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Motivation

» Segmentation often formulated as energy minimization: argmin E(C; | )
* An “optimal” solution might not accurately represent how humans segment images

\

Approach: Instead of MAP estimation, characterize the entire distribution
e Marginal statistics are more robust to noise and can characterize multiple modes
- Calculate statistics from samples of P(C|1)<exp(—E(C;1))

Problem: How do we draw samples from this distribution?

Level Set Representation

o Level set methods [10] represent a 2D curve, C, implicitly with a 3D surface, ¢
* Topological changes are easily incorporated by simply changing the surface

Metropolis-Hastings

* Metropolis-Hastings MCMC [9] allows sampling from any distribution If it can be
evaluated up to a constant scale
e Process: (1) Generate a sample from a proposal distribution g ((3(”1) | qﬂ(t))
(2) Accept the sample with the following probability
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Posterior Sample Ratio (PSR) Forward-Backward Ratio (FBR)

 After enough iterations, we obtain one sample from the true distribution

Previous Methods

o [4] alternates between an implicit and explicit representation
o Perturbs explicit points normal to the curve
* Must solve correspondence problem because of the FBR
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o [3] stays in the implicit representation

o I signed-distance function (SDF) imposed after perturbation, a multiple-to-multiple
mapping exists In correspondence problem

e Smooths a perturbation to a single point that preserves the SDF

 Solves the correspondence problem, but slow convergence

e Both methods restricted to binary segmentation of a single simply connected shape
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Key ldeas

(1) Ignore SDF constraint — solves correspondence problem with large perturbations
() _ (1) L f ()
Q=@ T

(2) Bias proposal towards likely samples — increase Markov chain mixing time

 Biased proposals increase the PSR but decrease the FBR
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* FBR decreases with bias strength and number of random variables
(3) Take advantage of spatial correlations to only decrease the FBR a little

Biased Filtered Point Sampling

» Generate a proposal perturbation as follows:
fO_ O ( c® o n®
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Perturbation with
high acceptance rate

N

Sparse points only
influence FBR a little

Biased noise tends to
increase the PSR

LPF allows sparse points
to influence PSR a lot

¢l ~ Bernoulli(ac exp[—vi“) -sign(gpi‘t))]) N ~ N (anvi(t),az) vl =-VE(C;1)

M-ary Extension

*[1] uses M level sets to represent M regions in an optimization framework
 This leads to problems In generating proper proposals

e Use M-1 level sets to represent M regions
* Must ensure no overlap or vacuum conditions

Vacuum

Ry =( {e, <0}

lel

[1] Representation

Overlap Our Representation

o Implicitly define a “null” region:
R, ={g0€ ZO} , V€e£={1,2,...,|\/|}

e M-ary Proposal
(1) Choose a random level set, ¢,
(2) Generate perturbation that only affects ¢,; ) =h" = (C on® ) o1{R,UR,}

Computation Times
Unbiased Biased

¥c c

e Comparison to sampling methods
[3] and [4]

e Incorporate a gradient bias in all
methods to view Its affects

 Results shown after 100,000 Iits.

Secs. Per .
! Total Gain
Iteration
x1

BFPS 0.03

UFPS 40,000 0.03 X267

B[3] 254,000* 0.30 x16,933 o
U[B]  896,000* 0.26 X51,769 N
B[4]  321,000* 5.00 x356,667 .
U[4] 336,000* 5.00 x373,333
*Optimistic lower bound on number of iterations obtained from 0 2 4 6 8 4 10 I &

linearly interpolating the sub-linear growth of the average energy Number of Iterations x 10

Efficient MCMC Sampling with Implicit Shape Representations i1

Synthetic Results

* This example shows the importance of allowing topological changes. Methods [3]
and [4] are unable to capture both the inside and outside of the circle.

_ riI BFPS [4] [3]

* This example shows the benefit of marginal statistics in the presence of noise

*In high SNR (single-mode) cases, sampling does not give much Improvement
because the distribution iIs very peaked

 In low SNR cases, the improvement from sampling 1s more pronounced
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Natural Image Results

The following are results obtained on [8]. The ‘X’ Is the F-measure using the
sampling approach, and the ‘+’ Is the F-measure using gradient descent.
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