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Abstract

We develop a sampling technique for Hierarchical Dirichlet process models. The
parallel algorithm builds upon [1] by proposing large split and merge moves based
on learned sub-clusters. The additional global split and merge moves drastically
improve convergence in the experimental results. Furthermore, we discover that
cross-validation techniques do not adequately determine convergence, and that
previous sampling methods converge slower than were previously expected.

1 Introduction

Hierarchical Dirichlet Process (HDP) mixture models were first introduced by Teh et al. [2]. HDPs
extend the Dirichlet Process (DP) to model groups of data with shared cluster statistics. Since
their inception, HDPs and related models have been used in many statistical problems, including
document analysis [2], object categorization [3], and as a prior for hidden Markov models [4].

The success of HDPs has garnered much interest in inference algorithms. Variational techniques
[5, 6] are often used for their parallelization and speed, but lack the limiting guarantees of Markov
chain Monte Carlo (MCMC) methods. Unfortunately, MCMC algorithms tend to converge slowly.
In this work, we extend the recent DP Sub-Cluster algorithm [1] to HDPs to accelerate convergence
by inferring “sub-clusters” in parallel and using them to propose large split moves.

Extensions to the HDP are complicated by the additional DP, which violates conjugacy assumptions
used in [1]. Furthermore, split/merge moves require computing the joint model likelihood, which,
prior to this work, was unknown in the common Direct Assignment HDP representation [2]. We
discover that significant overlap in cluster distributions necessitates new global split/merge moves
that change all clusters simultaneously. Our experiments on synthetic and real-world data validate
the improved convergence of the proposed method. Additionally, our analysis of joint summary
statistics suggests that other MCMC methods may converge prematurely in finite time.

2 Related Work

The seminal work of [2] introduced the Chinese Restaurant Franchise (CRF) and the Direct Assign-
ment (DA) sampling algorithms for the HDP. Since then, many alternatives have been developed.
Because HDP inference often extends methods from DPs, we briefly discuss relevant work on both
models that focus on convergence and scalability. Current methods are summarized in Table 1.

Simple Gibbs sampling methods, such as CRF or DA, may converge slowly in complex models.
Works such as [11, 12, 13, 14] address this issue in DPs with split/merge moves. Wang and Blei [7]
developed the only split/merge MCMC method for HDPs by extending the Sequentially Allocated
Merge-Split (SAMS) algorithm of DPs developed in [13]. Unfortunately, reported results in [7]
only show a marginal improvement over Gibbs sampling. Our experiments suggest that this is likely
due to properties of the specific sampler, and that a different formulation significantly improves
convergence. Additionally, SAMS cannot be parallelized, and is therefore only tested on a corpus
with 263K words. By designing a parallel algorithm, we test on a corpus of 100M words.
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Table 1: Capabilities of MCMC Sampling Algorithms for HDPs
CRF [2] DA [2] SAMS [7] FSD [4] Hog-Wild [8] Super-Cluster [9] Proposed

Infinite Model X X X · X X X
MCMC Guarantees X X X X · X X
Non-Conjugate Priors ∗ ∗ · X · ∗ X
Parallelizable · · · X X X X
Local Splits/Merges · · X · · · X
Global Splits/Merges · · · · · · X

∗ potentially possible with some adapatation of the DP Metropolis-Hastings framework of [10].

There has also been work on parallel sampling algorithms for HDPs. Fox et al. [4] generalizes the
work of Ishwaran and Zarepour [15] by approximating the highest-level DP with a finite symmetric
Dirichlet (FSD). Iterations of this approximation can be parallelized, but fixing the model order is
undesirable since it no longer grows with the data. Furthermore, our experiments suggest that this al-
gorithm exhibits poor convergence. Newman et al. [8] present an alternative parallel approximation
related to Hog-Wild Gibbs sampling [16, 17]. Each processor independently runs a Gibbs sampler
on its assigned data followed by a resynchronization step across all processors. This approximation
has shown to perform well on cross-validation metrics, but loses the limiting guarantees of MCMC.
Additionally, we will show that cross-validation metrics are not suitable to analyze convergence.

An exact parallel algorithm for DPs and HDPs was recently developed by Willamson et al. [9]
by grouping clusters into independent super-clusters. Unfortunately, the parallelization does not
scale well [18], and convergence is often impeded [1]. Regardless of exactness, all current parallel
sampling algorithms exhibit poor convergence due to their local nature, while split/merge proposals
are essentially ineffective and cannot be parallelized.

2.1 DP Sub-Clusters Algorithm

The recent DP Sub-Cluster algorithm [1] addresses these issues by combining non-ergodic Markov
chains into an ergodic chain and proposing splits from learned sub-clusters. We briefly review
relevant aspects of the DP Sub-Cluster algorithm here. MCMC algorithms typically satisfy two
conditions: detailed balance and ergodicity. Detailed balance ensures that the target distribution
is a stationary distribution of the chain, while ergodicity guarantees uniqueness of the stationary
distribution. The method of [1] combines a Gibbs sampler that is restricted to non-empty clusters
with a Metropolis-Hastings (MH) algorithm that proposes splits and merges. Since any Gibbs or
MH sampler satisfies detailed balance, the true posterior distribution is guaranteed to be a stationary
distribution of the chain. Furthermore, the combination of the two samplers enforces ergodicity and
guarantees the convergence to the stationary distribution.

The DP Sub-Cluster algorithm also augments the model with auxiliary variables that learn a two-
component mixture model for each cluster. These “sub-clusters” are subsequently used to propose
splits that are learned over time instead of built in a single iteration like previous methods. In this
paper, we extend these techniques to HDPs. As we will show, considerable work is needed to address
the higher-level DP and the overlapping distributions that exist in topic modeling.

3 Hierarchical Dirichlet Processes

We begin with a brief review of the equivalent CRF and DA representations of the HDP [2] depicted
in Figures 1a–1b. Due to the prolific use of HDPs in topic modeling, we refer to the variables with
their topic modeling names. β is the corpus-level, global topic proportions, θk is the parameter for
topic k, and xji is the ith word in document j. Here, the CRF and DA representations depart. In the
CRF, π̃j is drawn from a stick-breaking process [19], and each “customer” (i.e., word) is assigned
to a “table” through tji ∼ Categorical(π̃j). The higher-level DP then assigns “dishes” (i.e., topics)
to tables via kjt ∼ Categorical(β). The association of customers to dishes through the tables is
equivalent to assigning a word to a topic. In the CRF, multiple tables can be assigned the same dish.

The DA formulation combines these multiple instances and directly assigns a word to a topic with
zji. The resulting document-specific topic proportions, πj , aggregates multiple π̃j values. For

2



(a) HDP CRF Model (b) HDP DA Model (c) HDP Augmented DA Model
Figure 1: Graphical models. (c) Hyper-parameters are omitted and auxiliary variables are dotted.

Figure 2: Visualization of augmented sample space.

reasons which will be discussed, inference in the DA formulation still relies on some aspects of
the CRF. We adopt the notation of [2], where the number of tables in restaurant j serving dish k is
denoted mjk, and the number of customers in restaurant j at table t eating dish k is njtk. Marginal
counts are represented with dots, e.g., nj·· ,

∑
t,k njtk and mj· ,

∑
kmjk represent the number

of customers and dishes in restaurant j, respectively. We refer the reader to [2] for additional details.

4 Restricted Parallel Sampling

We draw on the DP Sub-Cluster algorithm to combine a restricted, parallel Gibbs sampler with
split/merge moves (as described in Section 2.1). The former is detailed here, and the latter is devel-
oped in Section 5. Because the restricted Gibbs sampler cannot create new topics, dimensions of the
infinite vectors β, π, and θ associated with empty clusters need not be instantiated. Extending the
DA sampling algorithm of [2] results in the following restricted posterior distributions:

p(β|m) = Dir(m·1, . . . ,m·K , γ), (1)
p(πj |β, z) = Dir(αβ1 + nj·1, . . . , αβK + nj·K , αβK+1), (2)
p(θk|x, z) ∝ fx(xIk ; θk)fθ(θk;λ), (3)

p(zji|x, πj , θ) ∝
∑K
k=1 πjkfx(xji; θk)1I[zji = k], (4)

p(mjk|β, z) = fm(mjk;αβk, nj·k) ,
Γ(αβk)

Γ(αβk+nj·k)s(nj·k,mjk)(αβk)
mjk . (5)

Since p(β|π) is not known analytically, we use the auxiliary variable, mjk, as derived by [2, 20].
Here, s(n,m) denotes unsigned Stirling numbers of the first kind. We note that β and π are now
(K + 1)–length vectors partitioning the space, where the last components, βK+1 and πj(K+1),
aggregate the weight of all empty topics. Additionally, Ik , {j, i; zji = k} denotes the set of
indices in topic k, and fx and fθ denote the observation and prior distributions. We note that if fθ is
conjugate to fx, Equation (3) stays in the same family of parametric distributions as fθ(θ;λ).

Equations (1–5), each of which can be sampled in parallel, fully specify the restricted Gibbs sam-
pler. The astute reader may notice similarities with the FSD approximation used in [4]. The main
differences are that the β distribution in Equation (1) is exact, and that sampling z in Equation (4)
is explicitly restricted to non-empty clusters. Unlike [4], however, this sampler is guaranteed to
converge to the true HDP model when combined with any split move (cf. Section 2.1).

5 Augmented Sub-Cluster Space for Splits and Merges

In this section we develop the augmented, sub-cluster model, which is aimed at finding a two-
component mixture model containing a likely split of the data. As demonstrated in [1], these splits
perform well in DPs because they improve at every iteration of the algorithm. Unfortunately, because
these splits perform poorly in HDPs, we modify the formulation to propose more flexible moves.

For each topic, k, we fit two sub-topics, k` and kr, referred to as the “left” and “right” sub-topics.
Each topic is augmented with auxiliary global sub-topic proportions, βk = {βk`, βkr}, document-
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level sub-topic proportions, πjk = {πjk`, πjkr}, and sub-topic parameters, θk = {θk`, θkr}. Fur-
thermore, a sub-topic assignment, zji ∈ {`, r} is associated with each word, xji. The augmented
space is summarized in Figure 1c and visualized in Figure 2. These auxiliary variables are denoted
with the same symbol as their “regular-topic” counterparts to allude to their similarities. Extending
the work of [1], we adopt the following auxiliary generative and marginal posterior distributions:

Generative Distributions Marginal Posterior Distributions

p(βk) = Dir(γ, γ), p(βk|•) = Dir(γ +m·k`, γ +m·kr), (6)

p(πjk|βk) = Dir(αβk`, αβkr), p(πjk|•) = Dir(αβk`+nj·k`,αβkr+nj·kr), (7)

p(θk|π, z, x) =
∏

h∈{`,r}

fθ(θkh;λ)
∏
j,i∈Ik

Zji(π, θ, z, x), p(θkh|•) ∝ fx(xIkh
; θkh)fθ(θkh;λ), (8)

p(z|π, θ, z, x) =
∏K

k=1

∏
j,i∈Ik

πjkzji
fx(xji;θkzji

)

Zji(π,θ,z,x)
, p(zji|•) ∝ πjzjizjifx(xji; θzjizji) (9)

Zji(π, θ, z, x) ,
∑

h∈{`,r}
πjzjihfx(xji; θzjih), p(mjkh|•) = fm(mjkh;αβkh, nj·kh), (10)

where • denotes all other variables. Full derivations are given in the supplement. Notice the similar-
ity between these posterior distributions and Equations (1–5). Inference is performed by interleaving
the sampling of Equations (1–5) with Equations (6–10). Furthermore, each step can be parallelized.

5.1 Sub-Topic Split/Merge Proposals

We adopt a Metropolis-Hastings (MH) [21] framework that proposes a split/merge from the sub-
topics and either accepts or rejects it. Denoting v , {β, π, z, θ} and v , {β, π, z, θ} as the set of
regular and auxiliary variables, a sampled proposal, {v̂, v̂} ∼ q(v̂, v̂|v) is accepted with probability

Pr[{v, v} = {v̂, v̂}] = min
[
1, p(x,v̂)p(v̂|x,v̂)

p(x,v)p(v|x,v) ·
q(v|x,v̂)q(v|x,v̂,v)

q(v̂|x,v)q(v̂|x,v,v̂)

]
= min [1, H] . (11)

H , is known as the Hastings ratio. Algorithm 1 outlines a general split/merge MH framework,
where steps 1–2 propose a sample from q(v̂|x, v)q(v̂|x, v, v, v̂). Sampling the variables other than ẑ
is detailed here, after which we discuss three versions of Algorithm 1 with variants on sampling ẑ.

Algorithm 1 Split-Merge Framework

1. Propose assignments, ẑ, global proportions, β̂, document proportions, π̂, and parameters, θ̂.
2. Defer the proposal of auxiliary variables to the restricted sampling of Equations (1–10).
3. Accept/reject the proposal with the Hastings ratio.

(Step 1: β̂): In Metropolis-Hastings, convergence typically improves as the proposal distribution is
closer to the target distribution. Thus, it would be ideal to propose β̂ from p(β|ẑ). Unfortunately,
p(β|z) cannot be expressed analytically without conditioning on the dish counts,m·k, as in Equation
(1). Since the distribution of dish counts depends on β itself, we approximate its value with

m̃jk(z) , argmaxm p(m|β = 1/K, z) = argmaxm
Γ(1/K)

Γ(1/K+nj·k)s(nj·k,m)( 1
K )m, (12)

where the global topic proportions have essentially been substituted with 1/K. We note that the
dependence on z is implied through the counts, n. We then propose global topics proportions from

β̂ ∼ q(β̂|ẑ) = p(β̂|m̃(ẑ)) = Dir (m̃·1(ẑ), · · · , m̃·K(ẑ), γ) . (13)

We will denote m̃jk , m̃jk(z) and ˆ̃mjk , m̃jk(ẑ). We emphasize that the approximate ˆ̃mjk is
only used for a proposal distribution, and the resulting chain will still satisfy detailed balance.

(Step 1: π̂): Conditioned on β and z, the distribution of π is known to be Dirichlet. Thus, we
propose π̂ ∼ p(π̂|β̂, ẑ) by sampling directly from the true posterior distribution of Equation (2).

(Step 1: θ̂): If fθ is conjugate to fx, we sample θ̂ directly from the posterior of Equation (3). If
non-conjugate models, any proposal can be used while adjusting for it in the Hastings ratio.
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(Step 2): We use the Deferred MH sampler developed in [1], which sets q(v̂|x, v̂) = p(v̂|x, v̂) by
deferring the sampling of auxiliary variables to the restricted sampler of Section 5. Splits and merges
are then only proposed for topics where auxiliary variables have already burned-in. In practice burn-
in is quite fast, and is determined by monitoring the sub-topic data likelihoods.

(Step 3): Finally, the above proposals results in the following the Hastings ratio:

H = p(β̂,ẑ)p(x|ẑ)
p(β,z)p(x|z) ·

q(z|v̂,v̂)q(β|z)
q(ẑ|v,v)q(β̂|ẑ)

. (14)

The data likelihood, p(x|z) is known analytically, and q(β|z) can be calculated according to Equa-
tion 13. The prior distribution, p(β, z), is expressed in the following proposition:
Proposition 5.1. Let z be a set of topic assignments with integer values in {1, . . . ,K}. Let β be a
(K+1)–length vector representing global topic weights, and βK+1 be the sum of weights associated
with empty topics. The prior distribution, p(β, z), marginalizing over π, can be expressed as

p(β, z) =
[
γβγ−1

K+1

∏K

k=1
β−1
k

]
×
[∏D

j=1

Γ(α)
Γ(α+nj··)

∏K

k=1

Γ(αβk+nj·k)
Γ(αβk)

]
. (15)

Proof. See supplemental material.

The remaining term in Equation (14), q(ẑ|v, v), is the probability of proposing a particular split. In
the following sections, we describe three possible split constructions using the sub-clusters. Since
the other steps remain the same, we only discuss the proposal distributions for ẑ and β̂.

5.1.1 Deterministic Split/Merge Proposals

The method of [1] constructs a split deterministically by copying the sub-cluster labels for a sin-
gle cluster. We refer to this proposal as a local split, which only changes assignments within one
topic, as opposed to a global split (discussed shortly), which changes all topic assignments. A local
deterministic split will essentially be accepted if the joint likelihood increases. Unfortunately, as
we show in the supplement, samples from the typical set of an HDP do not have high likelihood.
Deterministic split and merge proposals are, consequently, very rarely accepted. We now suggest
two alternative pairs of split and merge proposals, each with their own benefits and drawbacks.

5.1.2 Local Split/Merge Proposals

Here, we depart from the approach of [1] by sampling a local split of topic a into topics b and c.
Temporary parameters, {π̃b, π̃c, θ̃b, θ̃c}, and topic assignments, ẑ, are sampled according to

(π̃b, π̃c) = πa · (πa`, πar),
(θ̃b, θ̃c) = (θa`, θar),

}
=⇒ q(ẑ|v, v) ∝

∏
j,i∈Ia

∑
k∈{b,c}

π̃kfx(xji; θ̃k)1I[ẑji = k]. (16)

We note that a sample from q(ẑ|v, v) is already drawn from the restricted Gibbs sampler described
in Equation (9). Therefore, no additional computation is needed to propose the split. If the split is
rejected, the ẑ is simply used as the next sample of the auxiliary z for cluster a.

A β̂ is then drawn by splitting βa into β̂b and β̂c according to a local version of Equation (13):

q(β̂b, β̂c|ẑ, βa) = Dir(β̂b/βa, β̂c/βa; ˆ̃m·b, ˆ̃m·c). (17)

The corresponding merge move combines topics b and c into topic a by deterministically performing

q(ẑji|v) = 1I[ẑji = a], ∀j, i ∈ Ib ∪ Ic, q(β̂a|v) = δ(β̂a − (βb + βc)). (18)

This results in the following Hastings ratio for a local split (derivation in supplement):

H = γΓ( ˆ̃m·b)Γ( ˆ̃m·c)

Γ( ˆ̃m·b+ ˆ̃m·c)

β
ˆ̃m·b+ ˆ̃m·c
a

β̂
ˆ̃m·b
b β̂

ˆ̃m·c
c

p(x|ẑ)
p(x|z)

1
q(ẑ|v,v)

QM
K+1

QS
K

∏
j

Γ(αβa)
Γ(αβa+nj·a)

∏
k∈{b,c}

Γ(αβ̂k+n̂j·k)

Γ(αβ̂k)
, (19)

where QSK and QMK are the probabilities of selecting a specific split or merge with K topics. We
record q(ẑ|v, v) when sampling from Equation (9), and all other terms are computed via sufficient
statistics. We set QSK = 1 by proposing all splits at each iteration. QMK will be discussed shortly.
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The Hastings ratio for a merge is essentially the reciprocal of Equation (19). However, the reverse
split move, q(z|v̂, v̂), relies on the inferred sub-topic parameters, π̂ and θ̂, which are not readily
available due to the Deferred MH algorithm. Instead, we approximate the Hastings ratio by substi-
tuting the two original topic parameters, θb and θc, for the proposed sub-topics. The quality of this
approximation rests on the similarity between the regular-topics and the sub-topics. Generating the
reverse move that splits topic a into b and c can then be approximated as

q(z|v̂, v̂) ≈
∏

j,i∈Ib∪Ic

πzji
fx(xji;θzji )

πbfx(xi;θb)+πcfx(xi;θc) = LbbLcc

LbcLcb
, (20)

Lkk ,
∏

j,i∈Ik
πkfx(xji; θk), Lkl ,

∏
j,i∈Ik

[πkfx(xji; θk) + πlfx(xji; θl)] . (21)

All of the terms in Equation (20) are already calculated in the restricted Gibbs steps. When aggre-
gated correctly in the K ×K matrix, L, the Hastings ratio for any proposed merge is evaluated in
constant time. However, if topics b and c are merged into a, further merging a with another cluster
cannot be efficiently computed without looping through the data. We therefore only propose bK/2c
merges by generating a random permutation of the integers [1,K], and proposing to merge disjoint
neighbors. For example, if the random permutation for K = 7 is { 3 1 7 4 2 6 5}, we propose to
merge topics 3 and 1, topics 7 and 4, and topics 2 and 6. This results in QMK = 2bK/2c

K(K−1) .

5.1.3 Global Split/Merge Proposals

In many applications where clusters have significant overlap (e.g., topic modeling), local splits may
be too constrained since only points within a single topic change. We now develop a global split
and merge move, which reassign the data in all topics. A global split first constructs temporary topic
proportions, π̃, and parameters, θ̃, followed by proposing topic assignments for all words with:
(π̃b, π̃c) = πa · (πa`, πar), π̃k = πk, ∀k 6= a,

(θ̃b, θ̃c) = (θa`, θar), θ̃k = θk, ∀k 6= a,

}
=⇒ q(ẑ|v, v) =

∏
j,i

π̃ẑjifx(xji; θ̃ẑji)∑
k π̃kfx(xji; θ̃k)

. (22)

Similarly, the corresponding merge move is constructed according to
π̃a = πb + πc, π̃k = πk, ∀k 6= b, c,

θ̃a ∼ q(θ̃a|z, x), θ̃k = θk, ∀k 6= b, c,

}
=⇒ q(ẑ|v, v) =

∏
j,i

π̃ẑjifx(xji; θ̃ẑji)∑
k π̃kfx(xji; θ̃k)

. (23)

The proposal for θ̃a is written in a general form; if priors are conjugate, one should propose directly
from the posterior. After Equations (22)–(23), β̂ is sampled via Equation (13). All remaining steps
follow Algorithm 1. The resulting Hastings ratio for a global split (see supplement) is expressed as

H= γΓ(γ+m̃··)

Γ(γ+ ˆ̃m··)
p(x|ẑ)
p(x|z)

q(z|v̂,v̂)q(θ̃a|z)
q(ẑ|v,v)

QM
K+1

QS
K

K∏
k=1

β
m̃·k
k

Γ(m̃·k)

D∏
j=1

Γ(αβk)
Γ(αβk+nj·k)

K+1∏
k=1

Γ( ˆ̃m·k)

β̂
ˆ̃m·k
k

D∏
j=1

Γ(αβ̂k+n̂j·k)

Γ(αβ̂k)
. (24)

Similar to local merges, the Hastings ratio for a global merge depends on the proposed sub-topics
parameters. We approximate these with the main-topic parameters prior to the merge.

Unlike the local split/merge proposals, proposing ẑ requires significant computation by looping
through all data points. As such, we only propose a single global split and merge each iteration.
Thus, QSK = 1/K and QMK = 2/(K(K − 1)). We emphasize that the developed global moves are
very different from previous local split/merge moves in DPs and HDPs (e.g., [1, 7, 11, 13, 14]). We
conjecture that this is the reason the split/merge moves in [7] only made negligible improvement.

6 Experiments

We now test the proposed HDP Sub-Clusters method on topic modeling. The algorithm is sum-
marized in the following steps: (1) initialize β and z randomly; (2) sample π, θ, π, and θ via
Equations (2, 3, 7, 8); (3) sample z and z via Equations (4, 9); (4) propose bK2 c local merges
followed by K local splits; (5) propose a global merge followed by a global split; (6) sample m
and m via Equations (5, 10); (7) sample β and β via Equations (1, 6); (8) repeat from Step 2
until convergence. We fix the hyper-parameters, but resampling techniques [2] can easily be in-
corporated. All results are averaged over 10 sample paths. Source code can be downloaded from
http://people.csail.mit.edu/jchang7.
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(a) Visualizing Topics
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(c) Parallelization
Figure 3: Synthetic “bars” example. (a) Visualizing topic word distributions without splits/merges
forK = 5. (b)–(c) Number of inferred topics for different split/merge proposals and parallelizations.
(d) Comparing sampling algorithms with a single processor and initialized to a single topic.
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(a) AP Results with Different Initializations
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(b) AP Results with Switching Algorithms
Figure 4: Results on AP. (a) 1, 25, 50, and 75 initial topics. (b) Switching algorithms at 1000 secs.

6.1 Synthetic Bars Dataset

We synthesized 200 documents from the “bars” example of [22] with a dictionary of 25 words that
can be arranged in a 5x5 grid. Each of the 10 true topics forms a horizontal or vertical bar. To
visualize the sub-topics, we initialize to 5 topics and do not propose splits or merges. The resulting
regular- and sub-topics are shown in Figure 3a. Notice how the sub-topics capture likely splits.

Next, we consider different split/merge proposals in Figure 3b. The “Combined” algorithm uses
local and global moves. The deterministic moves are often rejected resulting in slow convergence.
While global moves are not needed in such a well-separated dataset, we have observed that the make
a significant impact in real-world datasets. Furthermore, since every step of the sampling algorithm
can be parallelized, we achieve a linear speedup in the number of processors, as shown in Figure 3c.

Figure 3d compares convergence without parallelization to the Direct Assignment (DA) sampler and
the Finite Symmetric Dirichlet (FSD) of order 20. Since all algorithms should sample from the same
model, the goal here is to analyze convergence speed. We plot two summary statistics: the likelihood
of a single held-out word (HOW) from each document, and the number of inferred topics. While
the HOW likelihood for FSD converges at 1 second, the number of topics converges at 100 seconds.
This suggests that cross-validation techniques, which evaluate model fit, cannot solely determine
MCMC convergence. We note that FSD tends to first create all L topics and slowly remove them.

6.2 Real-World Corpora Datasets

Next, we consider the Associated Press (AP) dataset [23] with 436K words in 2K documents. We
manually set the FSD order to 100. Results using 16 cores (except DA, which cannot be parallelized)
with 1, 25, 50, and 75 initial topics are shown in Figure 4a. All samplers should converge to the
same statistics regardless of the initialization. While HOW likelihood converges for 3/4 FSD initial-
izations, the number of topics indicates that no DA or FSD sample paths have converged. Unlike
the well-separated, synthetic dataset, the Sub-Clusters method that only uses local splits and merges
does not converge to a good solution here. In contrast, all initializations of the Sub-Clusters method
have converged to a high HOW likelihood with only approximately 20 topics. The path taken by
each sampler in the joint HOW likelihood / number of topics space is shown in the right panel of
Figure 4a. This visualization helps to illustrate the different approaches taken by each algorithm.

Figure 5a shows confusion matrices, C, of the inferred topics. Each element of C is defined as:
Cr,c =

∑
x fx(x; θr) log fx(x; θc), and captures the likelihood of a random word from topic r
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(a) Confusion Matrices for AP (b) Four Topics from NYTimes
Figure 5: (a) Confusion matrices on AP for SUB-CLUSTERS, DA, and FSD (left to right). Outlines
are overlaid to compare size. (b) Four inferred topics from the NYTimes articles.
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(b) NYTimes Results
Figure 6: Results on (a) Enron emails and (b) NYTimes articles for 1 and 50 initial topics.

evaluated under topic c. DA and FSD both converge to many topics that are easily confused, whereas
the Sub-Clusters method converges to a smaller set of more distinguishable topics.

Rigorous proofs about convergence are quite difficult. Furthermore, even though the approximations
made in calculating the Hastings ratios for local and global splits (e.g., Equation (20)) are backed by
intuition, they complicate the analysis. Instead, we run each sample path for 2,000 seconds. After
1,000 seconds, we switch the Sub-Clusters sample paths to FSD and all other sample paths to Sub-
Clusters. Markov chains that have converged should not change when switching the sampler. Figure
4b shows that switching from DA, FSD, or the local version of Sub-Clusters immediately changes
the number of topics, but switching Sub-Clusters to FSD has no effect. We believe that the number
of topics is slightly higher in the former because the Sub-Cluster method struggles to create small
topics. By construction, the splits make large moves, in contrast to DA and FSD, which often create
single word topics. This suggests that alternating between FSD and Sub-Clusters may work well.

Finally, we consider two large datasets from [24]: Enron Emails with 6M words in 40K documents
and NYTimes Articles with 100M words in 300K documents. We note that the NYTimes dataset is
3 orders of magnitude larger than those considered in the HDP split/merge work of [7]. Again, we
manually set the FSD order to 200. Results are shown in Figure 6 initialized to 1 and 50 topics. In
such large datasets, it is difficult to predict convergence times; after 28 hours, it seems as though no
algorithms have converged. However, the Sub-Clusters method seems to be approaching a solution,
whereas FSD has yet to prune topics and DA has yet to to achieve a good cross-validation score.
Four inferred topics using the Sub-Clusters method on the NYTimes dataset are visualized in Figure
5b. These words seem to describe plausible topics (e.g., music, terrorism, basketball, and wine).

7 Conclusion

We have developed a new parallel sampling algorithm for the HDP that proposes split and merge
moves. Unlike previous attempts, the proposed global splits and merges exhibit significantly im-
proved convergence in a variety of datasets. We have also shown that cross-validation metrics in
isolation can lead to the erroneous conclusion that an MCMC sampling algorithm has converged.
By considering the number of topics and held-out likelihood jointly, we show that previous sampling
algorithms converge very slowly.
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