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E@% Sampling Motivation

CSAIL

* Segmentation is usually formulated with energy maximization

* Exponentiated Mutual Information under some prior is equivalent
to the posterior:

exp [I (X;L) — jc[

ds] = 7 (p|T)

C

*  Why would we want to sample from posterior of curves 7 (¢|x)?
— More robust results
— Calculating marginal probabilities

Probability that a pixel is on the boundary

Probability that a pixel is within a certain region

Probability that a pixel is in the same region as another pixel

Etc.



\f@% Metropolis-Hastings Sampling

CSAIL

* The space of segmentations is infinite
* Use Metropolis-Hastings MCMC to sample
— Sample from a proposal distribution

e

— Accept the proposal with probability

. T (@(Hl)) q (Sp(t) ‘@(Hl))
min : , 1
T (gp(t)) q (@(H‘l) ‘Sp(t))

— Samples will eventually converge if the Markov chain is ergodic
because the Hastings ratio ensures detailed balance.




Previous Sampling Methods

CSAIL

* [1] pioneered the sampling of segmentation space but required
expensive alternating between an implicit and explicit
representation

* [2] extended the work by staying in the implicit domain and
perturbing the level set function such that the signed distance
function was preserved

 Both [1] and [2] are limited to a single simply connected shape, and
do not allow for topological changes

[1] Fan, A.C., J. W. Fisher lll, W. M. Wells, J. J. Levitt, A. S. Willsky. MCMC curve sampling for image
segmentation. In: MICCAI (2007).

[2] Chen,S., R. J. Radke. Markov chain monte carlo shape sampling using level sets. Second Workshop on
non-Rigid Shape Analysis and Deformable Image Alignment, in conjunction with ICCV 2009.



{%}5&] Good Proposal Distributions

CSAIL
* Probability of accepting a sample is increased if posterior increases

T (@(t—l—l))
T (¢(t))
e Tradeoff with biased proposals

— The proposal can be biased to increase the posterior
— Decreases the forward-backward ratio in the acceptance ratio

q (90(t> ‘@(t—l—l))
0 (P I]00)
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ﬁ% Our Proposal Distribution

CSAIL

* Goal: design a proposal distribution that biases samples towards
likely configurations (increasing the likelihood ratio) without
decreasing the forward-backward ratio much.

e Solution: a small number of biased random variables move many
pixels into a more probable configuration

* Proposal perturbation
@(Hl) _ SO(t) +i(t>
f=hx(con)

Pr[C; = 1] o exp [vi . sign (—gpgt))} N; ~ N (v, 02)

h £ LPF with Random Bandwidth

v; = Gradient Descent Velocity of Pixel i



@% Results

CSAIL

 We show segmentation results in 3 ways:

— Histogram image — A count of times pixels are labeled with the
same region across all samples

— Probability of Boundary image — A normalized count of times
pixels are labeled on the edge

— Segmentation Quantiles — Thresholding the histogram image to
provide confidence bounds (e.g. this pixel belongs to the
“inside” region 50% of the time)

— Best Segmentation — The sample path with the highest energy.
This is a proxy for what the best optimization technique could
achieve



Synthetic Results

CSAIL E

* Synthetic example with varying SNR

 When images have high SNR (i.e. are vary separable), sampling
makes less of a difference

Probability of Best
Original Image Boundary Histogram 50% Quantile Segmentation
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Natural Image Results

CSAIL

Results from the Berkeley Segmentation Dataset. (‘X” on the Precision-Recall curve correspond to
the probability of boundary image. ‘+’ on the curve corresponds to the best sample path)




Mixing Rate Comparison

Unbiased Likelihood
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Although any valid proposal distribution
should converge to the right distribution,
the proposal greatly affects mixing times.

The likelihood bias in our proposal
distribution reaches the stationary
distribution more than 20x faster

than the unbiased perturbation.




CSAIL

{Eﬂﬁ% Dynamics of Curves

 We want to incorporate the 3D structure of the salt dome into the
sampling of successive frames




\ﬁ% Dynamics of Curves

CSAIL

* We could use Symmetric Area Difference (SAD) as a prior on future

frames

SAD (C1,Cs) = Z L{l1;,=—}+ Z (T{l1; = +}]

i€RS i€ERS

p (p2]p1) o< exp [-SAD (Cy,Cy)]

N
1
ds+ ) exp[-SAD (C,C;)]

g=1

E:[(X;L)—]f

C

* We use the notation C and @ interchangeably because a level set function defines a curve
€j7i corresponds to the label assigned to pixel 7 in imagej



\ﬁ% Sampling Dynamics on Curves

CSAIL

e Hastings Ratio requires calculating the energy at every sample

E:I(X;L)—]{

N
1
i ds + N Z exp [-SAD (C,C;)]

g=1
\— _/
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Esap

* We typically have over 1000 previous samples. Thus, calculating the
SAD term can become computationally intensive

Esap = ]ileeXp [— D o W{li=—}— ) T{=+}
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Loop over current sample
— _/
V
Loop over all previous samples




\ﬁ% Sampling Dynamics on Curve

CSAIL
* We approximate this energy prior W|th a Mixture of SADs (MSAD)

E_I(X,L)—j{der Z —SAD (C,C;)
‘ \‘7 ! ),

V
Eyrsap

 MSAD can be computed more efficiently with a precomputed
histogram image, h

Eysap = %Z |:— Z ]I{fj,i:—}— Z ]I{fj’i:—k
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Simple Feature

I
-1/4
/4| 1|14 | e (||| —
-1/4




@ES] Comparison without Dynamics
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Prob. of Boundary Probability Quantiles Overlaid

Overlaid on Original of Boundary on Feature Histogram




