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Abstract

This thesis project will focus on investigating extensions and improvements to the
curve evolution and non-parametric density estimate based image segmentation ap-
proach proposed by Kim et al. [13]. One main problem with the algorithm proposed
by Kim was that it was based solely on the individual scalar pixel intensities and did
not take advantage of the underlying structure of the image. In this project, we will
try to extend this scalar based segmentation approach to a vector based method. By
representing each pixel with a vector quantity, we can capture more of the image’s
structure rather than just the pixel intensity. We will be applying a texture measure,
such as the Steerable Pyramid [9, 24, 23], to generate this vector quantity at every
pixel of the image. This extension will cause a few more issues to surface, including
those of computation time and sparsity of data. After addressing these issues, we will
attempt to segment the vector image in a similar fashion as [13], by maximizing the
mutual information between the vector at a pixel and the current labeling.
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Chapter 1

Introduction

In the field of computer vision, image segmentation describes the process of distin-

guishing objects within an image from each other and the background. The problem

of image segmentation is important in many applications. For the end-user, if a very

robust image segmentation algorithm existed, it could potentially help in many fields.

In medicine, radiologists are doctors trained and dedicated to analyze medical im-

ages such as x-rays, MRIs, and CT scans. They work to identify tumors or problem-

atic areas within the medical images to diagnose a patient. Sometimes, the decision

of whether or not a tumor exists can only be decided by a trained expert. Image

segmentation algorithms could help in medicine by finding irregularities in images

when doctors are busy or not present. Even if they were not completely reliable, the

algorithms could at least provide a starting point to identifying a problem.

In addition to medicine, image segmentation is important for computer vision as

a whole. Many vision applications deal with the recognition and processing of images

within an object. The first step to systems such as these is to actually find the object

of interest, which is exactly the what image segmentation addresses. Once the objects

of an image are identified, processing can be done much easier. The motion of these

identified objects within a video could even be used to compress videos with a better

algorithm than what currently exists.

The applications and usefulness of image segmentation are very vast. However,

the problem of image segmentation is ill-posed [2, 15], meaning that there are multiple
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solutions in an unconstrained environment. Algorithms can overcome this obstacle by

introducing a set of constraints so that a unique optimal solution exists. This solution

would only be optimal while the constraints are met, and thus a good set of constraints

is extremely important when developing a segmentation algorithm. There has been

much work done on image segmentation in the past. Some of these algorithms (such

as [19, 7]) rely on training data. However, when the algorithm is tested and trained

with a specific set of images, it may not necessarily do well for images that do not

fit into the categories of the training set. Many other algorithms (such as [3, 7, 17])

focus on identifying edges to mark the boundaries of regions. In images that contain

a textured object with many edges (e.g. wood grain, zebras, jaguars, etc.), an edge

detection based approach usually identifies parts of the texture as separate regions,

when they are really from the same object. There are also a set of algorithms (such as

[5, 6, 27]) that use a similar approach to [13], but with a parametric model or estimate.

However, using a non-parametric estimate allows for a wider range of distributions to

be represented. If a parametric model is used, and the observed data is not actually

drawn from the model, the estimate may be very inaccurate.

This thesis will focus on improving and extending the well formulated algorithm

posed by Kim, Fisher, Yezzi, Cetin, and Willsky in [13] by incorporating a texture

measure into the segmentation criterion. This algorithm was chosen as a basis for

its robustness and previous success in segmenting images. It also has a very natural

extension to a vectorized segmentation, which will be used with a texture measure

to improve segmentation results. Thus, the proposed algorithm will combine the

already successful results of [13] with a texture measure to improve on the kinds of

images it can successful segment. The preliminary results from this new algorithm

show significant promise. After the improvements and extensions are finished, we will

compare the results empirically with other leading algorithms.
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Chapter 2

Background Material

Three main topics are necessary in understanding the basis of the algorithm described

in this thesis: level set methods, non-parametric kernel density estimates, and texture

measures such as the Steerable Pyramid. They will be briefly discussed here, and

combined in Chapters 3 and 4 to construct the new algorithm.

2.1 Curve Evolution - Level Set Methods

Level set methods provide a way to implicitly represent and evolve an N-dimensional

(or less) hyper-surface in an N-dimensional space. The works of Osher and Fedkiw [18]

and Sethian [22] provide the original development of level set methods and provide a

wealth of knowledge on this subject. When applied to image segmentation, a three-

dimensional surface, φ, is defined by values on a two-dimensional Cartesian grid. In

practice, this surface is stored as an image, and the height of the level set function is

defined for each pixel in the image. For this reason, it will be convenient to refer to

the height of the level set at a specific point as the value of the level set at a particular

pixel, or φ(x, y).

The implicit hyper-surface in this case is just a curve that exists in the two-

dimensional support of the image. This implied curve will be called the zero level set,

C, which is defined as the set of all pixels on the three-dimensional level set function
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(a) Plotted in 3 Dimensions (b) Viewed as an Image

Figure 2-1: Level Set Function Viewed as Terrain

that intersect the plane of value zero.

C = {(x, y) | φ(x, y) = 0} (2.1)

Thus, the zero level set divides the image into two regions, R+ and R−, which

consist of the positive and negative values of the level set function respectively. One

can often think of a level set function as some sort of terrain, where the land above

sea level would be in R+, the ocean floors below sea level would be in R−, and sea

level would be the zero level set. An example of a level set function is given in Figure

2-1, where the green pixels would be in R+, the red pixels would be in R−, and the

purely black pixels make up the zero level set. The zero level set will sometimes be

referred to as simply ”the curve” because it solely determines the final segmentation.

2.1.1 Signed Distance Function

In a typical application of image segmentation with level set methods, the user is only

concerned with the zero level set because it is this curve that segments the image.

To start the process of evolving a level set function, an initialization of the zero level

set, or an initial guess at the segmentation, is needed. The method for choosing this

initialization will be discussed in Chapter 3. Assuming the initialization exists, the

level set function is then iteratively evolved to refine the guess to a better solution.
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(a) Plotted in 3 Dimensions (b) Viewed as an Image

Figure 2-2: Level Set Function as Signed Distance Function

Because the user is only concerned with the zero level set, the values of the level set

function off of the zero level set curve are not specifically defined by the user.

A very common approach is to make the level set function a signed distance

function. A signed distance function has the property that the absolute value at each

pixel is the minimum distance to the zero level set, C. The sign at each pixel depends

on which region that pixel belongs to. If the pixel belongs to R−, the sign is negative,

and if the pixel belongs to R+, the sign is positive. In general, the interior of the zero

level set curve is defined to have negative values and the exterioer is defined to have

positive values. The signed distance function looks more cone-shaped, and thus, an

actual level set function looks more like Figure 2-2 rather than Figure 2-1.

Though a signed distance function does not need to be used for the level set

function, it does provide some nice properties. In addition to some more subtle

benefits, the main reason why many people use signed distance functions is because:

|∇φ| = 1 (2.2)

This property is very useful, especially when the velocity depends on a curvature

term. This will be explored in more detail in the next section. There are many

methods for computing the signed distance function efficiently, but they will not be

discussed here. In the implementation, the Fast Marching Method [26] was used.
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2.1.2 Evolving the Level Set Function

The typical process for curve evolution is to do the following:

1. Initialize the level set function, φ, to a signed distance function with an initial

guess

2. Calculate a velocity φt at every pixel in the level set

3. Update the level set for a small time interval according to φt

4. Reinitialize the level set function to a signed distance function

5. Repeat from Step 2 until convergence

In level set methods, an energy functional, E, is chosen for the particular appli-

cation. The problem of calculating the velocity field is then equivalent to minimizing

this energy functional. The specific minimization criterion depends on what the goal

of the application is. Oftentimes, the energy functional will consist of multiple terms

where one of the terms impose some sort of smoothness constraint on the zero level

set, making the ill-posed problem of image segmentation more well-posed. The reason

for this smoothness constraint will be described more in Chapter 3.

In the algorithm for this thesis, the energy functional will consist of an information

theoretic (IT) term and a smoothing (S) term. One way to think of the smoothing

constraint is to have a term in the energy functional penalizing curve length. In-

tuitively, a very jagged curve will have a longer curve length then a smooth curve.

Therefore, the energy functional can be rewritten as

E(c) = EIT(c) + ES(c) = EIT(c) + α

∮

C

ds ∀c ∈ C (2.3)

Now, given a specific energy functional, one can minimize this term to find the

velocity field. It is important to note that the energy functional is most often only

defined on the zero level set, C. This will be discussed in greater detail in Section

2.1.3, but the consequence is that the energy functional only gives a valid velocity

for pixels on the zero level set. Ignoring this fact for now, we can rewrite the energy

functional due to the curve length penalty in terms of velocities. From the proof in
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[11], this velocity is just
−→
VS(c) = ακ

−→
N ∀c ∈ C (2.4)

where κ is the mean curvature given by

κ =
△φ

|∇φ| (2.5)

As previously stated, if φ is a signed distance function, then the denominator of κ

simplifies to 1, and Equations 2.4 and 2.5 becomes

−→
VS(c) = α△φ

−→
N ∀c ∈ C (2.6)

The velocities derived from minimizing the energy functionals are clearly vectors.

In the derivation of level set methods in [18], this velocity vector field must be applied

to the level set equation.

φt +
−→
V · ∇φ = 0 (2.7)

Following the steps in [18, p.42], the equation for the velocity update of the level set

just becomes

φt(c) = −Vn|∇φ| ∀c ∈ C (2.8)

where
−→
V = Vn

−→
N + Vt

−→
T . It’s interesting to note that velocities from the energy

functional are almost always only in the normal direction. The tangential velocities

can be safely ignored because they do not change the implicit definition of the zero

level set curve. Thus, by combining Equations 2.6 and 2.8, the velocity due to the

curve length penalty is

φt,S(c) = α△φ ∀c ∈ C (2.9)

Given an energy functional, the updating velocity field due to the curve length

penalty can now be calculated. The only thing left in the derivation of evolving the

level set is to find the velocity due to the other terms in the energy functional, E1.

This will be done in a Chapter 3 when the entire energy functional is introduced.
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2.1.3 Velocity Extension

It was noted in Equation 2.3 that the energy functional (and thus the velocity field) is

only well defined for pixels on C, the zero level set curve. However, to actually evolve

the level set function, a velocity must be defined for each pixel in the image. One

method to define these velocities off the curve is called velocity extension. There are

many ways to do velocity extension. One of the most common ways was developed

by Adalsteinsson and Sethian [1]. This method constructs the extension velocities in

such a way that the signed distance property of the level set function is preserved

perfectly after each iteration. However, this method also requires that the velocity be

defined for the value at the exact zero level set with sub-pixel accuracy (interpolated

through pixels bordering the zero level set). This velocity is not always well defined

for images if the pixels used to interpolate belong to separate objects, and thus this

method for velocity extension can not be used without further consideration. Instead,

a simpler approach to velocity extension (like the one used in [14]) will be used here.

In this method for velocity extension, we will just set the value of pixels off of the curve

to be equal to the velocity of the closest pixel on the curve. Given the velocities of

pixels on the curve, φt((x, y) ∈ C), we can calculate all the velocities by the following

φt(x, y) =











φt(x, y) if (x, y) ∈ C

φt(xmin(x, y), ymin(x, y)) if (x, y) 6∈ C
(2.10)

where

(xmin(x, y), ymin(x, y)) = arg min
(x′,y′)∈C

{

√

(x − x′)2 + (y − y′)2
}

(2.11)

= arg min
(x′,y′)∈C

{

(x − x′)2 + (y − y′)2
}

(2.12)

2.2 Kernel Density Estimation

In our algorithm, the velocity that evolves the level set depends on the probability

density functions of the current segmentation. However, since this PDF is unknown,
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Figure 2-3: Level Set Function as Terrain

it needs to be estimated. A very common method in estimating density functions

is using a Parzen density estimate [20], or what is also known as a kernel density

estimate (KDE). The basic concept of the KDE is to smooth the histogram of the

current samples with a specific kernel, K(x), to estimate the value of the PDF at any

value. An example result of a KDE is shown in Figure 2-3.

For generality, the equations listed here will be for a d-dimensional PDF. The

equation for the estimated PDF using a KDE is

p̂X(x) =
1

N

N
∑

i=1

1

h1 . . . hd
K

(

x1 − xi1

h1
, . . . ,

xd − xid

hd

)

(2.13)

where d is the dimensionality, N is the number of source points, x = [x1, . . . , xd]
T is

the d-dimensional point the PDF is estimated at, [xi1, . . . , xid]
T is the d-dimensional

ith source point, and h is the bandwidth of the kernel used to estimate the PDF.

The most commonly used kernel is a Gaussian function:

KG(x) =
1

(2π)d/2
e−

1

2
‖x‖2

(2.14)

This KDE gives a good approximation to the actual PDF. However, for large data

sets, this computation can take a very long time. Ignoring the dependence on the

dimensionality, if the density is needed at M points, then the summation in Equation

9



2.13 needs to be calculated M times. For each summation, N points are added

together. Therefore, the total computational complexity of the KDE is O(MN).

Clearly, this computation could be a bottleneck in an algorithm, especially if the

estimation needs to be done multiple times. Thus, a faster method to estimating the

PDF must be used. Though the details of the fast algorithms will not be thoroughly

addressed, the main concepts of the speedups will be mentioned in the next sections.

2.2.1 The Fast Gauss Transform

In 1991, Greengard and Strain proposed the algorithm called the Fast Gauss Trans-

form (FGT) [12], which approximately evaluates a sum of Gaussians at multiple points

in a fast manner.

G(xj) =
N

∑

i=1

qie
‖xj−xi‖2

h (2.15)

where xj is the jth d-dimensional vector that we are calculating the sum at, xi is

the ith d-dimensional vector source point, and h is the scalar quantity that describes

the bandwidth of the kernel. As a note, the bandwidth used in the FGT is constant

for all dimensions of the estimation. This may not necessarily be desired. Instead,

something like the following may provide for a better estimate

G′(xj) =
N

∑

i=1

qie

‚

‚

‚

xj−xi

h

‚

‚

‚

2

(2.16)

where h is now a vector, and the notation of the division in the exponent is abused

to mean element-wise vector division. Equation 2.16 can be written more specifically

as

G′(xj) =

N
∑

i=1

qie
‖yij‖2

, yij =
xj − xi

h
=

[

xj(1) − xi(1)

h(1)
, . . . ,

xj(d) − xi(d)

h(d)

]T

where xj(a) is the ath element in the vector xj . The details of why this quantity may

produce a better estimate, and how to actually compute it will be discussed Section

4.3.2.
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To achieve a performance gain, the FGT partitions the sample space into non-

overlapping boxes, forming a grid. The algorithm uses these boxes as a clustering

of the source and target points. It then uses Hermite and truncated Taylor series

expansions to quickly approximate the affect of sources onto the targets. Using this

method, the FGT (again ignoring the dimensionality) achieves a theoretical compu-

tational complexity of O(M + N), with a constant factor dependent on the accuracy

needed and the bandwidth, h.

The FGT greatly improves computation times for calculating sums of Gaussians

at multiple target points compared to the direct calculation. In low dimensionality

problems, the speed of the FGT is very fast. However, the computational complexity

increases exponentially with d, the dimensionality. Thus, the FGT is not very efficient

in high dimensions.

2.2.2 The Improved Fast Gauss Transform

The drawbacks of the Fast Gauss Transform inspired the development of the Improved

Fast Gauss Transform (IFGT) in 2003 by Yang, Duraiswami, Gumerov, and Davis

[28]. The improvements on the FGT focus on two major points: a better clustering

algorithm and the Multivariate Taylor Expansion. The IFGT uses the farthest-point

clustering algorithm proposed by Gonzalez [10] to more efficiently divide the source

and target points. The Multivariate Taylor Expansion speeds up the Hermite Expan-

sion by decreasing the number of terms in the expansion from ad to dp (where a and

p are constants). This algorithm is clearly faster than the FGT, and will therefore be

used in the segmentation problem.

2.3 Steerable Pyramids

Neighboring pixels within an image are correlated because of the underlying object

the pixels are sampled from. Therefore, it is very intuitive that a segmentation based

only on pixel intensities without regard for the underlying structure is an oversimpli-

fication. Steerable Pyramids provide a multi-scale, multi-orientation decomposition

11



(a) Steerable Pyramid Recursive Structure: Replace the red dot with an instance of the gray box,
and recursively do this until no more down sampling can be done

(b) Steerable Pyramid Outputs at Orientation and Scales

Figure 2-4: Steerable Pyramids Structure and Outputs

of an image. Some good references for Steerable Pyramids are [9, 24, 23].

A Steerable Pyramid uses a polar-separable filter to decompose the image into

a number of orientation bands, R, at a number of scales, S. The basic idea of a

Steerable Pyramid is that the output of the polar-separable filter oriented at any

angle or scale can be determined by interpolating images in the pyramid. Thus, the

pyramid provides a complete representation of the image because any oriented or

scaled output of the polar-separable filter can be found. This implies that it would

be a good way to represent textures within the image.

In addition, the Steerable Pyramid provides both a decomposition and a recon-

struction of the image. Figure 2-4(a) provides a block diagram of the pyramid. Notice

that both the analysis and synthesis stage of the pyramid can be done by a linear

12



transformation. The filters in the reconstruction stage are simply the frequency re-

versed versions of the analysis stage because of the self-invertibility property of the

Steerable Pyramid. Thus, the formulation of the pyramid can be written as follows:

yi = Φix (2.17)

where the vectors, x and yi (from Figure 2-4(b)), are the 2-D image matrices, X and

Yi, arranged in a column, and Φi is a linear transform corresponding to the filters in

the pyramid that are used to generate Yi (i.e. Φ0 is the linear transform corresponding

to the filter H0(ω)). Thus, the synthesis stage is just:

x =

d−1
∑

i=0

Θiyi (2.18)

where Θi performs the inverse operation of Φi (i.e. Θ0 is the linear transform corre-

sponding to the filter H0(−ω)). This relationship will be used later to try and reduce

the dimensionality of the Steerable Pyramid.
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Chapter 3

Previous Work

The algorithm this thesis will cover is an extension on the algorithm proposed in [13].

This section will go into a few details about the method of the algorithm and make

comments about its successes and failures.

3.1 The Algorithm

The original algorithm uses a level set method approach to segment a grayscale image.

It draws on the fact that the mutual information between a pixel and the segmentation

result is high if the segmentation is correct, and low if it is incorrect. This was the

reason why the mutual information was chosen as a segmentation criterion in the

energy functional. However, because the actual probability densities are unknown, a

KDE is used to estimate the densities. A curve length penalty was also used in the

energy functional to prevent jagged curves and many small regions. Therefore, the

total energy functional is given by Equation 9 in [13] (and replicated here)

E(c) = −|Ω|Î(G(c); LC(c)) + α

∮

C

ds ∀c ∈ C (3.1)

where |Ω| is the number of pixels in the image, G(c) is the intensity of the image

at pixel c, Î is the approximate mutual information calculated with PDFs from the

KDE, and LC(c) is the labeling that indicates which region the pixel, c, belongs to.

15



This energy functional results in the following velocity vector field

−→
V (c) =

[

log
p̂+(G(c))

p̂−(G(c))
+

1

|R+|

∫

R+

K(G(x) − G(c))

p̂+(G(c))
dx

− 1

|R−|

∫

R−

K(G(x) − G(c))

p̂−(G(c))
dx − ακ

]

−→
N ∀c ∈ C (3.2)

As stated in [13], the second and third term in Equation 3.2 are computational bot-

tlenecks. In most cases, these terms do not affect the segmentation much and can

generally be ignored. Therefore, the velocity vector field that was actually used was

−→
V (c) =

[

log
p̂+(G(c))

p̂−(G(c))
− ακ

]−→
N ∀c ∈ C (3.3)

The paper also presented the formulation of an M-ary segmentation, where M is

a power of 2. It uses a multi-phase segmentation like the one presented in [4]. The

algorithm shows very good results in the examples images proposed in the paper. In

addition, the time needed to segment the image was comparable to other techniques.

3.2 Results

A few sample images were tested with my own implementation of the algorithm.

It was tested with both artificially generated images and images from the Berkeley

Dataset [16]. Figures 3-1, 3-2, and 3-3 show three example segmentations on arti-

ficially generated images. In each segmentation, (a) shows the initialized zero level

set curve, (b) shows the initialized labeled regions, (c) shows the final zero level set

curve, and (d) shows the final labeled regions. Note that although Figure 3-2 does not

look like it contains two regions, it actually contains a square of bimodal Gaussian

PDF and a background of unimodal Gaussian PDF with the same mean and vari-

ance. The segmentation is very close to the ground truth, resulting in a very good

segmentation. Figures 3-4, 3-5, 3-6, 3-6, and 3-8 show three example images from

[16] segmented using the algorithm. The zebra image was done with both a binary

and 4-ary segmentation.
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(a) (b) (c) (d)

Figure 3-1: Artificial Binary Segmentation (Different Mean and Variance)

(a) (b) (c) (d)

Figure 3-2: Artificial Binary Segmentation (Same Mean and Variance, Different Dis-
tribution)

(a) (b) (c) (d)

Figure 3-3: Artificial 4-ary Segmentation

(a) (b) (c) (d)

Figure 3-4: Binary Segmentation of Zebra
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(a) (b) (c) (d)

Figure 3-5: 4-ary Segmentation of Zebra

(a) (b) (c) (d)

Figure 3-6: Binary Segmentation of Bird

(a) (b) (c) (d)

Figure 3-7: 4-ary Segmentation of Bird

(a) (b) (c) (d)

Figure 3-8: 8-ary Segmentation of Scenery
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3.3 Comments

The results in the previous section show both the strengths and weaknesses of the

algorithm. In the artificially generated images, the segmentation was done perfectly.

What was most surprising is that in Figure 3-2, where the regions can hardly be

distinguished by a human, the algorithm was able to segment the image. It also

does fairly well in some of the real images. In the binary segmentation of the zebra

image in Figure 3-4, the entire zebra is grouped as one region instead of separating

each stripe. This achievement is something that not many algorithms are able to

boast. The results from the Berkeley Dataset [16] show that almost all the current

algorithms segment the stripes of the zebra.

However, there are definite places for improvement in the algorithm. Images with

smoothly varying colors from illumination gradients are not segmented very well. This

effect can be seen in both the zebras in Figure 3-5 and the background in Figures 3-6

and 3-7. The final segmentation, although not the ground truth, does fit with the

minimization of the energy functional. The main reason why these segmentations are

not ideal is because the information theoretic term in the energy functional is based

solely on a single pixel intensity; it does not take advantage of the inherent structure

of the region around each pixel.

The extreme case of this flaw occurs with an image composed solely of textures.

For example, Figure 3-9 shows an image that clearly can be segmented by a human,

but will fail using this algorithm. The PDFs of the two regions are exactly the same,

but the orientation of the structural texture is different. This implies that a robust

algorithm should be based on some sort of texture and orientation measure instead

of just pixel intensity.

Another problem with the current implementation of this algorithm is the restric-

tion on the number of regions in an M-ary segmentation. M must be an integer

power of 2, which means that images with the number of regions being a non-integer

powers of 2 will most likely not be segmented properly. Artificial regions will some-

times surface. For example, the fuchsia and aqua colored regions are both from the
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Figure 3-9: Textured Image

same mountain and have very similar PDFs. However, because the segmentation

required 8 regions, the separation occurred because of a slight change in PDF that is

indistinguishable by the eye.

The algorithm that this thesis focuses on will attempt to solve these problems to

improve the image segmentation algorithm.
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Chapter 4

The Improved Algorithm

The previous chapter mentioned some problems of the algorithm proposed in [13] and

improvements that could be made. In this chapter, details about the new algorithm

will be explicitly stated, and preliminary results will be presented.

4.1 The Initial Algorithm

The basis of the improvements in the algorithm are to incorporate a texture measure

into the energy functional. This algorithm is a very simple extension from the one

published. The main difference is that we will be using a vector image instead of

a scalar image. The vector image is generated from the outputs of the Steerable

Pyramid, which outputs images at R orientations and S scales. It combines these

RS images with the original image and the lowest resolution image to form a vector

image of dimension d = RS+2. We then proceed with the previous formulation, with

the minor difference that each pixel is now a vector instead of a scalar. The energy

functional in Equation 3.1, and the velocity vector in Equation 3.3 just become the

following

E(c) = −|Ω|Î(G(c); LC(c)) + α

∮

C

ds ∀c ∈ C (4.1)

−→
V (c) =

[

log
p̂+(G(c))

p̂−(G(c))
− ακ

]−→
N ∀c ∈ C (4.2)

Thus, the only real difference between the old and new algorithm is that the vector-
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Figure 4-1: Steerable Pyramid Output on Textured Image

ized image needs to be formed from the Steerable Pyramid, and a multi-dimensional

PDF needs to be estimated.

4.2 Initial Results

This new algorithm was implemented to see if the concept would work. The Steerable

Pyramid was first computed at 4 orientations and 3 scales on the image in Figure

3-9. The resulting vectorized image was composed of the images in Figure 4-1.

The segmentation result using the algorithm from [13] is shown in Figure 4-2,

and the result with the proposed algorithm is shown in Figure 4-3. In the scalar

segmentation, the result is useless; because the PDFs of the two regions are exactly

the same, the segmentation groups the entire image as one region. However, when
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(a) (b) (c) (d)

Figure 4-2: Artificial Binary Scalar Segmentation on Textured Image

(a) (b) (c) (d)

Figure 4-3: Artificial Binary Vector Segmentation on Textured Image

applying the texture measure of Steerable Pyramids with the segmentation, the al-

gorithm performed much better. The rough edges on the object are due partially to

a discretization problem and to the low resolution images appearing very block-like

at higher resolutions. Although the result is not perfect, and only one test image is

shown, it shows that there is potential in improving the algorithm to support textured

images for better segmentation.

4.3 Proposed Work

Although the initial algorithm does show a proof of concept, a lot of work needs to be

done in improving it. A 128x128 grayscale image takes about 3 seconds to segment

under the scalar algorithm. However, a 128x128 grayscale image outputted at 4

orientations and 3 scales takes over 30 minutes to segment under the vector algorithm.

The main difference between the two cases is the 18-dimensional KDE. As stated in

[21, p.30], the IFGT is proportional to a polynomial order of the dimension (i.e. dp),
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where p is a function of the number of terms needed in the Taylor Series expansion to

achieve the desired error. From the test image in Figure 4-3, the typical p is around

5. This means that for the increase of dimension from 1 to 18, the dependence on the

dimension changes from O(1) to O(185). This increase in complexity explains why

the vectorized image takes so much longer to compute.

The initial segmentation was run on such a small image because larger images

contain more scales (increased vector dimension), and more pixels. The complexity

of the IFGT is asymptotically equal to O(dp(M + N)), where M is the number of

target points and N is the number of source points. Increasing from a 128x128 image

to a 256x256 image quadruples both M and N in addition to increasing d. Segmenting

anything but very small images is too computationally intensive to be completed, and

approximations need to be made to decrease the complexity. Therefore, the approach

to improve this algorithm will incorporate the following ideas:

1. Reducing dimensionality of the vector image

2. Product kernel approximation to the fully joint estimate

3. Multi-leveled binary segmentations to achieve an M-ary segmentation

4.3.1 Reducing Dimensionality

Trying to reduce the dimensionality of the vectorized image is equivalent to deciding

which of the oriented and scaled outputs is least significant in reconstructing the

image. Although this clearly has advantages in computational efficiency, it is also a

very interesting philosophical question. It would be very interesting to compare the

most significant images to what humans perceive as a way to try and understand the

ever-complicated human visual system. Keeping these thoughts aside for now, the

methodology of reducing the dimensionality will be explored a little.

From Equation 2.18, we know that the original image can be reconstructed as a

sum of linear transformations of the pyramid outputs. For convenience, the synthesis

equation is replicated here.

x =

d−1
∑

i=0

Θiyi
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We can define a binary vector, u ∈ {0, 1}d, where each component of u, ui,

determines whether or not the corresponding output image, yi, is used in the recon-

struction. Thus, an estimate for the synthesis stage can be made by the following

x̂ =

d−1
∑

i=0

Θiyiui (4.3)

Then, we can define an error function, e(x̂,x), which evaluates how close of a

reconstruction x̂ is to x. One possible error function is just the square of the L2

norm.

e(x̂,x) = ‖x̂ − x‖2
2 = (x̂− x)T (x̂− x) (4.4)

Our goal is to minimize the error function while also minimizing the number of

images used. In other words, we want to perform the following optimization

u∗ = arg min
u∈{0,1}d

[

(1 − β)e(x̂,x) + β

d−1
∑

i=0

ui

]

(4.5)

This optimization is similar to the ones posed in [8, 25], and can most likely be

solved in a similar fashion.

4.3.2 Product Kernel

Probably the most straightforward approximation to speed up the KDE is to estimate

the PDF with a product kernel. The current implementation (Equation 2.14) of the

KDE uses a jointly Gaussian kernel. The kernel is replicated here for convenience.

KG(x) =
1

(2π)d/2
e−

1

2
‖x‖2

The idea of a product kernel is simple; split this kernel into the product of scalar

kernels. Thus, if dim(x) = d, we can rewrite the product kernel as

Kp(x) =

d−1
∏

i=0

K(xi) (4.6)
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If we are still using the Gaussian kernel, this product kernel just becomes

KG
p (x) =

d−1
∏

i=0

1√
2π

e−
1

2
x2

i (4.7)

We can simplify this kernel to be just

KG
p (x) =

1

(2π)d/2

d−1
∏

i=0

e−
1

2
x2

i

=
1

(2π)d/2
e−

1

2
x2
0−...− 1

2
x2

d−1

=
1

(2π)d/2
e−

1

2

Pd−1

i=0
x2

i

=
1

(2π)d/2
e−

1

2
‖x‖2

2

=
1

(2π)d/2
e
− 1

2

“√
‖x‖2

2

”2

=
1

(2π)(d−1)/2
KG

(

√

‖x‖2
2

)

(4.8)

This approximation basically maps the IFGT of the original source points in d-

dimensions to a 1-dimensional estimate. Therefore, the computation complexity is

reduced from O(dp(M +N)) to O(d+M +N). In addition, it will allow the KDE to

use a different bandwidth for each output image which is desired because each output

image has a different sample variance.

4.3.3 Multi-leveled Binary Segmentations

The last improvement that will be incorporated into this thesis is the M-ary segmen-

tation problem. As stated previously, the current implementation of the segmentation

algorithm only allows problems where M = 2K where K ∈ Z. The rough outline of

a possible method to fix this is as follows:

1. Compute a regular binary segmentation resulting in R0
0 and R1

0, where R
j
i is the

ith region for the jth iteration

2. Automatically decide if any of the new regions should be further segmented
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(assume R
j
i needs to be segmented again)

3. Run a binary segmentation on all regions that need further segmentation re-

sulting in R
j+1
2i and R

j+1
2i+1 while constricting the support of the new regions to

the support of R
j
i

4. Repeat from 2 until no more regions need to be further segmented

Though this procedure seems straightforward, the autonomous decision of whether

a region should be split into more regions is actually quite difficult. One initial idea

that has not been implemented or tested is to just run the binary segmentation on

each region in step 2. If the algorithm segments the region into two new ones, then the

original region should have been further segmented into exactly what the algorithm

found. If the algorithm does not segment the original region into more regions, this

could indicate that no further segmentation is needed. This idea is not necessarily

the best method, but it may be one of the least complicated possible solutions. Other

methods of deciding whether one region is composed of more need to be further

researched.
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Chapter 5

Timeline

I plan to finish my research and implementations for this thesis by February 2009. I

will spend the remainder of the 2009 spring semester writing my thesis and finishing

any minor simulations needed. My timeline is as follows:

• June 2008 - Product Kernel

– Implement the product kernel improvement

– Work on subpixel accurate level set methods

– Improve the GUI for the program

• July 2008 - Dimensionality Reduction

– Research methods to solve the optimization in the dimensionality reduction

problem

– Implement the solution to the optimization

• August-September 2008

– Implement the M-ary segmentation method presented

– Research other methods to decide if a region should be split

– Research other methods for M-ary segmentations using level set methods

• October 2008
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– Implement the Steerable Pyramids in C++

– Test varying filters, scales, and orientations

• November-December 2008

– Test varying parameters for the algorithm

– Run simulations on Berkeley’s Image Database [16]

• January 2009

– Consider possible extensions with smoothly varying textures

– Test code on multiples operating systems

– Clean up and package code

– Test code on multiples operating systems

• February-May 2009

– Finish minor details and simulations

– Write Master’s Thesis
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