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Image Segmentation

• Separate the image into separate regions



Implicit Level Set Representation

• Implicitly define a curve on the image with a surface in 3D



Implicit Level Set Representation

• Implicitly specify the curve
• Define a height at every pixel in the image

The Surface
The Level Sets / Contours

of the Surface



Implicit Level Set Representation

• The zero level set represents the 2D curve



Implicit Level Set Representation

• Signed Distance Function

1D 2D



Sampling Motivation

• Segmentation is often formulated as energy minimization

• Exponentiated Mutual Information under some prior is equivalent 
to posterior:

• Why would we want to sample from posterior of curves                ?
– More robust results
– Multimodal distributions
– Calculating marginal probabilities

• Probability that a pixel is on the boundary
• Probability that a pixel is within a certain region
• Probability that a pixel is in the same region as another pixel



Sampling Motivation



Metropolis-Hastings Sampling

• The space of segmentations is huge:
• Use Metropolis-Hastings MCMC to sample

– Sample from a proposal distribution

– Accept the proposal with probability

– Samples will eventually converge if the Markov chain is ergodic
because the Hastings ratio ensures detailed balance. 



Previous Sampling Methods

[4] Fan, A.C., J. W. Fisher III, W. M. Wells, J. J. Levitt, A. S. Willsky. MCMC curve sampling for image 
segmentation. In: MICCAI (2007).

Switches between implicit and explicit representations



Previous Sampling Methods

[3] Chen, S., R. J. Radke. Markov chain monte carlo shape sampling using level sets. Second Workshop on 
non-Rigid Shape Analysis and Deformable Image Alignment, in conjunction with ICCV 2009.

Preserves signed distance function



Previous Sampling Methods

• [4] alternates between implicit and explicit domain
• [3] generates small, smooth proposal perturbations that maintain 

the signed distance function
• Limitations

– Single simply connected shapes (and no topological changes)
– Only binary segmentation
– Complicated proposals – very slow to sample from and evaluate
– Small proposal perturbations – poor mixing-times
– Unbiased (or curvature biased) proposal perturbations – poor 

mixing-times



Key Ideas

• Eliminating signed distance constraint
– Proposal easy to sample from
– Forward-backward ratio simple to evaluate

• Bias proposals with gradient of energy functional
– Increases the posterior-sample ratio and the acceptance ratio

Forward-Backward
Ratio (FBR)

Posterior-Sample
Ratio (PSR)



Biased Proposal Distributions

• Assume proposals are generated with some additive perturbation

• A look into the forward-backward ratio



Biased Proposal Distributions
• Assume proposal is generated from N i.i.d. biased Gaussian RVs

• How does the distribution of forward-backward ratios look?

Biased proposals produce smaller forward-backward ratios!

Increasing NIncreasing 
Bias



A Quick Recap

• Ultimate Goal: Increase Hastings ratio
– Want to bias with gradient to increase the PSR
– Bias decreases FBR a lot

Forward-Backward
Ratio (FBR)

Posterior-Sample
Ratio (PSR)



Our Proposal Distribution



Our Proposal Distribution
• Biased proposal tradeoff – increased DLR and decreased FBR

– Exploit the fact that nearby pixels tend to have same label
• Our proposal

Sparse points only
influence the FBR a little

LPF allows sparse points
to influence PSR a lot

Biased noise tends to
increase the PSR



Results

• We show segmentation results in 3 ways:
– Histogram image – A count of times pixels are labeled with the 

same region across all samples
– Probability of Boundary image – A normalized count of times 

pixels are labeled on the edge
– Segmentation Quantiles – Thresholding the histogram image to 

provide confidence bounds (e.g. this pixel belongs to the 
“inside” region 50% of the time)

– Best Segmentation – The sample path with the highest energy. 
This is a proxy for what the best optimization technique could 
achieve



Topological Changes

• Other algorithms either catch the inside or outside (depending on 
initialization), but never both

Original Ours Chen et al. [3] Fan et al. [4]



Comparing Sampling Algorithms

OursChen et al. [3]Fan et al. [4]



Computation Time



Computation Time

Algorithm Biased Number of 
Iterations

Seconds per 
Iteration Total Gain

Ours
Yes 150 0.030 x1

No 40,000 0.025 x222

Chen et al. 
[3]

Yes 254,000 0.30 x16,933

No 896,000 0.26 x51,769

Fan et al. [4]
Yes 321,000 5.0 x356,667

No 336,000 5.0 x373,333



Synthetic Results

• Synthetic example with varying SNR
• When images have high SNR (i.e. are very separable), sampling 

makes less of a difference

Original Image
Probability of

Boundary Histogram 50% Quantile
Best

Segmentation



M-Ary Sampling

• M-ary segmentation typically achieved with multiple level sets
– Have to ensure following conditions do not occur

• Vacuum – pixels are not represented by any region
• Overlap – pixels are represented by multiple regions

Overlap Vacuum



M-Ary Sampling

• M-ary segmentation typically achieved with multiple level sets
– Have to ensure following conditions do not occur

• Vacuum – pixels are not represented by any region
• Overlap – pixels are represented by multiple regions

• Use (M) level sets to represent (M+1) regions

• Vacuum impossible by construction



M-Ary Sampling

• Pixels belong in 3 categories:
1. Belongs to        and has non-negative height only in
2. Belongs to        and has negative height in all level sets
3. Belongs to        and has non-negative height only in 

• Only allow moves between pixels of type (1) and (2)
• M-Ary proposal:



M-Ary Sampling

• For a pixel to move from       to       it must go through
• This must be reflected in our bias

• Proposal only looks at 
• Instead of biasing with gradient, bias with minimal gradient

• When using mutual information, the minimal gradient is



A Natural Image



Example Sampling vs. Optimization



Results on the BSDS
Results from the Berkeley Segmentation Dataset. (‘X’ on the Precision-Recall curve correspond 
to the probability of boundary image. ‘+’ on the curve corresponds to the best sample path)



Results on the BSDS

[3] Chang, J. and J.W. Fisher III. Analysis of Orientation and Scale in Smoothly Varying Textures. ICCV 2009.
[12] Heiler, M. and C. Schnorr. Natural Image Statistics for Natural Image Segmentation. ICCV 2003.
[13] Houhou, N., Jp.P. Thiran, and X. Bresson. Fast Texture Segmentation Model Based on the Shape 

Operator and Active Contour. CVPR 2008.
[14] Kim, J., J. W. Fisher II, A. Yezzi,. M. Cetin, and A. Willsky. A nonparametric statistical method for image 

segmentation using information theory and curve evolution. IEEE Trans. on Image Processing 2005.



Contributions

• Effortlessly allow for topological changes
• Extension to M-ary sampling
• Improves convergence speed by orders of magnitude
• Demonstrate versatility of sampling methods for segmentation
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