates of each fluid atom at every WRITEDATA timesteps
c the first line for each time step is the number of particles, the current stepsize,
c and a throwaway number (to make the file easy to read into a data analysis program) 50

c density: contains density, number of atoms at every WRITEDATA timesteps
c energy: contains average energy at every WRITEDATA timesteps
c restart: contains fluid positions and other data necessary to restart the simulation from the
c point it ended. formatted correctly so that it can be used as an input file to start
c a new simulation from the last position of this simulation
c initfl: the initial position of the fluid
c widom: contains number of particles, dE, exp(-beta*dE) where dE is from widom particle insertion
c denstate: contains the density of states after EACH flat histogram (Wang-Landau ONLY)
c histe: contains the energy histogram after EACH flat histogram (Wang-Landau ONLY)
c pressure: contains pressure data 60

1We used lgrind to convert from source code to latex.
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c
c TO CHANGE THESE FILES OR ADD ANOTHER, LOOK AT THE SYNTAX IN FLInfo.f95. To add a file,
c increase NUMOUT, add another file descriptor to OUTFILES and add another name to OUTNAMES.

use types
use FLInfo
use FLInitEnd
use FLFluidFncs
use FLGenFncs
use FLUtil 70

c Main Program

implicit NONE

integer :: i, irun,j, cnt, WRITEDATA = 1
real (dp) :: V, avE, flatness, wid !! real (dp) is defined in MacTypes
character(fileNameLength) :: fname

80

call init genrand() !! Inits the Mersenne twister

c Getting the command input file
write(*,*) "Enter the name of the input file:"
read(*,*) fname
open(unit=CMDFILE, file=fname, status=’old’,action=’read’)
read(CMDFILE,*); read(CMDFILE,*) loop
read(CMDFILE,*)

runs: do j=1,loop 90

c loop over data runs
c read in data file

read(CMDFILE,*) fname
open(unit=FLFILE, file=fname,status=’old’,action=’read’)

c initialize program (in FLInitEnd)
call FLInit()

c calculate the volume
if (isCyl) then 100

V = pi*rcav2*hcav
else

V = rcav**3
endif

c initial values
numWid = 0
irun = 0
fmsize = fmSTART

110

c main loop
MC passes: do !! if W−L we need a while loop so this cannot be a for loop

if (irun.GT.npass−1.AND.(.NOT.isWL)) then
exit

else if (isWL.AND.irun > 0.AND.minva`(histE)/(sum(histE)/(1.0*size(histE))) > FLAT) then
c flat histogram!

fwl = sqrt(fwl) !! decrease f
print *, "flat histogram!, f = ",fwl
irun = 0 120

write(HISTENG, *) size(histE)
write(GFILE, *) size(histE)
do i=1,size(histE)

write(HISTENG,*) histE(i)
write(GFILE,*) g(i)

enddo
call resetHist() !! in FLInitEnd
if (fwl < MINF) exit
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endif
130

c do a move!
call flMCStep() !! in FLFluidFncs

if (MOD(irun,WRITEDATA) == 0) then
c write data

avE = averageEnergy()
wid = widomTest()
write(WIDOMDATA,*) irun, wid, exp(−beta*wid)
write(AVGENG,*) avE
write(HISTRHO,*) (nf*sig0**3)/V, nf 140

write(PLOTPOS,*) nf, fmsize, −1
do i=1,nf

write(PLOTPOS,*) xf(i,1), xf(i,2), xf(i,3)
enddo
write(PRESSURE,*) rhof, ((rhof/sig0**3)/beta+virial()/V)/eps0*sig0**3

endif

if (isWL.AND.mod(irun, 100)==0) then
c print out some info (what you might want to know depends on what is running)

if (irun > 0) then 150

flatness = minval(histE)/(sum(histE)/(1.0*size(histE)))
print *, "flatness: ", flatness

else
flatness = 0

endif
print *, "te = ",totalEnergy(), "nf = ",nf, "f = ", fwl
if (flatness < 1e−8) then

cnt = 0
do i=1,size(histE)

if (histE(i) < 1) then 160

cnt = cnt+1
endif

enddo
print *, "There are ", cnt, " zero elements."

endif
else if ((.NOT.isWL).AND.irun*100/npass > (irun−1)*100/npass) then

write(*,*) (irun*100/npass), "percent done"
endif

irun = irun + 1 170

end do MC passes

call cleanUp() !! in FLInitEnd
enddo runs

call endPro() !! in FLInitEnd

print *, "program finished, see data files for results"

END PROGRAM FLMAIN 180
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c FLInitEnd
c Contains routines used to initialize or end/clean up after FLMain
c Subroutines:
c cleanUp, endPro, FlInit, initMulti, initWL, openFiles, packCube, packCyl,
c startFromConfig, resetHist

MODULE FLInitEnd

use types 10

use FLInfo

CONTAINS

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c cleanUp subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Cleans up after one run by deallocating variables and closing single-run files
c Deallocates: 20

c xf, xfn, eta, g, histE
c Closes:
c INFILES, OUTFILES
c Called by:
c Main

subroutine cleanUp()
implicit none

integer :: i 30

c write restart file
write(RESTART,*) fmsize
do i=1,nf

write(RESTART,*) xf(i,1), xf(i,2), xf(i,3)
enddo
write(RESTART,*) !! a blank line is needed

c close input files
do i=1,size(INFILES) 40

close(INFILES(i))
enddo

c close output files
do i=1,size(OUTFILES)

close(OUTFILES(i))
enddo

c deallocate (or we can’t reallocate for another run
deallocate(xf, xfn) 50

if (isMulti) then
deallocate(eta)

endif
if (isWL) then

deallocate(g, histE)
endif

end subroutine cleanUp

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 60

c endPro subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Cleans up after entire program by closing multiple-run files
c Closes:
c GBLINFILES
c Called by:
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c Main
c Notes:
c does NOT call cleanUp! 70

subroutine endPro()
implicit none

integer :: i

c close global in files - probably just command loop
do i=1,size(GBLINFILES)

close(GBLINFILES(i))
enddo 80

end subroutine endPro

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c FLINIT SUBROUTINE
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Initializes the fluid atoms, based on data from FLFILE
c Initializes:
c npass, rhof, fmass, beta, z, isGrand, isCyl, isMulti, isWL, nf, rcav, rcav2 90

c Also allocates space for xf and xfn (and eta, g, histe if appropriate) and places the fluid atoms
c Calls:
c initMulti, initWL, openFiles, packCyl, packCube, startFromConfig, resetHist
c Called by:
c Main

subroutine FlInit()
implicit none

integer :: bool, i 100

logical :: initCond

call openFiles() !! open output files

c basic data
read(FLFILE,*);read(FLFILE,*) npass
read(FLFILE,*);read(FLFILE,*) rhof
read(FLFILE,*);read(FLFILE,*) fmass
read(FLFILE,*);read(FLFILE,*) beta
read(FLFILE,*);read(FLFILE,*) z 110

read(FLFILE,*);read(FLFILE,*) bool !!isGrand

c isGrand
if (bool.EQ.0) then

isGrand = .false.
else

isGrand = .true.
endif

c isCyl 120

read(FLFILE,*);read(FLFILE,*) bool
if (bool.EQ.0) then

isCyl = .false.
else

isCyl = .true.
endif

c isMulti
read(FLFILE,*); read(FLFILE,*) bool
if (bool == 1) then 130

isMulti = .TRUE.
call initMulti()

else
isMulti = .FALSE.

endif
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c isWL
read(FLFILE,*); read(FLFILE,*) bool
if (bool == 1) then

isWL = .TRUE. 140

call initWL()
else

isWL = .FALSE.
endif

c dimensions and number of fluid atoms
if (isGrand) then

read(FLFILE,*);read(FLFILE,*) rcav !! We specify rcav for gc
if (isCyl) then

nf = int(rhof*pi*hcav*rcav**2) 150

read(FLFILE,*) hcav
else

nf = int(rhof*rcav**3.0)
endif

else
read(FLFILE,*);read(FLFILE,*) nf !! We specify nf for can
if (isCyl) then

rcav = (nf/(rhof*pi*hcav))**(1.0/2.0)
read(FLFILE,*) hcav

else 160

rcav = (nf/rhof)**(1.0/3.0)
endif

endif
rcav2 = rcav*rcav

c allocate stuff
if (isGrand) then

TOTAL = nf*2 !! We do not know exactly how much to allocate so start with 2X
else

TOTAL = nf+1 !! we allocate one extra in case we want to do widom test 170

endif
allocate(xf(TOTAL,3), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: xf(:,:)"
STOP

endif
allocate(xfn(TOTAL,3), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: xfn(:,:)"
STOP 180

endif

c start from initial condition
read(FLFILE,*);read(FLFILE,*) bool
if (bool.NE.0) then

initCond = .TRUE.
call startFromConfig()

else if (isCyl) then
initCond = .FALSE.
call packCyl() 190

else
initCond = .FALSE.
call packCube()

endif

c write initial positions to file
do i=1,nf

write(INITIAL,*) xf(i,1), xf(i,2), xf(i,3)
enddo
print *, "the requested density gives", nf, "fluid atoms", " and a cavity of size", rcav 200

end subroutine FlInit
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c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c initMulti subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c initializes program to use multicanonical sampling

subroutine initMulti() 210

implicit none

integer :: i
character(fileNameLength) :: fname

c open MULTIFILE
read(FLFILE,*) fname
open(unit=MULTIFILE, file = fname, status=’old’, action=’read’)
read(MULTIFILE, *); read(MULTIFILE,*) multibins

220

c allocate space for eta
allocate(eta(multibins), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: eta(:)"
STOP

endif

c open ETAFILE
read(MULTIFILE,*); read(MULTIFILE,*) fname
open(unit=ETAFILE, file=fname,status=’old’, action=’read’) 230

do i=1,multibins
read(ETAFILE,*) eta(i)

enddo
end subroutine initMulti

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c initWL subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

240

c initializes program to use wang-landau sampling

subroutine initWL()
implicit none
integer :: i

allocate(g(gbins), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: g(:)"
STOP 250

endif

allocate(histE(gbins), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: histE(:)"
STOP

endif

call resetHist()
260

do i=1,gbins
g(i) = 0.0 !! this is actually ln(g)

enddo
fwl = exp(1.0)

end subroutine initWL

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c openFiles subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 270
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c opens input files

subroutine openFiles()
implicit none

integer :: i
character(fileNameLength) :: dirname

read(FLFILE,*);read(FLFILE,*) dirname 280

do i=1,size(OUTFILES)
open(unit=OUTFILES(i),file=(trim(dirname) // trim(OUTNAMES(i))),status=’replace’,action=’write’)

enddo
end subroutine openFiles

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c packCube subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Places fluid atoms uniformly in a cube (for when using periodic boundary conditions) 290

c Called by:
c FLInit

subroutine packCube()

integer :: i
real (dp) :: spc, rat

if (nf**(1.0/3.0)*sig0.GT.rcav) then
write(*,*) "Too many atoms for this volume. Increase rcav or decrease rhof." 300

STOP
endif

if (nf.LT.1) then
write(*,*) "No atoms!"
STOP

endif

spc = rcav/(nf**(1.0/3.0)) !! spacing between the atoms
do i=1,nf 310

rat = spc*i/rcav
xf(i,1) = (rat − int(rat))*rcav
xf(i,2) = (int(rat)*spc/rcav − int(int(rat)*spc/rcav))*rcav
xf(i,3) = int(int(rat)*spc/rcav)*spc

enddo

end subroutine packCube

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c packCyl subroutine 320

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Places fluid atoms uniformly in a cylinder
c Called by:
c FLInit

subroutine packCyl()

real (dp) :: rpack, rring, zring
integer :: nlayers, npack, nrings, l 330

c now we need to place the fluid atoms in the cavity in a dense fashion
rpack=2.0*rcav/sig0

if (rpack.LT.1.0) then
print *, "cannot pack any fluid atoms into a cylinder so small"
STOP

endif
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if (rpack.LT.2.0) then 340

print *, " we use simple axial packing"
if (nf.GT.int(hcav/sig0)) then

print *, "we cannot fit all requested atoms by axial packing"
STOP

endif
nlayers=nf
do k=1,nlayers

xf(k,1)=0.0
xf(k,2)=0.0
xf(k,3)=k*sig0 350

enddo
else

npack=6
nrings=0
l=0
RingIteration: do !! this blind loop iterates over multiple packing rings

if (l.GT.nf) exit !! will never exit initially, only after running out of fluid atoms to place
npack=int(pi/asin(1.0/(rpack−1.0)))
nrings=nrings+1
rring=sig0/(2.0*sin(pi/npack)) 360

LayerIteration: do k=1,int(hcav/sig0) !! loop over the layers of atoms
zring=k*sig0
do

l=l+1
if (l.GT.nf) exit
xf(l,1)=rring*cos(2.0*l*pi/npack)
xf(l,2)=rring*sin(2.0*l*pi/npack)
xf(l,3)=zring
if (mod(l,npack).EQ.0) exit

enddo 370

enddo LayerIteration

rpack=1.0/sin(pi/npack)−1.0

if (rpack.LT.2.0.AND.` .LT.nf) then
print *, " we use simple axial packing for the remaining atoms"
if ((nf−l).GT.int(hcav/sig0)) then

print *, "we cannot fit all remaining atoms by axial packing"
STOP

endif 380

do k=l,nf
xf(k,1)=0.0
xf(k,2)=0.0
xf(k,3)=(k−l)*sig0

enddo
l=l+int(hcav/sig0)

endif

if (npack.LT.6.AND.` .LT.nf) then !! abort if there are atoms let to place
c and we’re trying to put them inside a less than 6-ring 390

print *, "too many atoms for too small a cavity"
STOP

endif
enddo RingIteration

endif
end subroutine packCyl

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c startFromConfig subroutine 400

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c starts the simulation from an initial configuration stored in a file

subroutine startFromConfig()
integer :: i
character(fileNameLength) :: init
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read(FLFILE,*) init !! Name of initial configuration file
open(unit=INITFILE, file=init, status=’old’, action=’read’) 410

read(INITFILE,*) fmsize
do i=1,nf

read(INITFILE,*) xf(i,1), xf(i,2), xf(i,3)
enddo

end subroutine startFromConfig

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c resetHist subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

420

c resets the energy histogram for wang-landau sampling
c Called by:
c FLInit, Main

subroutine resetHist()
implicit none
integer :: i

do i=1,gbins
histE(i) = 0 430

enddo
end subroutine resetHist

end MODULE
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c FLFluidFncs
c Contains functions specific to the fluid for use with FLMain.f95.
c Functions:
c binE, updateWL, widomTest
c Subroutines
c flMCStep

MODULE FLFluidFncs

use types 10

use FLInfo
use FLUtil
use FLGenFncs

CONTAINS

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c binE function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

20

c Input:
c the energy to bin
c Returns:
c the bin in the histogram corresponding to energy
c Called by:
c updateWL

integer function binE(energy)
implicit none

30

real (dp), INTENT(IN) :: energy

binE = int(energy/GRES + size(histE))

end function binE

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c flMCStep subroutine 40

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Moves, creates, or destroys a fluid atom using the Metropolis method
c Modifies:
c xf, xfn, fmac, fmacsum, fmacsize, nf, TOTAL
c Called by:
c Main
c Calls:
c calcLJ, increaseCapacity
c Notes: 50

c I am not sure Wang-Landau and grand canonical work together; they have
c not been thoroughly tested

subroutine flMCStep()
implicit none

integer :: i,move index, bin1, bin2
c destroy, create, or move

real (dp) :: dcm
real (dp) :: fboltzf, cavfactor, flenergy, flenergyn, deltaE, rn, dstr, crt, V, nm, nmsum, wt, te 60

if (isCyl) then
V = pi*rcav2*hcav

else
V = rcav**3

endif
fmacsum = 0.0
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nmsum = 0.0

te = totalEnergy() 70

move index = 1
MoveCreateDestroyLoop: do

c This has to be a while loop because nf will change if using g.c.!
if (move index > nf) exit
flenergy=0.0
flenergyn=0.0
deltaE = 0.0
fmac = 0.0
nm=0.0 80

if (isGrand) then
dcm = ran1(initrand)

else
c We always just move

dcm = 0
endif
rn = ran1(initrand) !! in FLUtil
xfn=xf

c Move, create destroy choices
if (dcm < 1.0/3.0) then 90

c Move this atom
xfn(move index,1)=xf(move index,1)+fmsize*(ran1(initrand)−0.5)
xfn(move index,2)=xf(move index,2)+fmsize*(ran1(initrand)−0.5)
xfn(move index,3)=xf(move index,3)+fmsize*(ran1(initrand)−0.5)

if (isCyl) then
c cylinder
c outer reaches of atoms electron cloud

cavfactor = sqrt(xfn(move index,1)**2+xfn(move index,2)**2)+0.5*sig0
100

c periodic z-condition
if (xfn(move index,3).GT.hcav) xfn(move index,3)=xfn(move index,3)−hcav
if (xfn(move index,3).LT.0.0) xfn(move index,3)=xfn(move index,3)+hcav

else
c periodic boundaries

cavfactor = 0 !! we do not need to worry about going "outside" the cavity

c periodic conditions in all three directions
do i=1,3

do 110

if ((xfn(move index,i).LT.rcav).AND.(xfn(move index,i).GT.0)) exit
if ((xfn(move index,i)).GT.rcav) xfn(move index,i)=xfn(move index,i)−rcav
if ((xfn(move index,i)).LT.0.0) xfn(move index,i)=xfn(move index,i)+rcav

end do
enddo

endif

c calculate old and new energies
do i=1,nf

if (i.EQ.move index) cycle 120

flenergy = flenergy+calcLJ(move index,i,xf)
flenergyn = flenergyn+calcLJ(move index,i,xfn)

enddo
deltaE = flenergyn − flenergy
if (isWL) then

c do Wang-Landau stuff
if (updateWL(te, (te+deltaE), cavfactor)) then

xf = xfn
fmac = 1.0
te = te+deltaE 130

endif
else

c do Metropolis stuff
if (flenergyn.LT.flenergy.AND.cavfactor.LT.rcav) then

xf=xfn
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fmac=1.0 !! move accepted
else if (cavfactor.LT.rcav) then

fboltzf=dexp(−beta*(flenergyn−flenergy))
if (rn.LT.fboltzf) then

xf=xfn 140

fmac=1.0 !! move accepted
endif

endif
endif
nm = 1.0 !! the number of times we moved a particle

else if (dcm < 2.0/3.0) then
c destroy the atom

do i=1,nf
if (i.EQ.move index) cycle
deltaE = deltaE − calcLJ(move index,i,xf) 150

enddo
if (isWL) then

c do WL stuff
if (updateWL(te, (te+deltaE), cavfactor).AND.nf.GT.1) then

c destruction accepted
xf(move index, :) = xf(nf, :)
nf = nf−1
move index = move index−1 !! so we visit the last atom
te = te+deltaE

endif 160

else
c do Metropolis stuff

if (isMulti) then
c do multicanonical weighting

bin1 = int((1.0*multibins)*nf/V)
bin2 = int((1.0*multibins)*(nf−1)/V)
wt = exp(eta(bin1)−eta(bin2))

else
wt = 1.0 !! normal metropolis has no weight

endif 170

dstr = (deltaE − 1.0/beta*log(nf/(z*V)))
if (wt*exp(−beta*dstr).GT.rn) then

c destruction accepted
xf(move index, :) = xf(nf, :)
nf = nf−1
move index = move index−1 !! so we visit the last atom

endif
endif

else
c create an atom 180

if (isCyl) then
c Cylinder

xfn(nf+1,1) = (rcav−0.5*sig0)*(2*ran1(initrand) −1)
xfn(nf+1,2) = (rcav−0.5*sig0)*(2*ran1(initrand) −1)
xfn(nf+1,3) = hcav*ran1(initrand)

else
c Periodic

do i=1,3
xfn(nf+1,i) = rcav*ran1(initrand)

enddo 190

endif
if ((nf+1).GE.TOTAL) call increaseCapacity() !! in FLUtil
do i=1,nf

deltaE = deltaE + calcLJ(nf+1,i,xfn)
enddo
if (isWL) then

c Wang-Landau stuff
if (updateWL(te, (te+deltaE), cavfactor)) then

xf = xfn
nf = nf+1 200

te = te+deltaE
endif

else

B.13



c Metropolis stuff
if (isMulti) then

c Multicanonical weighting
bin1 = int((1.0*multibins)*nf/V)
bin2 = int((1.0*multibins)*(nf+1)/V)
wt = exp(eta(bin1)−eta(bin2))

else 210

c No weighting for Metropolis
wt = 1.0

endif
crt = (deltaE − 1.0/beta*log(z*V/(nf+1)))
if (wt*exp(−beta*crt).GT.rn) then

c creation accepted
xf = xfn
nf = nf+1

endif
endif 220

endif

c Move rate stuff (for adjusting step size)
fmacsum=fmacsum+fmac
nmsum = nmsum+nm
move index=move index+1

enddo MoveCreateDestroyLoop

fmac = fmacsum/nmsum !! Determine fraction of accepted moves (we tried nmsum moves)
230

c adjust fmsize so the acceptance rate is roughly 30%
if(fmac.GT.0.55) fmsize=fmsize*1.1
if(fmac.LT.0.25) fmsize=fmsize/1.1
do

if (fmsize < rcav) exit
fmsize = fmsize/2 !! do not let fmsize get too big

enddo
fmacsum = 0.0

end subroutine flMCStep
240

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c updateWL Function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c updates the histogram and density of states for use with wang-landau sampling
c Input:
c flenergy: energy before move
c flenergyn: energy after move
c cavfactor: factor to make sure we do not leave the cylinder if we are in one 250

c Returns:
c true if move is accepted, false otherwise
c Called by:
c flMCStep
c Calls:
c binE

logical function updateWL(flenergy, flenergyn, cavfactor)
implicit none

260

real (dp), INTENT(IN) :: flenergy, flenergyn, cavfactor
integer :: bin1, bin2

c bins
bin1 = binE(flenergy)
bin2 = binE(flenergyn)

if ((bin1.LE.size(histE).AND.bin1.GT.0).AND.(bin2.LE.size(histE).AND.bin2.GT.0)) then
c we are not moving outside the histogram

if (ran1(initrand).LT.exp(g(bin1) − g(bin2)).AND.cavfactor.LT.rcav) then 270

c accept move
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updateWL = .TRUE.
histE(bin2) = histE(bin2) + 1
g(bin2) = log(fwl)+g(bin2)

else
c reject move

updateWL = .FALSE.
histE(bin1) = histE(bin1) + 1
g(bin1) = log(fwl)+g(bin1)

endif 280

else if (bin1.GT.size(histE).OR.bin1.LE.0) then
c we somehow wound up outside the histogram (if we start in a bad configuration for example)

print *, ’An impossible configuration has been reached.’

STOP
else

c the move would take us outside the histogram so we reject it
updateWL = .FALSE.
histE(bin1) = histE(bin1) + 1
g(bin1) = log(fwl)+g(bin1)

endif 290

end function updateWL

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c widomTest Function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c performs a widom insertion and looks at the change in energy
c Returns:
c the change in energy a random insertion of a particle would cause 300

c Called by:
c Main
c Calls:
c calcLJ

real (dp) function widomTest()
real (dp) :: deltaE
integer :: i

deltaE = 0 310

c “insert” particle
if (isCyl) then

c cylinder
xfn(nf+1,1) = (rcav−0.5*sig0)*(2*ran1(initrand) −1)
xfn(nf+1,2) = (rcav−0.5*sig0)*(2*ran1(initrand) −1)
xfn(nf+1,3) = hcav*ran1(initrand)

else
c periodic

do i=1,3 320

xfn(nf+1,i) = rcav*ran1(initrand)
enddo

endif

c calculate energy change
do i=1,nf

deltaE = deltaE + calcLJ(nf+1,i,xfn)
enddo

numWid = numWid+1 !! keep track of the number of tests we have done 330

widomTest = deltaE
end function widomTest

end MODULE FLFluidFncs

B.15



c FLGenFncs
c Contains general functions (or functions that could be generalized)
c Functions:
c averageEnergy, calcF, calcLJ, flrrel, flrrel2, totalEnergy, virial

MODULE FLGenFncs

use types
use FLInfo
use FLUtil 10

CONTAINS

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c averageEnergy Function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c calculates the average energy
c Returns:
c average energy 20

c Called by:
c Main
c Calls:
c totalEnergy

real (dp) function averageEnergy()
implicit none

averageEnergy = totalEnergy()/nf
end function averageEnergy 30

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c calcF Function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c calculates force assuming a Lennard-Jones potential
c Parameters:
c i, j: indices in mols of the two atoms between which to calculate the force
c mols: an nx3 array of the positions of atoms interacting via Lennard-Jones potential 40

c Returns:
c The force between mols(i) and mols(j) assuming a Lennard-Jones potential
c Called by:
c virial

real (dp) function calcF(i, j, mols)
implicit none

integer, INTENT(IN) :: i, j
real (dp), DIMENSION(:,:), INTENT(IN) :: mols 50

real (dp) :: dist

dist = flrrel(i,j,mols) !! we need the actual distance

c sets cutoff distance for LJ interaction to rcut
if ((isCyl.AND.dist.LT.min(0.5*hcav,rcut)).OR.((.NOT.isCyl).AND.dist.LT.(rcut))) then

calcF = 4.0*eps0*(12*(sig0**12/dist**13)−6*(sig0**6/dist**7))
else

calcF = 0.0
endif 60

end function calcF

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c calcLJ Function
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c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c calculates Lennard-Jones potential between two molecules 70

c Parameters:
c i, j: indices in mols of the two atoms between which to calculate the Lennard-Jones potential
c mols: an nx3 array of the positions of atoms interacting via Lennard-Jones
c Returns:
c The Lennard-Jones potential between mols(i) and mols(j)
c Called by:
c flMCStep

real (dp) function calcLJ(i, j, mols) 80

implicit none

integer, INTENT(IN) :: i, j
real (dp), DIMENSION(:,:), INTENT(IN) :: mols
real (dp) :: dist2

dist2 = flrrel2(i,j,mols) !! we use the squared value since that is faster to calculate

c sets cutoff distance for LJ interaction to rcut
if ((isCyl.AND.dist2.LT.(min((0.5*hcav)**2,rcut**2))).OR.((.NOT.isCyl).AND.dist2.LT.(rcut**2))) then 90

calcLJ = 4.0*eps0*((sig0**2/dist2)**6−(sig0**2/dist2)**3)
else

calcLJ = 0.0
endif

end function calcLJ

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c flrrel and flrrel2 Functions
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 100

c calculates the (squared - flrrel2) distance between two molecules using the minimum image convention
c Parmeters:
c i, j: indices in mols of the two atoms between which to calculate the distance (squared)
c mols: an nx3 array of the positions of atoms
c Returns:
c The distance (flrrel) or distance squared (flrrel2) between mols(i) and mols(j)
c Called by:
c calcF, calcLJ, virial
c Notes: 110

c It is noticeably faster to not take a square root if it can be avoided

real (dp) function flrrel(i,j,mols)
implicit none
integer, INTENT(IN) :: i, j
real (dp), DIMENSION(:,:), INTENT(IN) :: mols

flrrel = sqrt(flrrel2(i,j,mols))

end function flrrel 120

real (dp) function flrrel2(i,j,mols)
implicit none

integer, INTENT(IN) :: i, j
real (dp), DIMENSION(:,:), INTENT(IN) :: mols
integer :: n

flrrel2 = 0
if (isCyl) then 130

c cylinder
c try distance above and below

flrrel2= (mols(i,1)−mols(j,1))**2+(mols(i,2)−mols(j,2))**2+&
(min(abs(mols(i,3)−mols(j,3)), abs(hcav−abs(mols(i,3) − mols(j,3)))))**2

else
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c periodic
c try distance above and below for all three dimensions

do n=1,3
flrrel2 = flrrel2 + &
(min(abs(mols(i,n)−mols(j,n)), abs(rcav−abs(mols(i,n) − mols(j,n)))))**2 140

enddo
endif

end function flrrel2

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c totalEnergy Function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c calculates the total energy 150

c Returns:
c total energy
c Called by:
c averageEnergy, flMCStep
c Calls:
c calcLJ

real (dp) function totalEnergy()
implicit none

160

integer :: i,j

totalEnergy = 0
do i=1,nf

do j=i+1,nf
totalEnergy = totalEnergy + calcLJ(i,j,xf)

enddo
enddo

end function totalEnergy 170

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c virial Function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c calculate the virial
c Returns:
c virial
c Called by: 180

c Main (to calculate pressure)
c Calls:
c calcF, flrrel

real (dp) function virial()
implicit none
integer :: i,j

virial = 0 190

do i=1,nf
do j=i+1,nf

virial = virial + 1.0/3.0*calcF(i,j,xf)*flrrel(i,j,xf)
enddo

enddo
end function virial

end MODULE FLGenFncs
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c FLUtil
c Useful routines mostly involving array manipulation or random numbers
c Contains:
c copyArray, increaseCapacity, ran1

MODULE FLUtil

use types
use FLInfo

10

CONTAINS

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c copyArray subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Copies 1-D array src to dest
c Intent(in):
c src - the array from which to copy
c Intent(out) 20

c dest - the array into which to copy
c Called by:
c increaseCapacity

subroutine copyArray(src, dest)
implicit none

real (dp), DIMENSION(:), INTENT(IN) :: src
real (dp), DIMENSION(:), INTENT(OUT) :: dest
integer :: i 30

do i=1,size(src)
dest(i) = src(i)

enddo
end subroutine

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c increaseCapacity subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

40

c Doubles the capacity of xf and xfn
c Modifies:
c xf, xfn, TOTAL
c Called by:
c flMCStep
c Calls:
c copyArray

subroutine increaseCapacity()
50

implicit none

real (dp), DIMENSION(TOTAL,3) :: tmp, tmpn
integer :: j

do j = 1,3
call copyArray(xf(:,j), tmp(:,j))
call copyArray(xfn(:,j), tmpn(:,j))

enddo
60

c you must deallocate an array before you can reallocate it!
deallocate(xf, xfn, stat = error)

if (error.ne.0) then
write(*,*) "Unable to deallocate xf and xfn"
STOP

endif
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allocate(xf(TOTAL*2,3), stat = error)
if (error .ne. 0) then 70

write(*,*) "Unable to increase size of xf. error was ",error
STOP

endif

allocate(xfn(TOTAL*2,3), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to increase size of xfn. error was ",error
STOP

endif
80

do j = 1,3
call copyArray(tmp(:,j), xf(:,j))
call copyArray(tmpn(:,j), xfn(:,j))

enddo
TOTAL = TOTAL*2
print *, "increased capacity to ",TOTAL

end subroutine increaseCapacity

90

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c RAN1 FUNCTION
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Generates random numbers using the Mersenne twister
c This function takes extra arguments because it was also
c a linear congruential generator
double precision function ran1(idum)

implicit none 100

integer, INTENT(IN) :: idum
double precision :: genrand res53

ran1 = genrand res53()

end function ran1

end MODULE FLUtil
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c FLInfo
c Global variables and constants for FLMain

MODULE FLInfo

use types

implicit none

c˜˜˜˜˜˜˜˜˜˜˜˜˜ 10

c Constants
c˜˜˜˜˜˜˜˜˜˜˜˜˜
integer, PARAMETER :: initrand = 0
integer, PARAMETER :: fileNameLength=200 !! maximum file name length
real (dp), PARAMETER :: pi = 3.1415926535 !! pi
real (dp), PARAMETER :: kB = 3.16679e−6 !! Boltzmanns constant in AU
integer :: error !! To keep error return values

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c Conversions 20

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
real (dp), PARAMETER :: ANGSTR2AU = 1.8893

c˜˜˜˜˜˜˜˜˜
c Files
c˜˜˜˜˜˜˜˜˜
integer, PARAMETER :: NUMIN=10, NUMOUT=9
integer, DIMENSION(NUMIN), PARAMETER :: INFILES = (/14, 15,16,17,18,19,20,21,22,23/)
integer, DIMENSION(NUMIN), PARAMETER :: GBLINFILES = (/33,34,35,36,37,38,39,40,41,42/) 30

integer, DIMENSION(NUMOUT), PARAMETER :: OUTFILES=(/43, 44, 45, 46, 47, 48,49,50, 51/)
c names to identify files in code
integer, PARAMETER :: CMDFILE = GBLINFILES(1), &

FLFILE = INFILES(1), INITFILE = INFILES(2), &
MULTIFILE = INFILES(3), ETAFILE = INFILES(4), &
PLOTPOS = OUTFILES(1), HISTRHO = OUTFILES(2), &
AVGENG = OUTFILES(3), RESTART=OUTFILES(4), &
INITIAL=OUTFILES(5), WIDOMDATA = OUTFILES(6), &
GFILE = OUTFILES(7), HISTENG = OUTFILES(8), &
PRESSURE = OUTFILES(9) 40

c file names
CHARACTER(len=8), DIMENSION(NUMOUT), PARAMETER :: OUTNAMES = &

(/"flposn ", & !! The fluid position
"density ", & !! Density/number of atoms in fluid
"energy ", & !! Average energy of the fluid
"restart ", & !! Use to restart sim if necessary
"initfl ", & !! Initial fluid positions
"widom ", & !! Data from Widom Test
"denstate", & !! ln(density of states) for WL
"histe ", & !! Energy histogram for WL 50

"pressure"/) !!pressure data (no correction)

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c General Fluid Information
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
integer :: loop !! The number of runs to do
integer :: npass !! Number of MC steps to do
integer :: nf !! Current number of fluid atoms (will change with GC)
integer :: TOTAL !! Current max number of fluid atoms (for GC) 60

real (dp), ALLOCATABLE, DIMENSION(:,:) :: xf, xfn !! Arrays to store position info
real (dp), PARAMETER :: eps0 = 1.0 !! Depth of well is 1.0 in reduced units
real (dp), PARAMETER :: sig0 = 1.0 !! Van der Waals radius is 1.0 in reduced units
real (dp), PARAMETER :: rcut = 2.5*sig0 !! Cutoff radius
real (dp) :: fmass !! fluid mass
real (dp) :: rhof !! fluid density
real (dp), PARAMETER :: fmSTART = 0.9 !! Starting step size for fluids
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real (dp) :: rcav, rcav2, hcav !! Cavity properties
real (dp) :: beta !! 1/kT
real (dp) :: z !! exp(beta*mu)/GAMMA^3 70

!! mu = chemical potential
!! GAMMA = (h^2/(2*pi*fmass)*beta)^(1/2)

real (dp) :: fmac, fmacsum, fmsize=fmSTART !! Accepted move stuff for fluids
!! (real to avoid problems with integer division)

c˜˜˜˜˜˜˜˜˜˜˜
c Options
c˜˜˜˜˜˜˜˜˜˜˜
logical :: isGrand !! True to use grand canonical, false to use canonical
logical :: isCyl !! True to use cylinder 80

logical :: isMulti !! True to use multicanonical
logical :: isWL !! True to use Wang−Landau

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c Widom Test
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜
real (dp) :: widom = 0 !! fluid averages
integer :: numWid = 0 !! number info for averages

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 90

c Multicanonical
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
real (dp), ALLOCATABLE, DIMENSION(:) :: eta !! Weighting for multicanonical
integer :: multibins !! for multicanonical: size of eta

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c Wang-Landau
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
real (dp), ALLOCATABLE, DIMENSION(:), TARGET :: g !! g(E) for W−L
real (dp), ALLOCATABLE, DIMENSION(:), TARGET :: histE !! H(E) for W−L 100

real (dp), PARAMETER :: GRES = 0.5 !! Resolution of g(E) and histE
real (dp), PARAMETER :: FLAT = 0.93 !! When the histogram is considered "flat"
real (dp), PARAMETER :: MINF = 1.0000001 !! Stop when fwl falls below this value
integer :: gbins = 5000 !! g(E) info
real (dp) :: fwl !! g(E) = fwl*g(E)

end MODULE FLInfo

B.22



Makefile:

#dependent files must be listed AFTER those files on which they are dependent
SRCFILES = mt19937ar.f Mac types.f90 FLInfo.f95 FLUtil.f95 FLInitEnd.f95 FLGenFncs.f95 FLFluidFncs.f95 FLMain.f95

LDFLAGS = −L/Users/jbarry/Documents/Thesis/lib −lplplot \
−X −framework −X Carbon −YEXT NAMES=LCS

OPTFLAGS = −O3 −cpu:g5
PROFLAGS = −profile

default: GCMain
10

GCMain: $(SRCFILES)
f90 $(SRCFILES) −o FLMain $(OPTFLAGS) $(LDFLAGS)

clean:
rm *.mod
rm FLMain
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B.2 Light Particle Codes

PROGRAM LPMAIN

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c Modules (in alphabetical order):
c LPFncs.f95 (˜700 lines) - functions and subroutines dealing with the light particle
c LPGenFncs.f95 (˜350 lines) - functions less specific to this code but still
c involving physics (calculating average
c energy for example)
c LPInfo.f95 (˜175 lines) - all global variables and constants
c LPInitEnd (˜700 lines) - functions and subroutines required to initialize 10

c and/or end the program
c LPMain.f95 (˜200 lines minus comments) - main method
c LPUtil.f95 (˜125 lines) - functions and subroutines of general use (doubling
c the size of an array for example)
c Mac types.f90 (˜10 lines) - Types definitions
c
cINPUT:
c COMMAND FILE:
c The prompt requires a loop file that contains a list of data file names.
c This allows the program to run many data runs at once 20

c Example file: ./example/loop.in
c
c GENERAL DATA FILE:
c This file has general information about the simulation, such as the directory
c to store output files and general simulation constants.
c Examples: ./example/metr/genInfo.in
c ./example/wanglandau/genInfo.in (careful! this one runs a wang-
c landau simulation so there’s no way of making it short. once you
c start it, it could take up to 3 days to finish)
c 30

c FLUID DATA FILE:
c This file has information about the fluid.
c Examples: ./example/fluid.in
c
c INIT FLUID DATA FILE
c Line 1: starting step size
c Rest of file: positions of fluid atoms (note that it is important to get the number of
c atoms right in the fluid input file as well)
c Example: ./example/frozenfl
c 40

c LIGHT PARTICLE FILE
c This file has information about the light particle.
c Example: ./example/lp.in
c
c
c
cOUTPUT (7 files):
c lpposn: contains the x, y, z coordinates of each bead at every WRITEDATA timesteps
c the first line for each time step is the number of particles, and two
c throwaway numbers (to make the file easy to read into a data analysis program) 50

c flposn: could contain the x, y, z coordinates of each fluid atom at every WRITEDATA timesteps
c the first line for each time step is the number of particles, the current stepsize,
c and a throwaway number (to make the file easy to read into a data analysis program)
c currently, not usually written to since we are not moving the fluid
c density: could contain density, number of atoms at every WRITEDATA timesteps
c currently, not usually written to since we are not moving the fluid
c energy: contains average potential and kinetic energy at every WRITEDATA timesteps
c denstate: contains the density of states after EACH flat histogram, written as
c two-dimensional (Wang-Landau ONLY)
c histe: contains the energy histogram after EACH flat histogram written as 60

c two-dimensional (Wang-Landau ONLY)
c accept: data about the acceptance rate and number of beads moved
c
c TO CHANGE THESE FILES OR ADD ANOTHER, LOOK AT THE SYNTAX IN LPInfo.f95. To add a file,
c increase NUMOUT, add another file descriptor to OUTFILES and add another name to OUTNAMES.
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use types
use LPInfo
use LPInitEnd
use LPFncs 70

c Main Program

implicit none

integer :: i, loops, irun,j, cnt, counter, WRITEDATAWL = 5000, WRITEDATAM = 10
real (dp) :: V, flatness
character(fileNameLength) :: fname

80

call init genrand(initrand) !! Inits the Mersenne twister
call openCommandFile() !! In LPInitEnd

runs: do loops=1,loop

c reset variables
numWid = 0
irun = 0
acsum = 0
fmsize = fmSTART 90

cmmove = cmSTART
LPmove = LPSTART

c initialize everything with the input files
read(CMDFILE, *); read(CMDFILE,*) fname
open(unit=GENFILE, file=fname,status=’old’, action=’read’)
call GenInit()
read(CMDFILE,*) fname
open(unit=FLFILE,file=fname,status=’old’,action=’read’)
call FLInit() 100

read(CMDFILE,*) fname
open(unit=LPFILE, file=fname,status=’old’,action=’read’)
call LPInit()

c calculate the volume
if (isCyl) then

V = pi*rcav2*hcav
else

V = rcav**3
endif 110

c main loop
MC passes: do !! this needs to be a while loop for WL

if (irun.GT.npass−1.AND.(.NOT.isWL)) then
exit

else if (isWL.AND.irun > 0.AND.(mod(irun,CHECK)==0).AND.minval(histE)/(sum(histE)/(1.0*gbins1*gbins2)) > FLAT) then
c flat histogram

write(HISTENG, *) gbins1, gbins2
write(GFILE, *) irun, fwl 120

do i=1,gbins1
write(HISTENG,*) histE(i,:)
write(GFILE,*) g(i,:)

enddo
call resetHist() !! in LPInitEnd
irun = 0
fwl = sqrt(fwl) !! decrease f
print *, "flat histogram!, f = ",fwl
if (fwl < MINF) exit
if (fwl < REDF) then 130

FLAT = FLAT − REDFPER*FLAT
print *, "FLAT = ", FLAT

endif
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endif

c move
if (nb == 1) then

c classical particle
call moveOne() !! in LPFncs

else if (isWL) then 140

c Wang-Landau
call moveWL(irun) !! in LPFncs
call updateCM() !! in LPGenFncs

else if (isThread) then
c Threading

call moveThread(irun) !! in LPFncs
call updateCM() !! in LPGenFncs

else
c Metropolis

call move(irun) !! in LPFncs 150

call updateCM() !! in LPGenFncs
endif

c print some data to a file
if (isWL.AND.(mod(irun, WRITEDATAWL)==0)) then

c WL data
write(LPPOS, *) nb,irun,fwl
do i=1,nb

write(LPPOS,*) x(i,1,1),x(i,1,2),x(i,1,3)
enddo 160

c we don’t let the files get too big
counter = counter + 1
write(AVGENG, *) kinEnergy(), potEnergy(), irun, fwl
if (counter > 10000000) then

print *, ’exceeded maximum lines in file. . .exiting’

exit
endif

else if (.NOT.isWL.AND.mod(irun,WRITEDATAM)==0) then
c Metropolis data 170

write(LPPOS, *) irun,−1,−1
do i=1,nb

write(LPPOS,*) x(i,1,1),x(i,1,2),x(i,1,3)
enddo

write(AVGENG,*) kinEnergy(), potEnergy(), irun, mb

endif

c print to screen 180

if (isWL.AND.mod(irun, 5000)==0) then
c WL stuff

if (irun > 0) then
flatness = minval(histE)/(sum(histE)/(1.0*gbins1*gbins2))
print *, "flatness: ", flatness

else
flatness = 0

endif
print *, "pe = ",potEnergy(), "ke = ", kinEnergy(), "nf = ",nf, "f = ", fwl

c calculate how many zero elements if flatness = 0 190

if (flatness < 1e−8) then
cnt = 0
do i=1,gbins1

do j=1,gbins2
if (histE(i,j) < 1) then

cnt = cnt+1
endif

enddo
enddo
print *, "There are ", cnt, " zero elements." 200

endif
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else if (.NOT.isWL.AND.int(irun*100/npass) > int((irun−1)*100/npass)) then
c Metropolis

write(*,*) (irun*100/npass), "percent done"
endif

c using accepted move ratios to determine cm step size and
c how many beads we use

acsum = acsum + ac 210

accmsum = accmsum + accm
if (.NOT.isWL.AND.mod(irun,nevalu) == nevalu−1) then

ac = acsum/(nevalu−1) ! Determine fraction of accepted moves
! single bead moves only occur nevalu−1 times

c adjust mb so the acceptance rate is roughly 50%
if(ac > 0.5) mb=mb+1
if(ac < 0.5) mb=mb−1
if(mb < 1) mb=1
if(mb > nb) mb=nb 220

acsum = 0
write(ACCFILE, *) irun, ac, mb

endif
c Every (nevalu^2)-th move, we look at accmsum, and see how many moves are being accepted.
c If the rate is too low or two high, we adjust the size of the cm step.

if (.NOT.isWL.AND.mod(irun,nevalu**2) == nevalu**2−1) then
accm = accmsum/nevalu !! Determine fraction of accepted moves

c adjust cmmove so the acceptance rate is roughly 50%
if(accm.GT.0.6.AND.cmmove.LT.rcav/4.0) cmmove=cmmove*1.2
if(accm.GT.0.6.AND.cmmove.GE.rcav/4.0) cmmove=rcav/4.0 230

if(accm.LT.0.4) cmmove=cmmove*0.8
accmsum = 0

endif

irun = irun + 1

end do MC passes

call cleanUp() !! LPInitEnd 240

enddo runs
call endPro()
print *, "program finished, see data files for results"

END PROGRAM LPMAIN
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c InitFncs
c Contains routines used to initialize and/or end the program
c Subroutines:
c cleanUp, endPro, FlInit, GenInit, initBeads,
c initMulti, initWL, LPInit openCommandFile,
c openFiles, packCube, packCyl, placeBeads,
c resetHist, startFromConfig

MODULE LPInitEnd 10

use types
use LPInfo
use LPFncs
use LPUtil

CONTAINS

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c cleanUp subroutine 20

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Cleans up after one run by deallocating variables and closing single-run files
c Deallocates:
c x, xn, x changed, xf, xfn, eta, g, histE
c Closes:
c INFILES, OUTFILES
c Called by:
c Main

30

subroutine cleanUp()
implicit none

integer :: i

do i=1,size(INFILES)
close(INFILES(i))

enddo

do i=1,size(OUTFILES) 40

close(OUTFILES(i))
enddo

deallocate(x, xn, xf, xfn, x changed)
if (isMulti) then

deallocate(eta)
endif
if (isWL) then

deallocate(g, histE)
endif 50

end subroutine cleanUp

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c endPro subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Cleans up after entire program by closing multiple-run files
c Closes:
c GBLINFILES
c Called by: 60

c Main
c Notes:
c does NOT call cleanUp!

subroutine endPro()
implicit none
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integer :: i

do i=1,size(GBLINFILES) 70

close(GBLINFILES(i))
enddo

end subroutine endPro

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c FLINIT SUBROUTINE
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

80

c Initializes the fluid atoms based on data from FLFILE
c Initializes:
c rhof, rcav, hcav, nf
c Allocates space for:
c xf, xfn
c Calls:
c packCyl, packCube, startFromConfig
c Called by:
c Main

90

subroutine FlInit()
implicit none

logical :: initCond
integer :: bool

read(FLFILE,*);read(FLFILE,*) rhof

c dimensions and number of fluid atoms
c for now, this should always be canonical and periodic, but we leave this in here 100

c to make updating the code for the other options reasonably easy
if (isGrand) then

read(FLFILE,*);read(FLFILE,*) rcav !! We specify rcav for gc
if (isCyl) then

nf = int(rhof*pi*hcav*rcav**2)
read(FLFILE,*) hcav

else
nf = int(rhof*rcav**3.0)

endif
else 110

read(FLFILE,*);read(FLFILE,*) nf !! We specify nf for can
if (isCyl) then

rcav = (nf/(rhof*pi*hcav))**(1.0/2.0)
read(FLFILE,*) hcav

else
rcav = (nf/rhof)**(1.0/3.0)

endif
endif
rcav2 = rcav*rcav

120

if (isGrand) then
TOTAL = nf*2

else
TOTAL = nf+1 !! we allocate one extra in case we want to do widom test

endif

allocate(xf(TOTAL,3), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: xf(:,:)"
STOP 130

endif

allocate(xfn(TOTAL,3), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: xfn(:,:)"
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STOP
endif

c at the moment, we should always be starting from an initial condition,
c but the day may come when we are not. . . 140

read(FLFILE,*);read(FLFILE,*) bool !! start from initial condition
if (bool.NE.0) then

initCond = .TRUE.
call startFromConfig()

else if (isCyl) then
initCond = .FALSE.
call packCyl()

else
initCond = .FALSE.
call packCube() 150

endif

print *, "the requested density gives", nf, "fluid atoms", " and a cavity of size", rcav

end subroutine FlInit

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c GENINIT SUBROUTINE
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 160

c Initializes the general variables for the simulation and opens files
c based on data in GENFILE
c Initializes:
c beta, hbar, isWL
c Calls:
c openFiles
c Called by:
c Main

170

subroutine GenInit()
integer :: bool

call openFiles()

read(GENFILE,*);read(GENFILE,*) beta
read(GENFILE,*);read(GENFILE,*) hbar
read(GENFILE,*);read(GENFILE,*) bool !! isWL

c isWL 180

if (bool == 1) then
isWL = .TRUE.
isThread = .FALSE. !! cannot do threading and WL together
call initWL()

else
isWL = .FALSE.

endif
read(GENFILE,*);read(GENFILE,*) bool !! isThread
if (bool == 1 .AND. .NOT.isWL) then

isThread = .TRUE. 190

else
isThread = .FALSE.

endif

end subroutine GenInit

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c initBeads subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 200

c Initializes positronium beads from a file
c Modifies:
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c x, xn
c Called by:
c LPInit

subroutine initBeads()
implicit none

210

integer :: ierror
integer :: ibeadcount ! number of beads in reading file
integer :: ic ! charge (electron = 1 or positron = 2)
integer :: ib ! bead
character(fileNameLength) :: fname

ibeadcount = 0
read(LPFILE, *) fname
open(unit=LPINITFILE, file = fname, status = ’old’, action = ’read’, iostat = ierror)
if(ierror /= 0) then 220

write(*,*) ’An error occured opening init file for bead’

STOP
end if
charge3: do ic = 1, 2

bead3: do ib = 1, nb
read(LPINITFILE,*,iostat = ierror) x(ib,ic,1), x(ib,ic,2), x(ib,ic,3)
ibeadcount = ibeadcount+1
if (ierror /= 0) STOP

end do bead3
end do charge3 230

!Close off the chain
x(nb+1,:,:) = x(1,:,:)

if(ibeadcount /= 2*nb) then
write(*,*) ’too few or too many beads in bead init file’

STOP
endif

if (isCyl) then 240

x(:,:,3)=x(:,:,3)+0.5*hcav !! put the positronium halfway up the cylinder (in the middle)
endif

xn = x

end subroutine initBeads

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c initMulti subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 250

c Initializes the program to use multicanonical sampling
c Allocates space for:
c eta
c Modifies:
c eta, multibins
c Called by:
c nothing at the moment, but might be useful to
c reintroduce multicanonical sampling

260

subroutine initMulti()
implicit none

integer :: i
character(fileNameLength) :: fname

read(FLFILE,*); read(FLFILE,*) fname
open(unit=MULTIFILE, file = fname, status=’old’, action=’read’)
read(MULTIFILE, *); read(MULTIFILE,*) multibins

270

allocate(eta(multibins), stat = error)
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if (error .ne. 0) then
write(*,*) "Unable to allocate memory for the array: eta(:)"
STOP

endif
read(MULTIFILE,*); read(MULTIFILE,*) fname

open(unit=ETAFILE, file=fname,status=’old’, action=’read’)
do i=1,multibins

read(ETAFILE,*) eta(i) 280

enddo
end subroutine initMulti

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c initWL subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Initializes the program to use Wang-Landau sampling
c Allocates space for:
c g, histE 290

c Called by:
c GenInit

subroutine initWL()
implicit none

allocate(g(gbins1, gbins2), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: g(:)"
STOP 300

endif

allocate(histE(gbins1, gbins2), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: histE(:)"
STOP

endif

call resetHist()
310

g = 0.0

fwl = exp(1.0)
end subroutine initWL

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c LPInit subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Initializes light particle beads 320

c Initializes:
c nb, mb, numcharge, npass, amass
c Allocates space for:
c x, xn, x changed
c Calls:
c initBeads, placeBeads, CreateTable
c Called by:
c Main

330

subroutine LPInit()
implicit none
integer :: bool

read(LPFILE,*);read(LPFILE,*) nb !! # beads for the particle
read(LPFILE,*);read(LPFILE,*) mb !! # beads moved per staging pass
read(LPFILE,*);read(LPFILE,*) npass !! # staging passes
read(LPFILE,*);read(LPFILE,*) amass !! mass of a single quantum particle
read(LPFILE,*);read(LPFILE,*) bool !! start from config
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340

allocate(x(nb+1,2,3), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: x(:,:,:)"
stop

endif

allocate(xn(nb+1,2,3), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: xn(:,:,:)"
stop 350

endif

allocate(x changed(nb+1,2), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to allocate memory for the array: x changed(:,:)"
stop

endif

c The deB wavelength is a useful bit of trivia, so we calculate it out here.
wave = sqrt(beta*hbar*hbar/amass) 360

x changed(:,:) = .TRUE.

if (bool == 1) then
c start from init file

call initBeads()
else

c start in random place
call placeBeads()

endif 370

end subroutine LPInit

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c openCommandFile subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Prompts the user for and opens the command file
c Called by:
c Main 380

subroutine openCommandFile()
implicit none

character(fileNameLength) :: fname

write(*,*) "Enter the name of the input file:"
read(*,*) fname
open(unit=CMDFILE, file=fname, status=’old’,action=’read’)
read(CMDFILE,*); read(CMDFILE,*) loop 390

read(CMDFILE,*)
end subroutine openCommandFile

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c openFiles subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c opens input files
c Called by: 400

c genInit

subroutine openFiles()
implicit none

integer :: i
character(fileNameLength) :: dirname
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read(GENFILE,*);read(GENFILE,*) dirname
do i=1,size(OUTFILES) 410

open(unit=OUTFILES(i),file=(trim(dirname) // trim(OUTNAMES(i))),status=’replace’,action=’write’)
enddo

end subroutine openFiles

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c packCube subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Places fluid atoms uniformly in a cube 420

c Modifies:
c xf
c Called by:
c FLInit

subroutine packCube()

integer :: i
real (dp) :: spc, rat

430

if (nf**(1.0/3.0)*sig0.GT.rcav) then
write(*,*) "Too many atoms for this volume. Increase rcav or decrease rhof."
STOP

endif

if (nf.LT.1) then
write(*,*) "No atoms!"
STOP

endif
440

spc = rcav/(nf**(1.0/3.0)) !! spacing between the atoms

do i=1,nf
rat = spc*i/rcav
xf(i,1) = (rat − int(rat))*rcav
xf(i,2) = (int(rat)*spc/rcav − int(int(rat)*spc/rcav))*rcav
xf(i,3) = int(int(rat)*spc/rcav)*spc

enddo

end subroutine packCube 450

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c packCyl subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Places fluid atoms uniformly in a cylinder
c Modifies:
c xf
c Called by:
c FLInit 460

subroutine packCyl()

real (dp) :: rpack, rring, zring
integer :: nlayers, npack, nrings, l

c now we need to place the fluid atoms in the cavity in a dense fashion
rpack=2.0*rcav/sig0

if (rpack.LT.1.0) then 470

print *, "cannot pack any fluid atoms into a cylinder so small"
STOP

endif

if (rpack.LT.2.0) then
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print *, " we use simple axial packing"
if (nf.GT.int(hcav/sig0)) then

print *, "we cannot fit all requested atoms by axial packing"
STOP

endif 480

nlayers=nf
do k=1,nlayers

xf(k,1)=0.0
xf(k,2)=0.0
xf(k,3)=k*sig0

enddo
else

npack=6
nrings=0
l=0 490

RingIteration: do !! this blind loop iterates over multiple packing rings
if (l.GT.nf) exit !! will never exit initially, only after running out of fluid atoms to place
npack=int(pi/asin(1.0/(rpack−1.0)))
print *, "we pack in a ring of", npack, "fluid atoms"
nrings=nrings+1
rring=sig0/(2.0*sin(pi/npack))
print *,"we pack at radius", rring
LayerIteration: do k=1,int(hcav/sig0) !! loop over the layers of atoms

zring=k*sig0
do 500

l=l+1
if (l.GT.nf) exit
xf(l,1)=rring*cos(2.0*l*pi/npack)
xf(l,2)=rring*sin(2.0*l*pi/npack)
xf(l,3)=zring
if (mod(l,npack).EQ.0) exit

enddo
enddo LayerIteration

rpack=1.0/sin(pi/npack)−1.0 510

if (rpack.LT.2.0.AND.` .LT.nf) then
print *, " we use simple axial packing for the remaining atoms"
if ((nf−l).GT.int(hcav/sig0)) then

print *, "we cannot fit all remaining atoms by axial packing"
STOP

endif
do k=l,nf

xf(k,1)=0.0
xf(k,2)=0.0 520

xf(k,3)=(k−l)*sig0
enddo
l=l+int(hcav/sig0)

endif

if (npack.LT.6.AND.` .LT.nf) then
c abort if there are atoms let to place
c and we’re trying to put them inside a less than 6-ring

print *, "too many atoms for too small a cavity"
STOP 530

endif
enddo RingIteration

endif
end subroutine packCyl

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c subroutine placeBeads
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Places beads in a Gaussian distribution 540

c Modifies:
c x, xn
c Calls:
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c gauss
c Called by:
c LPInit

subroutine placeBeads()
implicit none
integer :: is = 1 ! (rightnow, a dummy) variable for gaussian RNG 550

integer :: id ! counter for dimension
integer :: ic ! charge (electron = 1 or positron = 2)
integer :: ib ! bead
real (dp) :: xsum,xshift
double precision :: gg
logical :: goodPos

if (isCyl) then
gg = min(wave*wave,rcav*rcav/12.0)

else 560

gg = min(wave*wave, rcav/2.0)
endif
! start gg smaller if you wish
if (isWL) gg = 0.2

dim: do id = 1,3
xsum = 0.0
charge1: do ic = 1,2!numcharge

bead1: do ib = 1, nb
x(ib,ic, id) = gauss(gg,is) 570

xsum=xsum+x(ib,ic,id)
end do bead1
x(nb+1,ic,id) = x(1,ic,id)

end do charge1
xsum = xsum/2.0/float(nb)
xshift = xc(id)−xsum
charge2: do ic = 1,2

bead2: do ib = 1,nb+1
x(ib,ic,id)=x(ib,ic,id)+xshift

end do bead2 580

end do charge2
end do dim
x changed(:,:) = .TRUE.
if (isCyl) then

x(:,:,3)=x(:,:,3)+0.5*hcav !! put the positronium halfway up the cylinder (in the middle)
else

if (.NOT. isWL) then
x(:,:,3) = x(:,:,3)+0.5*rcav

else
c find a place where they aren’t too close to the fluid 590

goodPos = .FALSE.
do

if (goodPos) exit
goodPos = .TRUE.
if (((potEnergy()<CENTER2.OR.potEnergy()>(1.0*gbins2)*GRES2+CENTER2))) then

goodPos = .FALSE.
x(:,:,3) = x(:,:,3)+0.5*ran1(initrand)
x changed=.TRUE.
do ib = 1, nb

do id = 1,3 600

do ic = 1,numcharge
if (x(ib,ic,id).GT.rcav) then

print *, ’No good initial position’

STOP
endif

enddo
enddo

enddo
endif

enddo 610

endif
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endif
xn = x

end subroutine placeBeads

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c resetHist subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Sets histE to all zeroes 620

c Modifies:
c histE
c Called by:
c initWL, Main

subroutine resetHist()
implicit none

histE = 0.0 630

end subroutine resetHist

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c startFromConfig subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Initializes the fluid atoms from a file
c Modifies:
c xf 640

subroutine startFromConfig()
integer :: i
character(fileNameLength) :: init

read(FLFILE,*) init !! Name of initial configuration file
print *, ’reading initial fluid positions from ’, init
open(unit=INITFILE, file=init, status=’old’, action=’read’)
read(INITFILE,*) fmsize
fmsize= fmsize*REDUCED2AU 650

do i=1,nf
read(INITFILE,*) xf(i,1), xf(i,2), xf(i,3)

enddo
xf(:,:) = xf(:,:)*REDUCED2AU
print *, ’The energy of the starting configuration is ’, totalFluidEnergy()

end subroutine startFromConfig

end MODULE LPInitEnd
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c LPFncs
c Functions and subroutines for light particle
c Functions:
c kinEnergy, kin1, lpflPot, potEnergy
c Subroutines:
c move, move cm, moveOne, moveWL, tryboth

MODULE LPFncs

use types 10

use LPInfo
use LPUtil
use LPGenFncs

CONTAINS

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c kinEnergy Function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 20

c Returns:
c current kinetic energy of the system

real (dp) function kinEnergy()
implicit none

integer :: i,j

kinEnergy = 0.0 30

do i=1,nb
j = i+1
if (i==nb) j = 1
kinEnergy = kinEnergy + kin1(i,x,j,x)

enddo
end function kinEnergy

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c kin1 Function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 40

c Calculates the kinetic energy between two beads in chains x1 and x2
c Parameters:
c i: index of bead in x1
c x1: first chain
c j: index of bead in x2
c x2: second chain (usually same as x1)
c Returns:
c the kinetic energy between x1(i,1,:) and x2(j,1,:)

50

real (dp) function kin1(i,x1, j, x2)
implicit none

integer, INTENT(IN) :: i, j
real (dp), dimension(nb+1,2,3), intent(in) :: x1, x2

kin1 = 0.5*amass*nb/hbar**2*(mag2(x1(i,1,:), x2(j,1,:)))
end function kin1

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 60

c lpflPot Function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Calculates the potential between the fluid and light particle
c We use the truncated Lennard-Jones potential between argon and helium with
c Parameters:
c LP - light particle to calculate potential for, 0 to use all particles
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c fl - fluid particle to calculate potential for, 0 to use all particles
c xbead - bead positions
c xfluid - fluid positions 70

c checkChanged - true if we only calculate potentials for beads that have been
c moved (ie, x changed = true), false to calculate regardless of x changed
c Returns:
c the potential between LP and fl
c Notes: the input vseudoar1(0,0,x,xf,.false.) will calculate the full potential energy
c of the system

real (dp) function lpflPot(LP, fl, xbead, xfluid, checkChanged)
implicit none

80

real (dp), dimension(nb+1,2,3), intent(in) :: xbead
real (dp), dimension(nf,3), intent(in) :: xfluid
integer, INTENT(IN) :: fl, LP
logical, intent(in) :: checkChanged
integer :: i, j
real (dp) :: dist2

lpflPot = 0.0
if (LP < 1 .AND. fl < 1) then

c calculate potential of whole system 90

do i = 1,nb
if (.NOT.checkChanged.OR.(checkChanged.AND.x changed(i,1))) then

do j=1,nf
dist2 = reldist2(xbead(i,1,:), xfluid(j,:)) !!in GenFncs
if (dist2.LT.(rcutLp**2)) then

lpflPot = lpflPot + 4.0*epsLp*((sigLp**2/dist2)**6−(sigLp**2/dist2)**3)
endif

enddo
endif

enddo 100

else if (LP < 1) then
c calculate potential of all beads with one fluid atom

do i=1,nb
if (.NOT.checkChanged.OR.(checkChanged.AND.x changed(i,1))) then

dist2 = reldist2(xbead(i,1,:), xfluid(fl,:))
if (dist2.LT.(rcutLp**2)) then

lpflPot = lpflPot + 4.0*epsLp*((sigLp**2/dist2)**6−(sigLp**2/dist2)**3)
endif

endif
enddo 110

else if (fl < 1) then
c calculate potential of all fluid atoms with one fluid bead

if (.NOT.checkChanged.OR.(checkChanged.AND.x changed(i,1))) then
do j=1,nf

dist2 = reldist2(xbead(LP,1,:), xfluid(j,:))
if (dist2.LT.(rcutLp**2)) then

lpflPot = lpflPot + 4.0*epsLp*((sigLp**2/dist2)**6−(sigLp**2/dist2)**3)
endif

enddo
endif 120

else
c calculate potential between one fluid atom and one bead

if (.NOT.checkChanged.OR.(checkChanged.AND.x changed(i,1))) then
dist2 = reldist2(xbead(LP,1,:), xfluid(fl,:))
if (dist2.LT.(rcutLp**2)) then

lpflPot = 4.0*epsLp*((sigLp**2/dist2)**6−(sigLp**2/dist2)**3)
endif

endif
endif

130

end function lpflPot

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c move subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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c Moves beads using basic PIMC
c Parameters:
c irun - the step number of the loop
c Modifies: 140

c x, xn
c Calls:
c kinEnergy, kin1, lpflPot, ran1
c Called by:
c Main

subroutine move(irun)

implicit none
integer, INTENT(IN) :: irun 150

integer :: ib, id, ibm, ibp
real (dp) :: ke, kenew, pe, penew

c initial energies
ke = kinEnergy()/(beta**2)
pe = potEnergy()

do ib=1,nb
c we always attempt to move all the beads one by one

ibp = ib+1 160

ibm = ib−1
if (ib == nb) ibp = 1
if (ib == 1) ibm = nb
do id = 1,3

xn(ib,1,id) = x(ib,1,id) + LPmove*(ran1(initrand) − 0.5)
enddo

c calculate energies
kenew = ke − kin1(ib,x,ibp,x)/(beta**2) − kin1(ib,x,ibm,x)/(beta**2) + kin1(ib,xn, ibp, xn)/(beta**2) &

+ kin1(ib,xn, ibm,xn)/(beta**2) 170

penew = pe − 1.0/float(nb)*lpflPot(ib,0,x,xf,.false.) + 1.0/float(nb)*lpflPot(ib,0,xn,xf, .false.)
if (dexp(−beta*(kenew+penew−(ke+pe))) > ran1(initrand)) then

ac=1.0d0
x = xn;
pe = penew
ke = kenew
x = xn

else
xn =x

endif 180

enddo

end subroutine move

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c moveThread subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 190

c Moves beads or the center of mass using a threading algorithm
c Parameters:
c irun - the step number of the loop
c Modifies:
c x, xn, xc, x changed, ac, accm
c Calls:
c move cm, tryboth, lpflPot
c Called by:
c Main 200

subroutine moveThread(irun)
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implicit none
integer, INTENT(IN) :: irun
integer :: i, j
real (dp) :: vsum, vsumnew, vchange, de, det
real (dp) :: effBeta !! beta / number of beads

effBeta = beta / float(nb) 210

c do a staging move on the beads (re-pick from a gaussian distribution)
c do electron and positron moves serially

if (mod(irun,NCMMOVE).eq.0) then
call move cm(xn) !! move center of mass

else
call tryboth(xn) !! move according to threading 220

end if

c calculate potentials
vsum=lpflPot(0, 0, x, xf, .true.)
vsumnew=lpflPot(0, 0, xn, xf, .true.)
vchange = (vsumnew − vsum)*effBeta

det = −vchange
de = dlog(ran1(initrand) + 1.0d−10)
ac = 0.0d0 230

accm = 0.0d0

if (det.GT.de) then
c the move was accepted

if (mod(irun,NCMMOVE).eq.0) then
accm = 1.0d0

else
ac=1.0d0

endif
240

do i = 1,nb
do j = 1,numcharge

if(x changed(i,j)) then
x(i,j,:) = xn(i,j,:)
if(i.EQ.1) x(nb+1,j,:) = xn(nb+1,j,:)

endif
enddo

enddo
else

c the move was rejected 250

do i = 1,nb
do j = 1,numcharge

if(x changed(i,j)) then
xn(i,j,:) = x(i,j,:)
if(i.EQ.1) xn(nb+1,j,:) = x(nb+1,j,:)

endif
enddo

enddo
endif

260

end subroutine moveThread

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c move cm subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c moves the center of mass of the two chains
c Parameters:
c xnew - the old center of mass 270

c Pass-by-reference
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c xnew - will contain the new center of mass
c Modifies:
c x changed
c Called by:
c move

subroutine move cm(xnew)
implicit none
integer :: ic, ib 280

real (dp), DIMENSION(3) :: d
real (dp), intent(INOUT), DIMENSION(:,:,:) :: xnew

d(1) = cmmove*(ran1(initrand) − 0.5)
d(2) = cmmove*(ran1(initrand) − 0.5)
d(3) = cmmove*(ran1(initrand) − 0.5)
do ic = 1,numcharge

do ib = 1,nb+1
xnew(ib,ic,:) = xnew(ib,ic,:) + d

enddo 290

enddo
x changed(:,:) = .true.

end subroutine move cm

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c moveOne subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

300

c Moves a classical particle (“one bead”)
c Modifies:
c x, xn, x changed, xEnergyOld, xEnergyNew,
c Calls:
c move cm, tryboth, LookUpTable, vfun1, vspeudoar
c Called by:
c Main

subroutine moveOne()
implicit none 310

integer :: i
real (dp) :: vold, vnew, vchange

do i=1,3
xn(1,1,i) = x(1,1,i)+LPmove*(ran1(initrand)−0.5)

enddo

c calculate potentials
vold = lpflPot(0,0,x,xf,.false.) 320

vnew = lpflPot(0,0,xn,xf,.false.)

vchange = vnew − vold
if (dexp(−beta*vchange) > ran1(initrand)) then

c accept move
x = xn

else
c reject move

xn = x
endif 330

end subroutine moveOne

c˜˜˜˜˜˜˜˜˜
c moveWL
c˜˜˜˜˜˜˜˜˜

c Does a Wang-Landau move
c INPUT:
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c irun - the current loop index (for printing purposes, not used in calculation) 340

c Modifies:
c x, xn, g, histE
c Calls:
c kinEnergy, potEnergy, binPot, binKin
c Called by:
c Main
cNotes: Assumes one chain only

subroutine moveWL(irun)
implicit none 350

integer, intent(in) :: irun
real (dp) :: ke, pe, kenew, penew
integer :: ib, id, ibp, ibm, binp, bink, binpnew, binknew

ac = 0

c initial energies
ke = kinEnergy()
pe = potEnergy()

360

do ib=1,nb
c we always attempt to move all the beads one by one

ibp = ib+1
ibm = ib−1
if (ib == nb) ibp = 1
if (ib == 1) ibm = nb
do id = 1,3

xn(ib,1,id) = x(ib,1,id) + LPmove*(ran1(initrand) − 0.5)
enddo

370

c calculate energies
kenew = ke − kin1(ib,x,ibp,x) − kin1(ib,x,ibm,x) + kin1(ib,xn, ibp, xn) + kin1(ib,xn, ibm,xn)
penew = pe − 1.0/float(nb)*lpflPot(ib,0,x,xf,.false.) + 1.0/float(nb)*lpflPot(ib,0,xn,xf, .false.)

c bin energies (binning functions in LPGenFncs)
binp = binPot(pe)
bink = binKin(ke)
binpnew = binPot(penew)
binknew = binKin(kenew)
if ((bink.LE.gbins1.AND.bink.GT.0).AND.(binp.LE.gbins2.AND.binp.GT.0) & 380

.AND.(binknew.LE.gbins1.AND.binknew.GT.0).AND.(binpnew.LE.gbins2.AND.binpnew.GT.0)) then
c everything is within the histograms

if (ran1(initrand).LT.exp(g(bink,binp)−g(binknew,binpnew))) then
c move accepted!

pe = penew
ke = kenew
x = xn
histE(binknew,binpnew) = histE(binknew,binpnew)+1
g(binknew,binpnew) = log(fwl) + g(binknew, binpnew)

else 390

c move rejected!
xn =x
histE(bink,binp) = histE(bink,binp)+1
g(bink,binp) = g(bink,binp)+log(fwl)

endif
else if (.NOT.((bink.LE.gbins1.AND.bink.GT.0).AND.(binp.LE.gbins2.AND.binp.GT.0))) then

c we are outside our histogram. . . maybe a bad initial configuration?
print *, ’An impossible configuration has been reached with pe = ’, pe
print *, ’ ke = ’,ke, ’ tf = ’, totalFluidEnergy(), ’bink = ’, bink, ’binp = ’, binp
STOP 400

else
c moving may not be energetically wrong, but it would put us outside the
c histogram => we reject the move

xn = x
histE(bink,binp) = histE(bink,binp)+1
g(bink,binp) = g(bink,binp)+log(fwl)

endif
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enddo

end subroutine moveWL 410

c˜˜˜˜˜˜˜˜˜˜˜˜
c potEnergy
c˜˜˜˜˜˜˜˜˜˜˜˜

c Returns:
c current potential energy

real (dp) function potEnergy()
implicit none 420

potEnergy = totalFluidEnergy() + 1.0/float(nb)*lpflPot(0,0,x,xf, .false.)

end function potEnergy

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c tryboth subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Makes trial moves of the beads 430

c Parameters:
c xnew - old positions
c Pass-by-reference
c xnew - will contain new positions
c Modifies:
c x changed
c Called by:
c move
c Calls:
c gauss 440

subroutine tryboth(xnew)
implicit none

integer :: is = 1 !! (rightnow, a dummy) variable for gaussian RNG
integer :: ic, id, ib, i, j
real (dp), intent(INOUT), DIMENSION(:,:,:) :: xnew
double precision :: const, g

const=2.0d0*wave*wave/dfloat(nb) 450

x changed(:,:) = .FALSE.

c pick new bead positions according to gaussian distn
c id is the axis direction

charge: do ic=1,numcharge
dim: do id=1,3

c we go from the j bead to the j+mb bead
c (j is selected at random)

j=int(nb*ran1(initrand))+1 460

beads: do i=1,mb
ib=j+mb−i+1

c account for periodicity in the chain
if (ib .GT. nb) ib = ib−nb

c the gaussian width depends on which bead we are at
g=const*dfloat(mb−i+1)/dfloat(mb−i+2)
xnew(ib,ic,id)= (xnew(ib+1,ic,id)*(mb−i+1)+xnew(j,ic,id))/float(mb−i+2) &
+ gauss(g,is)

c flag the fact that this bead has been moved 470

x changed(ib,ic) = .TRUE.

c close the chain if we have moved the 1st bead.
if(ib .EQ. 1)then

xnew(nb+1,ic,id)=xnew(1,ic,id)
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endif
enddo beads

enddo dim
enddo charge

end subroutine tryboth 480

end MODULE LPFncs
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c LPGenFncs:
c Contains functions relating to physics but not necessarily only applicable to this program
c Functions:
c averageEnergy, binKin, binPot, calcF, calcLJ, flrrel, flrrel2, reldist, reldist2, virial
c Subroutines:
c updateCM

MODULE LPGenFncs

use types 10

use LPInfo
use LPUtil

CONTAINS

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c averageEnergy function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

20

c Returns:
c the average energy of the fluid
c Called by:
c Main
c Calls:
c totalEnergy

real (dp) function averageFluidEnergy()
implicit none

30

averageFluidEnergy = totalFluidEnergy()/nf
end function averageFluidEnergy

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c binKin and binPot Functions
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c bins (kinetic/potential) energy for Wang-Landau
c Parameters:
c energy - energy to bin 40

c Returns
c bin number corresponding to input energy

integer function binKin(energy)
real (dp), INTENT(IN) :: energy

binKin = int((energy−CENTER1)/GRES1+1)
end function binKin

integer function binPot(energy) 50

real (dp), INTENT(IN) :: energy

binPot = int((energy−CENTER2)/GRES2+1)
end function binPot

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c calcF Function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Parameters: 60

c i, j: indices in mols of the two atoms between which to calculate the
c Lennard-Jones force for ARGON (not Ar-He)
c mols: an nx3 array of the positions of atoms interacting via Lennard-Jones
c Returns:
c The Lennard-Jones force between mols(i) and mols(j)
c Called by:
c virial
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real (dp) function calcF(i, j, mols)
implicit none 70

integer, INTENT(IN) :: i, j
real (dp), DIMENSION(:,:), INTENT(IN) :: mols
real (dp) :: dist

dist = flrrel(i,j,mols)

if ((isCyl.AND.dist.LT.min(0.5*hcav,rcut)).OR.((.NOT.isCyl).AND.dist.LT.(rcut))) then
calcF = 4.0*eps0*(12*(sig0**12/dist**13)−6*(sig0**6/dist**7))

else 80

calcF = 0.0
endif

end function calcF

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c calcLJ Function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

90

c Parameters:
c i, j: indices in mols of the two atoms between which to calculate
c the Lennard-Jones potential for ARGON (not Ar-He)
c mols: an nx3 array of the positions of atoms interacting via Lennard-Jones
c Returns:
c The Lennard-Jones potential between mols(i) and mols(j)
c Called by:
c totalEnergy

100

real (dp) function calcLJ(i, j, mols)
implicit none

integer, INTENT(IN) :: i, j
real (dp), DIMENSION(:,:), INTENT(IN) :: mols
real (dp) :: dist2

dist2 = flrrel2(i,j,mols)

110

c sets cutoff distance for LJ interaction to rcut
if ((isCyl.AND.dist2.LT.(min((0.5*hcav)**2,rcut**2))).OR.((.NOT.isCyl).AND.dist2.LT.(rcut**2))) then

calcLJ = 4.0*eps0*((sig0**2/dist2)**6−(sig0**2/dist2)**3)
else

calcLJ = 0.0
endif

end function calcLJ
120

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c flrrel function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Parameters:
c i, j: indices in mols of the two atoms between which to calculate the relative distance
c mols: an nx3 array of the positions of atoms
c Returns:
c the relative distance between mols(i) and mols(j) taking into account image positions 130

c Calls:
c flrrel2
c Called by:
c calcF, virial
c Notes:
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c Avoid calling this if you can just call flrrel2 since it’s faster to avoid taking square roots

real (dp) function flrrel(i,j,mols)
implicit none
integer, INTENT(IN) :: i, j 140

real (dp), DIMENSION(:,:), INTENT(IN) :: mols

flrrel = sqrt(flrrel2(i,j,mols))

end function flrrel

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c flrrel2 function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

150

c Parameters:
c i, j: indices in mols of the two atoms between which to calculate the relative distance
c mols: an nx3 array of the positions of atoms
c Returns:
c the square of the relative distance between mols(i) and mols(j) taking
c into account image positions (fluid-fluid and fluid-bead but NOT bead-bead)
c Called by:
c calcF, calcLJ, reldist2

real (dp) function flrrel2(i,j,mols) 160

implicit none

integer, INTENT(IN) :: i, j
real (dp), DIMENSION(:,:), INTENT(IN) :: mols

integer :: n

flrrel2 = 0

if (isCyl) then 170

flrrel2= (mols(i,1)−mols(j,1))**2+(mols(i,2)−mols(j,2))**2+&
(min(abs(mols(i,3)−mols(j,3)), abs(hcav−abs(mols(i,3) − mols(j,3)))))**2

else

do n=1,3
flrrel2 = flrrel2 + &
(min(abs(mols(i,n)−mols(j,n)), abs(rcav−abs(mols(i,n) − mols(j,n)))))**2

enddo
endif

180

end function flrrel2

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c reldist function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Parameters:
c v1, v2 - three dimesional vectors between which to find the relative distance taking into
c account any periodic boundry conditions 190

c Returns:
c the relative distance between v1 and v2 taking into account any periodic boundry
c conditions (use for fluid-bead, fluid-fluid, NOT bead-bead)
c Calls:
c reldist2

real (dp) function reldist(v1, v2)
implicit none

real (dp), DIMENSION(3) :: v1, v2 200

reldist = sqrt(reldist2(v1,v2))
end function reldist
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c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c reldist2 function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Parameters:
c v1, v2 - three dimesional vectors between which to find the relative distance taking into 210

c account any periodic boundry conditions
c Returns:
c the square of the relative distance between v1 and v2 taking into account
c any periodic boundry conditions (use for fluid-bead, fluid-fluid, NOT bead-bead)
c Called by:
c reldist, lpflPot
c Calls:
c flrrel2

real (dp) function reldist2(v1, v2) 220

implicit none
integer i

real (dp), DIMENSION(3), INTENT(IN) :: v1, v2
real (dp), DIMENSION(2,3) :: mols

mols(1, :) = v1
mols(2, :) = v2
if (isCyl) then 230

mols(1, 3) = mols(1, 3) − hcav*ANINT(mols(1,3)/hcav)
mols(2, 3) = mols(2, 3) − hcav*ANINT(mols(2,3)/hcav)

else
do i=1,3

mols(1, i) = mols(1, i) − rcav*ANINT(mols(1,i)/rcav)
mols(2, i) = mols(2, i) − rcav*ANINT(mols(2,i)/rcav)

enddo
endif
reldist2 = flrrel2(1,2,mols)

end function reldist2 240

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c mag and mag2 Functions
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Returns:
c the distance (mag) or the squared distance (mag2) between two
c vectors
c Called by: 250

c kin1
c Notes:
c Call mag2 if possible since it’s faster to avoid taking square roots

real (dp) function mag(v1, v2)
implicit none

real(dp), DIMENSION(2), INTENT(IN)::v1, v2

mag = sqrt(mag2(v1,v2)) 260

end function mag

real (dp) function mag2(v1, v2)
implicit none

real(dp), DIMENSION(2), INTENT(IN)::v1, v2

mag2 = (v1(1) − v2(1))**2 + (v1(2)−v2(2))**2 + (v1(3)−v2(3))**2
end function mag2

270
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c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c totalEnergy function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Returns:
c the total energy of the system
c Calls:
c calcLJ
c Called by: 280

c Main, potEnergy

real (dp) function totalFluidEnergy()
implicit none

integer :: i,j

totalFluidEnergy = 0
do i=1,nf 290

do j=i+1,nf
totalFluidEnergy = totalFluidEnergy + calcLJ(i,j,xf)

enddo
enddo

end function totalFluidEnergy

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c updateCM subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

300

c Updates the center of mass of the beads after a move
c Modifies:
c xc

subroutine updateCM()
implicit none
integer :: i,j
real (dp), DIMENSION(3) :: xc1, xc2

xc1(:)=0.0 310

xc2(:)=0.0
xc(:)=0.0

do i=1,3
do j=1,nb

xc1(i) = xc1(i)+x(j,1,i)/float(nb)
if (.NOT.isWL) xc2(i) = xc2(i)+x(j,2,i)/float(nb)

enddo
enddo

320

if (isWL) then
xc = xc1

else
xc = (xc1+xc2)/2.0

endif

end subroutine updateCM

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 330

c virial function
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Returns:
c the virial of the system
c Called by:
c Main
c Calls:
c calcF, flrrel
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340

real (dp) function virial()
implicit none
integer :: i,j

virial = 0

do i=1,nf
do j=i+1,nf

virial = virial + 1.0/3.0*calcF(i,j,xf)*flrrel(i,j,xf) 350

enddo
enddo

end function virial

end MODULE LPGenFncs

B.51



c LPUtil
c Useful routines mostly involving array manipulation or random numbers
c Contains:
c copyArray, gauss, increaseCapacity, ran1

MODULE LPUtil

use types
use LPInfo

10

CONTAINS

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c copyArray subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Copies 1-D array src to dest
c Intent(in):
c src - the array from which to copy
c Intent(out) 20

c dest - the array into which to copy
c Called by:
c increaseCapacity

subroutine copyArray(src, dest)
implicit none

real (dp), DIMENSION(:), INTENT(IN) :: src
real (dp), DIMENSION(:), INTENT(OUT) :: dest
integer :: i 30

do i=1,size(src)
dest(i) = src(i)

enddo
end subroutine

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c GAUSS FUNCTION
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 40

c Generates random numbers with a gaussian width
c Called by:
c placeBeads, tryBoth

double precision function gauss(g,ix)
implicit double precision (a−h, o−z)
double precision :: rr, ss
integer :: ix

50

rr = (−dlog(ran1(initrand)+1.0d−10)*g ) ** 0.5
ss = 6.283185307d0*ran1(initrand)
gauss = rr*dcos(ss)

end function gauss

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c increaseCapacity subroutine
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

60

c Doubles the capacity of xf and xfn (just GCMain!)
c Modifies:
c xf, xfn, TOTAL
c Calls:
c copyArray

subroutine increaseCapacity()
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implicit none
70

real (dp), DIMENSION(TOTAL,3) :: tmp, tmpn
integer :: j

do j = 1,3
call copyArray(xf(:,j), tmp(:,j))
call copyArray(xfn(:,j), tmpn(:,j))

enddo

c you must deallocate an array before you can reallocate it!
deallocate(xf, xfn, stat = error) 80

if (error.ne.0) then
write(*,*) "Unable to deallocate xf and xfn"
STOP

endif

allocate(xf(TOTAL*2,3), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to increase size of xf. error was ",error
STOP 90

endif

allocate(xfn(TOTAL*2,3), stat = error)
if (error .ne. 0) then

write(*,*) "Unable to increase size of xfn. error was ",error
STOP

endif

do j = 1,3
call copyArray(tmp(:,j), xf(:,j)) 100

call copyArray(tmpn(:,j), xfn(:,j))
enddo
TOTAL = TOTAL*2
print *, "increased capacity to ",TOTAL

end subroutine increaseCapacity

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c RAN1 FUNCTION
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 110

c Generates random numbers via a multiple linear congruential method
c and a table (it takes an input because it was once a linear congruential
c generator)
double precision function ran1(idum)

implicit none

integer, intent(IN) :: idum
double precision genrand res53

120

ran1 = genrand res53()

end function ran1

end MODULE LPUtil
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c LPInfo
c Global variables and constants

MODULE LPInfo

use types

implicit none

c˜˜˜˜˜˜˜˜˜˜˜˜ 10

c Constants
c˜˜˜˜˜˜˜˜˜˜˜˜
integer, PARAMETER :: fileNameLength=200
real (dp), PARAMETER :: pi = 3.1415926535
real (dp), PARAMETER :: kB = 3.16679e−6 !! Boltzmanns constant in AU
real (dp), PARAMETER :: sigAR = 3.405*1.8893 !! sig in au for Ar−Ar
real (dp), PARAMETER :: epsAR = 119.8*kB !! eps in au for Ar−Ar
real (dp), PARAMETER :: sigLp = 6.4236 !! sig in au for He−Ar (should be 6.4236)
real (dp), PARAMETER :: epsLp = 9.5181e−5 !! eps in au for He−Ar
real (dp), PARAMETER :: rcutLp = 2.5*sigLp !! cutoff distance for He−Ar LJ Pot 20

integer :: error !! To keep error return values

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c Conversions (conversions from and to reduced units assume we are using Ar)
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c note that these may or may not be used in the code, but they’re good to have around
real (dp), PARAMETER :: ANGSTR2AU = 1.8893 !! Angstrom to atomic units (distance)
real (dp), PARAMETER :: ANGSTR2REDUCED = 1.0/sigAR !! Angstroms to reduced units
real (dp), PARAMETER :: AU2REDUCED=1.0/(sigAR) !! Atomic units (distance) to reduced units
real (dp), PARAMETER :: KELVIN2AUENG = kB !! Temperature in Kelvin to atomic energy units 30

real (dp), PARAMETER :: AUENG2REDUCED = 1.0/(epsAR) !! Atomic units (energy) to reduced units/Users/jbarry/Documents/Thesis/positronium/PlotFncs.f95
!! (we multiply by kB to convert eps to atomic)

c Going the other way. . .
real (dp), PARAMETER :: AU2ANGSTR = 1.0/ANGSTR2AU, REDUCED2ANGSTR = 1.0/ANGSTR2REDUCED, &

REDUCED2AU = 1.0/AU2REDUCED, AUENG2KELVIN = 1.0/KELVIN2AUENG, &
REDUCED2AUENG = 1.0/AUENG2REDUCED

c˜˜˜˜˜˜˜˜
c Files 40

c˜˜˜˜˜˜˜˜
integer, PARAMETER :: NUMIN=10, NUMOUT=7
integer, DIMENSION(NUMIN), PARAMETER :: INFILES = (/14, 15,16,17,18,19,20,21,22,23/)
integer, DIMENSION(NUMIN), PARAMETER :: GBLINFILES = (/33,34,35,36,37,38,39,40,41,42/)
integer, DIMENSION(NUMOUT), PARAMETER :: OUTFILES=(/43, 44, 45, 46, 47, 48, 49/)
c names to identify files
integer, PARAMETER :: CMDFILE = GBLINFILES(1), &

GENFILE = INFILES(1), &
FLFILE = INFILES(2), INITFILE = INFILES(7), &
MULTIFILE = INFILES(3), ETAFILE = INFILES(4), & 50

LPFILE = INFILES(5), LPINITFILE = INFILES(6), &
LPPOS = OUTFILES(1), FLPOS = OUTFILES(2), &
HISTRHO=OUTFILES(3), AVGENG = OUTFILES(4), &
GFILE = OUTFILES(5), HISTENG = OUTFILES(6), &
ACCFILE = OUTFILES(7)

c file names
CHARACTER(len=8), DIMENSION(NUMOUT), PARAMETER :: OUTNAMES = &

(/"lpposn ", & !! The light particle beads position
"flposn ", & !! The fluid position
"density ", & !! Density/number of atoms in fluid 60

"energy ", & !! Average energy of the fluid
"denstate", & !! ln(density of states) for WL
"histe ", & !! Energy histogram for WL
"accept "/) !! Data about acceptance rates

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c General Information

B.54



c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
integer :: loop !! The number of runs to do
integer :: npass !! Number of MC steps to do 70

real (dp) :: beta !! 1/kT
real (dp) :: z !! exp(beta*mu)/GAMMA^3

!! mu = chemical potential
!! GAMMA = (h^2/(2*pi*fmass)*beta)^(1/2)

real (dp) :: hbar
real (dp) :: rcav, rcav2, hcav !! Cylinder properties

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c random number info
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 80

integer, PARAMETER :: initrand = 27651 !! init for Mersenne Twister

c˜˜˜˜˜˜˜˜˜˜
c options
c˜˜˜˜˜˜˜˜˜˜
c for the moment, some of these need to be false because the options do not
c work yet. when they do work, these can become part of the input
logical :: isGrand = .false. !! True to use grand canonical, false to use canonical
logical :: isCyl = .false. !! True to use cylinder
logical :: isMulti = .false. !! True to use multicanonical 90

logical :: isWL !! True to use Wang−Landau (part of input)
logical :: isThread !! True to use threading (part of input)

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c Fluid Information
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
integer, PARAMETER :: WIDOMNUM = 1 !! Number of times to do widom test per step
real (dp), PARAMETER :: fmSTART = 0.9 !! Starting step size

integer :: nf !! Current number of fluid atoms (will change with GC) 100

integer :: fmnum !! Every fmnum steps execute a fluid move
integer :: TOTAL !! Current max number of fluid atoms (for GC)
integer :: numWid = 0 !! number info for averages
integer :: multibins !! for multicanonical: size of eta

real (dp), ALLOCATABLE, DIMENSION(:,:) :: xf, xfn !! Arrays to store position info
real (dp), ALLOCATABLE, DIMENSION(:) :: eta !! Weighting for multicanonical
real (dp), PARAMETER :: eps0 = epsAR !! we are assuming for now that the fluid is always Ar
real (dp), PARAMETER :: sig0 = sigAR !! we are assuming for now that the fluid is always Ar
real (dp), PARAMETER :: rcut = 2.5*sig0 !! cutoff radius 110

real (dp) :: rhof !! fluid density
real (dp) :: widom = 0 !! fluid averages
real (dp) :: fmac, fmacsum, fmsize=fmSTART !! Accepted move stuff for fluids

!! (real to avoid problems with integer division)

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c Wang-Landau Information
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
real (dp), PARAMETER :: GRES1 = 400000/20.0 !! Resolution for "kinetic"
real(dp), PARAMETER :: GRES2 = 0.003/50.0 !! Resolution for potential 120

real (dp) :: FLAT = 0.93 !! When the histogram is considered "flat"
real (dp), PARAMETER :: REDFPER = 0 !! Reduce FLAT by this percent of current value
real (dp), PARAMETER :: REDF = 1.05 !! Start reducing FLAT when fwl is below this value
real (dp), PARAMETER :: MINF = 1.0000001 !! Stop when fwl falls below this value
real (dp), PARAMETER :: CENTER1 = 0 !! subtract this value for kinetic energy
real (dp), PARAMETER :: CENTER2 = −0.0359 !! subtract this value for potential energy
integer, PARAMETER :: gbins1 = int(400000/GRES1+0.5) !! number of bins for "kinetic"

integer, PARAMETER :: gbins2 = int(0.003/GRES2+0.5) !! number of bins for potential
130

integer, PARAMETER :: CHECK = 5000 !! check for flatness every CHECK steps

real (dp), ALLOCATABLE, DIMENSION(:,:) :: g !! g(E) for W−L
real (dp), ALLOCATABLE, DIMENSION(:,:) :: histE !! H(E) for W−L
real (dp) :: fwl !! g(E) = fwl*g(E)
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c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c Light Particle Information
c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
integer, PARAMETER :: nevalu = 100 !! Update acceptance rate after nevalu steps 140

integer, PARAMETER :: NCMMOVE = 5000 !! Move cm after ncmmove steps
real (dp), PARAMETER :: cmSTART = 0.2 !! Starting stepsize for cm moves
real (dp), PARAMETER :: LPSTART = 0.2 !! Starting stepsize for positron moves
integer, PARAMETER :: RECENTER = 50 !! Recenter every this many moves
integer, PARAMETER :: numcharge = 1 !! one chain or two

integer :: nb !! Number of beads
integer :: mb !! Number of beads moved per pass
integer :: nequil !! Number of equilibration steps

150

logical, ALLOCATABLE, DIMENSION(:,:) :: x changed !! True if the bead was moved

real (dp), ALLOCATABLE, DIMENSION(:,:,:) :: x, xn !! Arrays to store position info

real (dp), DIMENSION(3) :: xc !! Center of mass coordinates
real (dp) :: amass !! Mass of particle
real (dp) :: wave !! deB wavelength
real (dp) :: ac, acsum, LPmove !! Accepted move stuff for positron
real (dp) :: accm, accmsum, cmmove = cmSTART !! Accepted move stuff for center of mass

160

end MODULE LPInfo

B.56



Makefile:

#dependent files must be listed AFTER those files on which they are dependent
SRCFILES = mt19937ar.f Mac types.f90 LPInfo.f95 LPUtil.f95 LPGenFncs.f95 LPFncs.f95 LPInitEnd.f95 LPMain.f95

LDFLAGS = −L/Users/jbarry/Documents/Thesis/lib −lplplot \
−X −framework −X Carbon −YEXT NAMES=LCS

OPTFLAGS = −O3 −cpu:g5
PROFLAGS = −profile −P

default: LPMain 10

LPMain: $(SRCFILES)
f90 $(SRCFILES) −o LPMain $(OPTFLAGS) $(LDFLAGS)

clean:
rm *.mod
rm LPMain
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B.3 General Codes

The code below defines types for use on a Macintosh computer

Module types
c Useful types
c Author: J. E. Pask
c Dept. of Physics
c University of California
c Davis, California, 1/97
implicit none
private
public dp, hp

10

integer, parameter :: dp=kind(0.d0), & !! double precision
hp=selected real kind(15) !! high precision

End Module types
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The code below was used in testing random number generators. It includes the code for the linear
congruential generator written by Tim Cronin [10] and calls the Mersenne generator, the algorithm for
which is given in the module after this.

c testRan
c a simple program designed to test to random number generators

PROGRAM testRan

implicit none

integer :: i, j
integer, parameter :: ndim = 10
character(1), dimension(ndim) :: fc = (/’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’/) 10

character(25) :: fname
double precision :: x, genrand res53
integer, parameter :: limit = 1e7

x = 0

call init genrand(27651) !! init Mersenne twister

open(unit = 90, file = ’random1’, status = ’replace’, action = ’write’) 20

open(unit = 91, file = ’randommt’, status = ’replace’, action = ’write’)

do i=1,limit
write(90,*) ran1(1)
write(91,*) genrand res53()

enddo

CONTAINS
30

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
RAN1 FUNCTION

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

c Generates random numbers via a multiple linear congruential method
c and a table
double precision function ran1(idum)

implicit none
double precision :: r(97)
integer, intent(IN) :: idum 40

save
integer, parameter :: M1=259200,IA1=7141,IC1=54773
real, parameter :: RM1=1.0d0/M1
integer, parameter :: M2=134456,IA2=8121,IC2=28411
real, parameter :: RM2=1.0d0/M2
integer, parameter :: M3=243000,IA3=4561,IC3=51349
integer :: IX1, IX2, IX3, jjj
integer :: iff=0

if (idum < 0 .or. iff == 0) then 50

iff = 1
IX1 = mod(IC1−idum,M1)
IX1 = mod(IA1*IX1+IC1,M1)
IX2 = mod(IX1,M2)
IX1 = mod(IA1*IX1+IC1,M1)
IX3 = mod(IX1,M3)
do jjj = 1,97

IX1 = mod(IA1*IX1+IC1,M1)
IX2 = mod(IA2*IX2+IC2,M2)
r(jjj) = (dfloat(IX1)+dfloat(IX2)*RM2)*RM1 60

enddo
endif
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IX1 = mod(IA1*IX1+IC1,M1)
IX2 = mod(IA2*IX2+IC2,M2)
IX3 = mod(IA3*IX3+IC3,M3)
jjj = 1+(97*IX3)/M3
if (jjj > 97 .or. jjj < 1) PAUSE
ran1 = r(jjj)
r(jjj) = (dfloat(IX1)+dfloat(IX2)*RM2)*RM1

end function ran1 70

end PROGRAM testRan
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The code below is code we did not write for the Mersenne twister random number generator.

c
c A C-program for MT19937, with initialization improved 2002/1/26.
c Coded by Takuji Nishimura and Makoto Matsumoto.
c
c Before using, initialize the state by using init genrand(seed)
c or init by array(init key, key length).
c
c Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
c All rights reserved.
c Copyright (C) 2005, Mutsuo Saito, 10

c All rights reserved.
c
c Redistribution and use in source and binary forms, with or without
c modification, are permitted provided that the following conditions
c are met:
c
c 1. Redistributions of source code must retain the above copyright
c notice, this list of conditions and the following disclaimer.
c
c 2. Redistributions in binary form must reproduce the above copyright 20

c notice, this list of conditions and the following disclaimer in the
c documentation and/or other materials provided with the distribution.
c
c 3. The names of its contributors may not be used to endorse or promote
c products derived from this software without specific prior written
c permission.
c
c THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
c “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
c LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30

c A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
c CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
c EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
c PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
c PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
c LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
c NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
c SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
c
c 40

c Any feedback is very welcome.
c http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/emt.html
c email: m-mat
c
c———————————————————————–
c FORTRAN77 translation by Tsuyoshi TADA. (2005/12/19)
c
c ———- initialize routines ———-
c subroutine init genrand(seed): initialize with a seed
c subroutine init by array(init key,key length): initialize by an array 50

c
c ———- generate functions ———-
c integer function genrand int32(): signed 32-bit integer
c integer function genrand int31(): unsigned 31-bit integer
c double precision function genrand real1(): [0,1] with 32-bit resolution
c double precision function genrand real2(): [0,1) with 32-bit resolution
c double precision function genrand real3(): (0,1) with 32-bit resolution
c double precision function genrand res53(): (0,1) with 53-bit resolution
c
c This program uses the following non-standard intrinsics. 60

c ishft(i,n): If n>0, shifts bits in i by n positions to left.
c If n<0, shifts bits in i by n positions to right.
c iand (i,j): Performs logical AND on corresponding bits of i and j.
c ior (i,j): Performs inclusive OR on corresponding bits of i and j.
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c ieor (i,j): Performs exclusive OR on corresponding bits of i and j.
c
c———————————————————————–
c initialize mt(0:N-1) with a seed
c———————————————————————–

subroutine init genrand(s) 70

integer s
integer N
integer DONE
integer ALLBIT MASK
parameter (N=624)
parameter (DONE=123456789)
integer mti,initialized
integer mt(0:N−1)
common /mt state1/ mti,initialized
common /mt state2/ mt 80

common /mt mask1/ ALLBIT MASK
c

call mt initln
mt(0)=iand(s,ALLBIT MASK)
do 100 mti=1,N−1

mt(mti)=1812433253*
& ieor(mt(mti−1),ishft(mt(mti−1),−30))+mti

mt(mti)=iand(mt(mti),ALLBIT MASK)
100 continue

initialized=DONE 90

c
return
end

c———————————————————————–
c initialize by an array with array-length
c init key is the array for initializing keys
c key length is its length
c———————————————————————–

subroutine init by array(init key,key length)
integer init key(0:*) 100

integer key length
integer N
integer ALLBIT MASK
integer TOPBIT MASK
parameter (N=624)
integer i,j,k
integer mt(0:N−1)
common /mt state2/ mt
common /mt mask1/ ALLBIT MASK
common /mt mask2/ TOPBIT MASK 110

c
call init genrand(19650218)
i=1
j=0
do 100 k=max(N,key length),1,−1

mt(i)=ieor(mt(i),ieor(mt(i−1),ishft(mt(i−1),−30))*1664525)
& +init key(j)+j

mt(i)=iand(mt(i),ALLBIT MASK)
i=i+1
j=j+1 120

if(i.ge.N)then
mt(0)=mt(N−1)
i=1

endif
if(j.ge.key length)then

j=0
endif

100 continue
do 200 k=N−1,1,−1

mt(i)=ieor(mt(i),ieor(mt(i−1),ishft(mt(i−1),−30))*1566083941)−i 130

mt(i)=iand(mt(i),ALLBIT MASK)
i=i+1
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if(i.ge.N)then
mt(0)=mt(N−1)
i=1

endif
200 continue

mt(0)=TOPBIT MASK
c

return 140

end
c———————————————————————–
c generates a random number on [0,0xffffffff]-interval
c———————————————————————–

function genrand int32()
integer genrand int32
integer N,M
integer DONE
integer UPPER MASK,LOWER MASK,MATRIX A
integer T1 MASK,T2 MASK 150

parameter (N=624)
parameter (M=397)
parameter (DONE=123456789)
integer mti,initialized
integer mt(0:N−1)
integer y,kk
integer mag01(0:1)
common /mt state1/ mti,initialized
common /mt state2/ mt
common /mt mask3/ UPPER MASK,LOWER MASK,MATRIX A,T1 MASK,T2 MASK 160

common /mt mag01/ mag01
c

if(initialized.ne.DONE)then
call init genrand(21641)

endif
c

if(mti.ge.N)then
do 100 kk=0,N−M−1

y=ior(iand(mt(kk),UPPER MASK),iand(mt(kk+1),LOWER MASK))
mt(kk)=ieor(ieor(mt(kk+M),ishft(y,−1)),mag01(iand(y,1))) 170

100 continue
do 200 kk=N−M,N−1−1

y=ior(iand(mt(kk),UPPER MASK),iand(mt(kk+1),LOWER MASK))
mt(kk)=ieor(ieor(mt(kk+(M−N)),ishft(y,−1)),mag01(iand(y,1)))

200 continue
y=ior(iand(mt(N−1),UPPER MASK),iand(mt(0),LOWER MASK))
mt(kk)=ieor(ieor(mt(M−1),ishft(y,−1)),mag01(iand(y,1)))
mti=0

endif
c 180

y=mt(mti)
mti=mti+1

c
y=ieor(y,ishft(y,−11))
y=ieor(y,iand(ishft(y,7),T1 MASK))
y=ieor(y,iand(ishft(y,15),T2 MASK))
y=ieor(y,ishft(y,−18))

c
genrand int32=y
return 190

end
c———————————————————————–
c generates a random number on [0,0x7fffffff]-interval
c———————————————————————–

function genrand int31()
integer genrand int31
integer genrand int32
genrand int31=int(ishft(genrand int32(),−1))
return
end 200
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c———————————————————————–
c generates a random number on [0,1]-real-interval
c———————————————————————–

function genrand real1()
double precision genrand real1,r
integer genrand int32
r=dble(genrand int32())
if(r.lt.0.d0)r=r+2.d0**32
genrand real1=r/4294967295.d0
return 210

end
c———————————————————————–
c generates a random number on [0,1)-real-interval
c———————————————————————–

function genrand real2()
double precision genrand real2,r
integer genrand int32
r=dble(genrand int32())
if(r.lt.0.d0)r=r+2.d0**32
genrand real2=r/4294967296.d0 220

return
end

c———————————————————————–
c generates a random number on (0,1)-real-interval
c———————————————————————–

function genrand real3()
double precision genrand real3,r
integer genrand int32
r=dble(genrand int32())
if(r.lt.0.d0)r=r+2.d0**32 230

genrand real3=(r+0.5d0)/4294967296.d0
return
end

c———————————————————————–
c generates a random number on [0,1) with 53-bit resolution
c———————————————————————–

function genrand res53()
double precision genrand res53
integer genrand int32
double precision a,b 240

a=dble(ishft(genrand int32(),−5))
b=dble(ishft(genrand int32(),−6))
if(a.lt.0.d0)a=a+2.d0**32
if(b.lt.0.d0)b=b+2.d0**32
genrand res53=(a*67108864.d0+b)/9007199254740992.d0
return
end

c———————————————————————–
c initialize large number (over 32-bit constant number)
c———————————————————————– 250

subroutine mt initln
integer ALLBIT MASK
integer TOPBIT MASK
integer UPPER MASK,LOWER MASK,MATRIX A,T1 MASK,T2 MASK
integer mag01(0:1)
common /mt mask1/ ALLBIT MASK
common /mt mask2/ TOPBIT MASK
common /mt mask3/ UPPER MASK,LOWER MASK,MATRIX A,T1 MASK,T2 MASK
common /mt mag01/ mag01

CC TOPBIT MASK = Z’80000000’ 260

CC ALLBIT MASK = Z’ffffffff’
CC UPPER MASK = Z’80000000’
CC LOWER MASK = Z’7fffffff’
CC MATRIX A = Z’9908b0df’
CC T1 MASK = Z’9d2c5680’
CC T2 MASK = Z’efc60000’

TOPBIT MASK=1073741824
TOPBIT MASK=ishft(TOPBIT MASK,1)
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ALLBIT MASK=2147483647
ALLBIT MASK=ior(ALLBIT MASK,TOPBIT MASK) 270

UPPER MASK=TOPBIT MASK
LOWER MASK=2147483647
MATRIX A=419999967
MATRIX A=ior(MATRIX A,TOPBIT MASK)
T1 MASK=489444992
T1 MASK=ior(T1 MASK,TOPBIT MASK)
T2 MASK=1875247104
T2 MASK=ior(T2 MASK,TOPBIT MASK)
mag01(0)=0
mag01(1)=MATRIX A 280

return
end
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B.4 Post Processing Codes

This appendix contains codes used in post processing. All post processing was done in Matlab.

function [ave] = reweight(filename, numg, E)
%reweight: Matlab post-processing function
%Uses data from a Wang Landau simulation to calculate
%potential energy at a number of different temperatures

%Parameters:
%filename: the file with the density of states
%numg: the number of bins in the density of states
%E: a vector with the energy range in it (NOT the
% energies recorded in simulation where each point 10

% in the vector corresponds to a bin in the density of
% states. For example, for the constants given here
% and in my thesis E = -400:0.04:-0.04

num = 100 %number of particles
%this value is necessary because we record the
%total energy of the simulation, but we only want
%energy per particle. so in the end, we divide by
%particle number

rho = 0.1 %fluid density 20

rc = 2.5 %cutoff radius (for calculating correction)
fsize = 14 %font size (graph)
tsize = 16 %title size (graph)

%values from johnson et al (for comparison)
jmd = [−0.863, −0.854, −0.795, −0.766, −0.717, −0.689, −0.669, −0.625, −0.592, −0.547, −0.510, −0.478]
jmc = [−0.869, −0.84, −0.6657]
tmc = [1.15,1.2,2.0]

gg = load(filename); 30

ind = find(gg == numg, 2, ’last’) % we keep all of the densities of states as
% we progress through the simulation,
% but the last one will be the most
% accurate

g = gg(ind(1)+1:ind(2)−1);
g = exp(g’-max(g)); %we store ln(g(E))
t= [1.15,1.2,1.3,1.4,1.6,1.8,2.0,2.5,3.0:1:6.0]; %t = 1/beta
for i=1:length(t)

%actual reweigting!!
ave(i) = sum(E.*g.*exp(−1.0/t(i)*(E−min(E))))/(sum(g.*exp(−1.0/t(i)*(E−min(E)))))/num; 40

end

%add in correction
ave = ave + 8.0/3.0*pi*rho*(1.0/3.0*(1/rc)^9 − (1/rc)^3);

%make a nice plot
figure
plot(t, ave, ’*’)
hold on
plot(t, jmd, ’rs’) 50

plot(tmc, jmc, ’go’)
legend(’Wang-Landau’, ’MD (Johnson et al)’, ’MC (Johnson et al)’)
set(gca, ’fontsize’, fsize)
xlabel(’T*’, ’fontsize’, fsize)
ylabel(’U*’, ’fontsize’, fsize)
title(’Average Internal Energy (\rho* = 0.1, N = 100)’, ’fontsize’, tsize)
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function [xhist] = reweightSHO(x, H1, H2, g, beta)
%reweight: Matlab post-processing function
%Uses data from a Wang-Landau simulation in an SHO
%potential to calculate position at a number of
%different temperatures

%Parameters:
%x: the list of x values from the simulation
%H1: the list of kinetic energy values from 10

% the simulation.
%H2: the list of potential energy values from
% the simulation
%g: the density of states
%beta: beta value we are interested in
%NOTES:
% The entries in x, H1, and H2 all need to correspond
% ie, x(3) needs to be from the same timestep of the
% simulation as H1(3) and H2(3)
% 20

% The g file from the simulations is usually ln(g)
% Don’t forget to exponentiate it!

%Returns:
% xhist: the probability density function for position
% to calculate average position do x.*xhist/sum(xhist)
% where x is the range of position values

%set these constants if your range changes!!
interval = 0.08 %assuming a square histogram, the bin size 30

engrng1 = 20 %kinetic energy range
engrng2 = 20 %potential energy range
nbins = engrng1/interval
xrng = 13 %position range

hist3 = zeros(nbins, nbins, nbins);
xhist = zeros(1,nbins);
h1hist = zeros(1,nbins);
h2hist = zeros(1,nbins);
enghist = zeros(nbins,nbins); 40

for i=1:length(x)
indx = ceil((x(i) + xrng/2.0)*nbins/xrng);
indh1 = ceil(H1(i)*nbins/engrng1);
indh2 = ceil(H2(i)*nbins/engrng2);
hist3(indx, indh1, indh2) = hist3(indx, indh1, indh2) + 1;

end

eng1 = 0:interval:engrng1−interval;
eng2 = 0:interval:engrng2−interval; 50

for i=1:nbins
for j= 1:nbins

%%reweighting!
hist3(:,i,j) = hist3(:,i,j)*exp(−eng1(i)/beta − beta*eng2(j))*g(i, j);

end
end

xhist = sum(sum(hist3,2),3);
enghist = reshape(sum(hist3,1),nbins,nbins); 60

h1hist = sum(enghist,2);
h2hist = sum(enghist,1);
avh1 = sum(eng1’.*h1hist)/sum(h1hist)
avh2 = sum(eng2.*h2hist)/sum(h2hist)
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function [avgs, sds, x] = blocking(data, block, nstep)
%blocking: Matlab post-processing function
%Calculates the number of correlated steps
%for data and uses this to plot blocks with
%error bars

%Parameters:
%data: data to block
%block: size of a block
%nstep: the number of actual steps each data 10

% point represents
%NOTES
% block should be indices in data, not actual steps
% for example, if we have 1000 MC steps and data contains
% energy, say, for every 10 steps and we want blocks of 1000
% MC steps, block = 10 because we only have data every 10 steps
% (and nstep = 10)

%Returns:
%avgs: block averages 20

%sds: block standard deviations
%x: x-coordinate corresponding to each average (useful for plotting)

c = xcov(data, ’coeff’); %normalized tcf (xcov is a built-in matlab function)
c = c(ceil(end/2):end); %does the correlation going both directions, but we

%only need one
width = 500/nstep; %to find how far we have to go to get noncorrelating steps

%we look for where the average of c over a
%window of width*2 drops below 0.05

30

%find non-correlated step number
i = width+1;
q = 1;
FL = −3.533120381468512E−002 %for the frozen fluid, this is the fluid energy

%it is always a constant so we just
%subtract it out to make the graphs easier
%to look at

while(q > 0.05)
q = mean(c(i−width:i+width)); 40

i = i+1;
end
noncorr = i %how far apart steps need to be before they’re noncorrelated

for i=block:block:length(data)
avgs((i)/block) = sum(data(i−block+1:i))/(block)−FL;
sds(i/block) = std(data(i−block+1:i));
x(i/block) = i*nstep;

end
50

n = block/noncorr
sds = sds/sqrt(n); % error of the means

%make a plot
figure
errorbar(x,avgs, sds,’.k’, ’MarkerSize’, 20)
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