
• [4] alternates between an implicit and explicit representation
• Perturbs explicit points normal to the curve
• Must solve correspondence problem because of the FBR

• [3] stays in the implicit representation
• If signed-distance function (SDF) imposed after perturbation, a multiple-to-multiple
mapping exists in correspondence problem

• Smooths a perturbation to a single point that preserves the SDF
• Solves the correspondence problem, but slow convergence

• Both methods restricted to binary segmentation of a single simply connected shape
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Computation Times

• Comparison to sampling methods 
[3] and [4]

• Incorporate a gradient bias in all 
methods to view its affects

• Results shown after 100,000 its.
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Efficient MCMC Sampling with Implicit Shape Representations
Synthetic Results

• Level set methods [10] represent a 2D curve, , implicitly with a 3D surface,
• Topological changes are easily incorporated by simply changing the surface

Level Set Representation

Motivation
• Segmentation often formulated as energy minimization:
• An “optimal” solution might not accurately represent how humans segment images

Approach: Instead of MAP estimation, characterize the entire distribution
• Marginal statistics are more robust to noise and can characterize multiple modes
• Calculate statistics from samples of

Problem: How do we draw samples from this distribution?

( )arg min ;E I

( ) ( )( )| exp ;E Ip I ∝ − 

• This example shows the importance of allowing topological changes. Methods [3]
and [4] are unable to capture both the inside and outside of the circle.

• This example shows the benefit of marginal statistics in the presence of noise
• In high SNR (single-mode) cases, sampling does not give much improvement
because the distribution is very peaked

• In low SNR cases, the improvement from sampling is more pronounced
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Key Ideas
(1) Ignore SDF constraint – solves correspondence problem with large perturbations

(2) Bias proposal towards likely samples – increase Markov chain mixing time

(3) Take advantage of spatial correlations to only decrease the FBR a little

( 1) ( )) (ˆ tt tϕ ϕ+ = + f

FPS

[3]

[4]

Unbiased Biased

Alg. Iterations to
Convergence

Secs. Per 
Iteration Total Gain

BFPS 150 0.03 x1
UFPS 40,000 0.03 x267
B[3] 254,000* 0.30 x16,933
U[3] 896,000* 0.26 x51,769
B[4] 321,000* 5.00 x356,667
U[4] 336,000* 5.00 x373,333
*Optimistic lower bound on number of iterations obtained from 

linearly interpolating the sub-linear growth of the average energy
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• Metropolis-Hastings MCMC [9] allows sampling from any distribution if it can be
evaluated up to a constant scale

• Process: (1) Generate a sample from a proposal distribution
(2) Accept the sample with the following probability

• After enough iterations, we obtain one sample from the true distribution
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Metropolis-Hastings

Posterior Sample Ratio (PSR) Forward-Backward Ratio (FBR)
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• Biased proposals increase the PSR but decrease the FBR

• FBR decreases with bias strength and number of random variables
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Biased Filtered Point Sampling
• Generate a proposal perturbation as follows:

( )( )( ) ( ) ( )                  tt t t= ∗h ncf 

LPF allows sparse points
to influence PSR a lot

Sparse points only
influence FBR a little

Biased noise tends to
increase the PSR

Perturbation with
high acceptance rate
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M-ary Extension
• [1] uses M level sets to represent M regions in an optimization framework

• This leads to problems in generating proper proposals
• Use M-1 level sets to represent M regions

• Must ensure no overlap or vacuum conditions

• Implicitly define a “null” region:

• M-ary Proposal
(1) Choose a random level set,
(2) Generate perturbation that only affects :
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Natural Image Results
The following are results obtained on [8]. The ‘X’ is the F-measure using the
sampling approach, and the ‘+’ is the F-measure using gradient descent.
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