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Abstract

In this dissertation we investigate the problem of reasoning over evolving structures

which describe the dependence among multiple, possibly vector-valued, time-series.

Such problems arise naturally in variety of settings. Consider the problem of object

interaction analysis. Given tracks of multiple moving objects one may wish to describe

if and how these objects are interacting over time. Alternatively, consider a scenario in

which one observes multiple video streams representing participants in a conversation.

Given a single audio stream, one may wish to determine with which video stream the

audio stream is associated as a means of indicating who is speaking at any point in

time. Both of these problems can be cast as inference over dependence structures.

In the absence of training data, such reasoning is challenging for several reasons.

If one is solely interested in the structure of dependence as described by a graphical

model, there is the question of how to account for unknown parameters. Additionally,

the set of possible structures is generally super-exponential in the number of time series.

Furthermore, if one wishes to reason about structure which varies over time, the number

of structural sequences grows exponentially with the length of time being analyzed.

We present tractable methods for reasoning in such scenarios. We consider two ap-

proaches for reasoning over structure while treating the unknown parameters as nuisance

variables. First, we develop a generalized likelihood approach in which point estimates

of parameters are used in place of the unknown quantities. We explore this approach

in scenarios in which one considers a small enumerated set of specified structures. Sec-

ond, we develop a Bayesian approach and present a conjugate prior on the parameters

and structure of a model describing the dependence among time-series. This allows

for Bayesian reasoning over structure while integrating over parameters. The modular

nature of the prior we define allows one to reason over a super-exponential number of

structures in exponential-time in general. Furthermore, by imposing simple local or

global structural constraints we show that one can reduce the exponential-time com-
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plexity to polynomial-time complexity while still reasoning over a super-exponential

number of candidate structures.

We cast the problem of reasoning over temporally evolving structures as inference

over a latent state sequence which indexes structure over time in a dynamic Bayesian

network. This model allows one to utilize standard algorithms such as Expectation

Maximization, Viterbi decoding, forward-backward messaging and Gibbs sampling in

order to efficiently reasoning over an exponential number of structural sequences. We

demonstrate the utility of our methodology on two tasks: audio-visual association and

moving object interaction analysis. We achieve state-of-the-art performance on a stan-

dard audio-visual dataset and show how our model allows one to tractably make exact

probabilistic statements about interactions among multiple moving objects.

Thesis Supervisor: John W. Fisher III

Title: Principal Research Scientist of Electrical Engineering and Computer Science
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Image segmentation is a long studied problem in computer vision. While humans

are able to segment images easily, the success of computational segmentation methods

after decades of research is still disappointing.

Most image segmentation algorithms can be divided into a few tasks. First, some

sort of distinguishing data which typically tries to capture low-level features in a local

neighborhood is extracted from the pixel locations. These features are then used to

optimize some surrogate energy functional or spectral graph over different segmentation

configurations. Once completed, the performance of the segmentation is evaluated by

either qualitatively or quantitatively comparing to other algorithms.

It is important to identify the differences between image segmentation and boundary

detection because they typically have different algorithmic approaches. At a high level,

image segmentation is the task of partitioning an image into disjoint, non-overlapping

regions. Equivalently, one can assign discrete labels to each pixel identifying which

region the pixel belongs to. Boundary detection is the task of identifying which pixels

are boundaries. Marked boundaries may be open and need not partition an image into

regions. Boundary detection algorithms also typically report the probability that a pixel

is on the boundary (a soft decision), instead of a hard declaration of which pixels are

on the boundary. Thresholding this probabiliy of boundary image can produce a true

boundary detector. While these two tasks are related, the difference between the two

are that the boundaries of a segmentation are implicitly closed regions that partition

the image.

In previous work, the extracted image features have either been specifically chosen

by the researchers or learned from data. However, the energy functionals or spectral

graph edge weights are, in general, chosen by the researcher as a surrogate for the human

visual system. People conjecture that minimizing energy configurations will correspond

to good segmentations. However, these assumptions are only validated empirically after

the segmentations have been completed. No one knows which energies or edge weights

suit an image the best.

Additionally, there has been limited work on quantitatively evaluating a segmen-

tation. While there are certain methods of doing this (e.g. precision-recall curves [6],

probabilisty Rand index [11], and variation of information [? ]), we will see that each

of these methods does not properly score performance across all images. Without a

proper metric on performance, trying to learn a “good” set of features for segmentation

is meaningless.
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In this thesis, we propose to address these issues. We first present an alternative,

Bayesian approach to the typical optimization framework used in segmentation that

provides a richer understanding of algorithms. We then propose to learn a good evalua-

tion metric for rating segmentation results. Once a good metric has been established, we

propose to learn both image features and the energy functionals used in optimization.
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Chapter 1

Background

� 1.0.1 Segmentation Scoring

Because of the ill-posed nature of segmentation [5], multiple plausible segmentations

can exist for a single image. For example, consider the human segmentations shown

in Figure 3.0.5. Though there are many similarities across the solutions, discrepancies

occur near the boundaries of objects, from the illusory edges, and are a result of the

granularity of the segmentation. These varying solutions pose a very important question

in segmentation: how does one evaluate the performance of a segmentation algorithm

across the set of ground truth images?

The Berkeley Segmentation Dataset (BSD) [6] attempts to address this question.

The dataset consists of a set of 300 images (100 test images, and 200 training images),

each of which have been segmented by multiple experts. Additionally, an evaluation

criterion for boundary detection using precision-recall curves was developed to score

algorithms [7]. While the precision-recall curves may accurately assess the performance

of a boundary detector, it is usually not a good measure of region-based segmentation

algorithms. For example, consider the segmentations in Figure 1.1. While the bound-

Figure 1.1: An example of how segmentations can differ greatly even when boundary

detection is similar. Colors indicate segmentation labels.

19
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aries in these two segmentations differ only by a small amount (the strait connecting

the two regions), the segmentations are quite different. Boundary detection evaluation

methods are clearly not suited to evaluate segmentations. We discuss a few previously

presented methods on scoring segmentations.

� 1.0.2 Probabilistic Rand Index

One popular way to compare the agreement between two segmentations is by using the

Rand Index (RI) [9]. If a pair of pixels, {i, j}, was drawn at random from the image

domain, the RI finds the empirical expected value of this pair agreeing across both

segmentations, Lt and Lk. Mathematically, it can be expressed as

RI
(

ℓt, ℓk
)

= Êi,j

[

gi.j

(

ℓt, ℓk
)]

=
1
(
N
2

)

∑

{i,j}

gi,j

(

ℓt, ℓk
)

, (1.1)

where N is the number of pixels in the image, the notation
∑

{i,j} means the sum

indexes over all possible pairs of pixels, {i, j}, and the agreement is defined as the

following

gi,j

(

ℓt, ℓk
)

= 1I
[
ℓt
i = ℓt

j

]
1I
[

ℓk
i = ℓk

j

]

+ 1I
[
ℓt
i 6= ℓt

j

]
1I
[

ℓk
i 6= ℓk

j

]

. (1.2)

Given an algorithm’s segmentation result, ℓt, the performance of the algorithm could

be scored by considering the Rand Index between ℓt and one ground truth segmentation,

ℓk. However, as stated previously, image segmentation is an ill-posed problem, and

results should be evaluated across a set of ground truth segmentations. This has recently

led to the development of the Probabilistic Rand Index (PRI) [10] and the Normalized

Probabilistic Rand Index (NPRI) [11], which is an unbiased and normalized version

of the PRI. The PRI is essentially the average Rand Index over a set ground truth

segmentations,
{
L1, L2, ..., LK

}
, which we denote as L1...K:

PRI
(
ℓt, ℓ1...K

)
=

1

K

∑

k

RI
(

ℓt, ℓk
)

(1.3)

Variation of Information

The variation of information [8] is an information theoretic evaluation criterion that

tries to capture the amount of information that is different between two clusters (or

equivalently, segmentations). The variation of information can be written in the follow-



21

Figure 1.2: A graphical representation of the quantities in the variation of information.

ing ways:

V I(ℓt, ℓk) = H(ℓt) + H(ℓk) − 2I(ℓt; ℓk) (1.4)

= H(ℓt|ℓk) + H(ℓk|ℓt), (1.5)

where H(·) is the entropy, I(·) is the mutual information, and H(·|·) is the conditional

entropy. Figure 1.2 shows the quantities of the variation of information graphically. The

first conditional entropy term captures the amount of information in the test segmen-

tation, ℓt, not contained in the ground truth segmentation, ℓk. The second conditional

entropy term captures the amount of information in the ground truth segmentation not

contained in the test segmentation.

Global/Local Consistency Error

While creating the BSDS, the authors also introduced two segmentation measures called

the Global Consistency Error (GCE) and the Local Consistency Error (LCE) [6]. By

defining the region of a segmentation to be the set of pixels containing one label

Rt
l =

{
j; ℓt

j = l
}

, (1.6)

the local refinement error can be defined as

E(ℓt, ℓk, i) =

∣
∣
∣Rt

ℓt

i

\ Rk
ℓk

i

∣
∣
∣

∣
∣
∣Rt

ℓt

i

∣
∣
∣

. (1.7)

The GCE and LCE are then just:

GCE(ℓt, ℓk) =
1

|Ω|
min

{
∑

i∈Ω

E(ℓt, ℓk, i) ,
∑

i∈Ω

E(ℓk, ℓt, i)

}

(1.8)

LCE(ℓt, ℓk) =
1

|Ω|

∑

i∈Ω

min
{

E(ℓt, ℓk, i) , E(ℓk, ℓt, i)
}

(1.9)
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Both consistency error measures were formulated under the assumption that segmenta-

tions are hierarchical, and therefore, do not penalize segmentations for having a partic-

ular level of granularity. As the authors point out, a segmentation containing a single

label (i.e. all pixels contained in one region), or a segmentation containing |Ω| labels

(i.e. all pixels having different labels) both zero error.

� 1.0.3 Learning Features

Two important concepts when trying to learn feature extractors from images are the

recent deveopments in learning deep Restricted Boltzmann Machines and convolutional

networks. We briefly cover these here.

Convolutional Neural Networks

The first substantial step in learning image descriptors was a result of convolutional

neural networks [? ]. CNNs are a very specific form of neural networks with many

connections and only a few weights. They are set up in such a way that the learned

weights equivalently act as a convolutional filter on an image. In typical CNNs, the

weights of the filter (i.e. the filter coefficients) are learned in a supervised fashion using

backpropagation to minimize some surrogate energy.

Commonly in CNNs, each layer of the neural network is composed of a convolutional

layer and a sub-sampling or pooling layer. In classification problems, it has been shown

[? ] that the learning of pooling layers is much more important. With the use of random

filters (as compared to learned ones), classification performance only slightly decreases.

However, typical CNNs must be trained in a supervised fashion. While recent work (e.g.

Ranzato et al. [? ]) has developed an unsupervised learning algorithm for CNNs, they

are still subject to the particular surrogate function to minimize over. Additionally, as

we will see, CNNs are analytical (as opposed to generative) models, which limits its

utility.

Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a single layer within a deep RBM. An

RBM consists of a set of “visible” variables (denoted v) and a set of “hidden” variables

(denoted h). For computational reasons, a typical RBM models the visible variables

as being conditionally independent given the hidden variables and the hidden variables

being conditionally independent given the visible variables. An example of this RBM
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structure is shown in Figure 1.3. The weight between each node is denoted wij where

i indexes an observed node and j indexes a hidden node.

Figure 1.3: An example of a typical RBM.

The RBM is typically governed by an energy functional that depends on the weights

of the edges (which can be viewed as parameters of the model) and both the visible

and hidden variables. In Bayesian methods, it is often convenient to view the negative

exponentiated energy functional as being proportional to the likelihood:

P (v, h;W ) ∝ exp
[
−E(v, h;W )

]
(1.10)

Particular choices of the energy functionals can lead to simpler inference and sampling.

For example, one choice of the energy functional is

E(v, h;W ) =
1

2

∑

i

v2
i −

∑

i,j

viwijhj −
∑

j

bjhj −
∑

i

civi, (1.11)

where b and c are associated biases for the hidden and visible variables respectively. In

this particular case, conditioned on the hidden variables, the visible variables are inde-

pendent and Gaussian. Additionally, conditioned on the visible variables, the hidden

variables are independent Bernoulli random variables.

Most energy functionals embed an independence structure; in these cases, we can

write the posterior of the visible variables as follows:

P (v|h;W ) =

∏

j P (v|hj ;wj)
∑

v′∈V

∏

j P (v′|hj ;wj)
, (1.12)

where V is the set of all possible values of v. The log likelihood is

log P (v|h;W ) =
∑

j

log P (v|hj ;wj) − log
∑

v′∈V

∏

j

P (v′|hj ;wj). (1.13)

One would like to learn the weights, W that maximize the likelihood of the observed,

visible variables. This maximum likelihood (ML) parameter estimate can be expressed
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as:

W ∗ = arg max
W

[
∏

v∈V

P (v|h;W )

]

= arg max
W

[
∑

v∈V

log P (v|h;W )

]

, (1.14)

where v is the vector of one observed, visible variables, and V is the set of all observed,

visible variables. This estimate can equivalently be expressed as the empirical expected

value of the log likelihood taken over the observed, visible variables

W ∗ = arg max
W

EV

[
log P (v|h;W )

]
. (1.15)

This optimization can be approximately found using gradient ascent. The gradient of

the log likelihood for one observation is

∂ log P (v|h;W )

∂wij

=
∂ log P (v|hj ;wj)

∂wij

−
∑

v∈V

P (v|h;W )
∂ log P (v|hj ;wj)

∂wij

(1.16)

=
∂ log P (v|hj ;wj)

∂wij

− EV

[
∂ log P (v|hj ;wj)

∂wij

]

(1.17)

Thus, the entire gradient over all observations (combined with Equations 1.10 and 1.11)

is

∂EV

[
log P (v|h;W )

]

∂wij

= EV

[
∂ log P (v|hj ;wj)

∂wij

]

− EV

[
∂ log P (v|hj ;wj)

∂wij

]

(1.18)

= EV [vihj ] − EV [vihj ] . (1.19)

The expectations in the above equation can be estimated using samples from the

distributions. Because the observed variables are conditionally independent given the

hidden variables (and vice versa), we can perform block Gibbs sampling to draw samples

from the joint:

1. Iteration 0:

(a) Set the observed variables to be the actual observation: v(0) = v

(b) Draw a set of hidden variables from the posterior:
{

h
(0)
j ∼ P (hj |v

(0);W (0))
}

2. Iteration n > 0:

(a) Draw a set of observed variables from the posterior:
{

v
(n)
i ∼ P (vi|h

(n)
;W (n))

}

(b) Draw a set of hidden variables from the posterior:
{

h
(n)
j ∼ P (hj |v

(n);W (n))
}



25

The first term in Equation 1.19, EV [vihj ] can be estimated from samples from iteration

0, and the esecond term, EV [vihj ] can be estimated from samples from iteration ∞ as

follows:
∂EV

[
log P (v|h;W )

]

∂wij

=
〈

v
(0)
i h

(0)
j

〉

−
〈

v
(∞)
i h

(∞)
j

〉

, (1.20)

where 〈·〉 denotes the sample average. It can be shown that the gradient of the log

likelihood is equivalent to the gradient of the following negative KL divergence:

∂EV

[
log P (v|h;W )

]

∂wij

=
∂D (v‖v)

∂wij

=
∂D

(
v(0)‖v(∞)

)

∂wij

(1.21)

In practice, waiting for the Markov chain to converge can take a long time. Thus,

minimizing contrastive divergence [2] is typically used as an approximation:

∂
(
D
(
v(0)‖v(1)

)
− D

(
v(1)‖v(∞)

))

∂wij

=
〈

v
(0)
i h

(0)
j

〉

−
〈

v
(1)
i h

(1)
j

〉

. (1.22)

Learning in Deep Networks

One typically stacks multiple layers of RBMs on top of each other to learn a hierarchical

set of features. The lower level RBMs can then typically learn low level features, while

higher level RBMs can combine these features to identify higher level features. While

training a single layerered RBM is straightforward, reliably training these deep belief

networks can be difficult. Hinton et al. [3] proposed a greedy layer-wise training

algorithm that performs well in practice.

Convoluational RBMs

While deep belief networks (DBNs) consisting of mulitple layers of RBMs have shown

considerable success in small image tasks (e.g. [3]), they do not scale well with image

size. There has been some more recent work [4, 1] on convolutional deep belief networks,

where each layer consists of a small RBM that is applied at every location to the image.

These convolutional RBM (CRMB) layers can be thought of as sharing weights between

visible and hidden variables across the entire image. The weights are constrained in

such a way they equivalently produce a convolution on a layer of nodes. Figure 1.0.3

shows an example of tied weights that perform a one-dimensional convolution of support

three. These generative models have shown encouraging results on recognition and other

computer vision tasks.
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Figure 1.4: An example of tied weights that perform a finite one-dimensional convolu-

tion of support three. Each unique weight is represented with a different line (double,

single, or dotted).
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Chapter 3

Preliminary Work

� 3.0.4 Sampling from Energy Functionals

Level-set based segmentation is often formulated as an energy minimization problem,

where some energy functional is chosen such that a “good” segmentation occurs at

low energies. It is often the case that, either due to the ill-posedness of unsupervised

segmentation or the stochastic nature of a well posed formulation, multiple plausible

explanations exist. In these cases, characterization of the posterior distribution of

segmentations may offer a more informative solution to the problem. Consequently, a

common alternative to the minimization formulation is to recast the problem as one

of Bayesian inference, where the energy functional is viewed as the negative log of the

posterior:

p(ℓ|X) ∝ exp(−E(ℓ;X)), (3.1)

where ℓ is the matrix of labels assigned to each pixel (i.e. the segmentation) and X is the

data at each pixel. We developed a Metropolis Hastings MCMC sampler to efficiently

sample from these distributions in [? ]. The algorithm represents the segmentation

implicitly using a level-set function, ϕ.

Metropolis-Hastings MCMC Sampling

One can construct a Metropolis-Hastings sampler [? ] as follows. Let ϕ̂(t+1) be a pro-

posed sample of the implicit representation (i.e. the level-set function) generated from

a distribution q(ϕ̂(t+1)|ϕ(t)) conditioned on the current sample, ϕ(t). The superscript

values (t) and (t + 1) index the sampling iteration and the hat indicates a proposed

29
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sample. This new sample is then accepted with probability

Pr
[

ϕ(t+1) = ϕ̂(t+1)
∣
∣ϕ(t)

]

= min

[

Hastings Ratio
︷ ︸︸ ︷

π
(
ϕ̂(t+1)

)

π
(
ϕ(t)

)

︸ ︷︷ ︸

Posterior Sample Ratio

·
q
(
ϕ(t)

∣
∣ϕ̂(t+1)

)

q
(
ϕ̂(t+1)

∣
∣ϕ(t)

)

︸ ︷︷ ︸

Forward-Backward Ratio

, 1

]

. (3.2)

Otherwise, ϕ(t+1) = ϕ(t). Convergence to the stationary distribution occurs after a

suitable number of iterations (i.e. the mixing time) which produces a single sample

from the posterior. Evaluating the Hastings ratio, the product of the two ratios in the

acceptance probability, has been the primary barrier for implementing MCMC methods

over implicit representations. In particular, one needs to solve a correspondence problem

to compute the probability of generating the forward and reverse transition (in the

forward-backward ratio). Doing so satisfies the condition of detailed balance which, in

addition to ergodicity, is sufficient for convergence to the desired posterior distribution.

As with any level-set representation, one needs to choose the magnitude of the level-

set, ϕ, away from the curve. Previous sampling methods have constrained the level-set

function to be a signed distance function (SDF). Chen [? ] solves the correspondence

problem by generating perturbations that are SDF-preserving, thus having a one-to-

one mapping from forward and reverse transitions. An alternative is to produce a

non-SDF-preserving perturbation and reinitialize the level set function to an SDF at

each iteration. However, this creates a many-to-many correspondence problem which

significantly increases the computational complexity of the forward-backward ratio.

Our idea is straightforward: do not constrain the level-set function to be an SDF.

SDFs provide advantages in terms of numerical stability and the computation of the

curvature (see [? ] for details) for optimization based methods. As the method here is

not PDE-based and optimization is not the specific goal, there is essentially no penalty

for using an alternative. While our level-set function no longer satisfies the SDF prop-

erty, we still benefit from the way implicit representations handle topological changes

and re-parameterization. Furthermore, this greatly simplifies the design and evaluation

of a proposal distribution by allowing for straightforward evaluation of the Hastings

ratio.

Strategic Bias in the Proposal Distribution

We note that the closer q (◦|△) is to π (◦), the closer the Hastings ratio is to unity and

the higher the acceptance rate. Consequently, designing proposal distributions which
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capture essential, application-specific characteristics of the posterior distribution can

improve convergence speeds by reducing the number of rejected samples. By relaxing

the SDF constraint on the level-set function, many potential proposal distributions

will result in a tractable evaluation of the Hastings ratio. Without care, however, the

majority of these proposal distributions will have very poor mixing times. Thus, our

aim is to design a proposal distribution that is easily evaluated, has a high acceptance

rate, and explores the configuration space via large perturbations.

In Equation 3.2, the Hastings ratio consists of the posterior sample ratio (PSR)

and the forward-backward ratio (FBR). The PSR represents the ratio of the posterior

probability of the new sample over that of the old. Generating samples that have higher

posteriors will produce high values of this ratio. The FBR represents the probability of

generating the previous sample conditioned on the new one (the backward transition)

over the probability of generating the new sample conditioned on the previous one (the

forward transition).

Fan et al. [? ] suggest using a proposal distribution biased by the curvature

to favor samples that fit the prior model. Here, we develop a proposal which favors

both the likelihood and prior model. This generally produces higher PSR values, but

biases the FBR toward smaller values (see the supplemental materials for an illustrative

example). Thus, our goal is to develop a proposal distribution with a higher overall

Hastings ratio (the product of the PSR and the FBR), where deleterious effects on the

FBR are compensated with increases in the PSR. Exploiting the simple observation

that neighboring pixels tend to have the same label, we can develop a proposal that

has this property.

We construct an additive perturbation, f , to ϕ(t),

ϕ̂(t+1) = ϕ(t) + f (t), (3.3)

by first sampling from a point process, attributing the points with values sampled from

a biased Gaussian distribution and then smoothing with a lowpass filter. We refer to

this process as Biased and Filtered Point Sampling (BFPS). The lowpass filter captures

the property that pixels in close proximity have higher probability of being in the same

region while the choice of bias favors points with high likelihood under the energy

functional. The result is dramatically increased PSRs using large biased moves while

only slightly decreasing the FBR. Mathematically this is expressed as

f (t) = h(t) ∗
(

c(t) ◦ n(t)
)

, (3.4)
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n
(t)
i ∼ N

(

µ
(t)
i , σ2

)

, c
(t)
i ∼ Bernoulli

(

p(t)
ci

)

, (3.5)

where ‘∗’ denotes convolution and ‘◦’ denotes the element-wise product. We bias the

Gaussian RVs with the gradient velocity, v(t), (the negative gradient of the energy

functional) to prefer moving to more probable configurations:

µ
(t)
i = αn

[

−
∂E
(
ϕ(t)

)

∂ϕ(t)

]

i

= αnv
(t)
i , (3.6)

where αn is a weighting parameter. The probability associated with each point, ci, is

also carefully selected to favor selecting points which are better explained in another

region. Specifically, it is chosen to be higher for points that have a gradient velocity

that is large in magnitude and has the opposite sign of the current level-set value:

p(t)
ci

(1) ∝ αc exp
[

−v
(t)
i · sign

(

ϕ
(t)
i

)]

+ (1 − αc) , (3.7)

where αc is a parameter that trades off the bias with a uniform distribution. Addition-

ally, we define the variable γ as 1
|Ω|

∑

i∈Ω p
(t)
ci

(1) = γ, which approximates the average

probability that a random point will be selected, where Ω is the set of all pixels. Because

p
(t)
ci

(1) is only defined up to a scale factor, we can renormalize its value to achieve any γ.

In practice, αn, αc, and γ are dynamically adapted to maintain a minimum acceptance

rate, and h(t) is chosen to be a circularly symmetric (truncated) Gaussian kernel with

a scale parameter randomly chosen from a finite set of values. Randomly chosen scale

parameters introduce a minor complication (which we address), but empirically result

in faster mixing times.

This algorithm can additionally be extended to M-ary segmentation. Details about

the formulation and results obtained using this sampling algorithm can be found in [?

]

� 3.0.5 Segmentation Scoring

We have also done some preliminary work in developing a suitable way to score seg-

mentation results. This is a difficult task to evaluate from the BSDS for a few reasons.

The segmentations in the BSDS are mostly object-based segmentation, where pixels are

grouped by the semantic object to which they belong. This type of segmentation leads

to the marking of illusory edges which can be attributed to the prior knowledge of the

appearance of an object. We again refer to the segmentations shown in Figure 3.0.5.
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Figure 3.1: An example from the Berkeley Segmentation Dataset [6]. The original

image is shown on the left, and the five human segmentations are shown to the right.

Notice the illusory edges of the hair and the black vest against the black background.

Without incorporating a more complicated object prior, simpler appearance-based seg-

mentation algorithm are typically unable to capture the illusory edges depcited in 3.0.5.

The human segmentations of the BSDS only contain boundary maps outlined by the

experts. Another reason that the BSDS is currently not well-suited for segmentation

evaluation is because of the disconnect between boundary detection and segmentation;

a segmentation uniquely determines a binary boundary map, but a binary boundary

map does not uniquely determine a segmentation. This one-to-many mapping is caused

by the more complete representation of segmentation labels, which allow separate con-

nected components to have the same label. For example, in Figure 3.0.5, the textured

shirt has two connected components (the chest, and the sleeve). These two connected

components, in an accurate appearance-based segmentation, should have the same la-

bel. However, the human boundary maps of the BSDS do not contain information

about which connected components have the same label.

One straightforward approach is to segment an image, and then label each con-

nected component in the segmentation with a unique label. This, however, can lead to

inaccurate performance evaluation when there are two regions that are connected by

a small strait. For example, the background in Figure contains a large region of black

and a black stripe. In the first human segmentation, the stripe is connected to the

background and thus contains the same label. In subsequent segmentations, however,

the stripe is labeled a different region because the expert continued the stripe a few

pixels farther to the edge of the image. This ambiguity in segmentation labels can not

easily be corrected in a performance measure.
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Figure 3.2: An example of the altered ground truth from the Berkeley Segmentation

Dataset [6]. The original image is shown on the left, and the five altered human seg-

mentations are shown to the right. Ground truth has been changed by grouping regions

by similar appearances.

We have therefore altered the ground truth dataset of the BSDS by grouping seg-

mented connected components by similar appearances. The grouping is performed while

trying to respect the original intent of the experts by only merging regions and not cre-

ating or re-segmenting an image. An example of the altered ground truth is shown in

Figure 3.2.

Although the new ground truth now represents what we would like to quantify, we

still need to choose a particular criterion to score the performance of an algorithm.

Parameterized PRI Form

Using the PRI to evaluate segmentation results against a set of ground truth images

seems intuitively plausible. In fact, oftentimes the PRI is a fairly good criterion for

scoring the success of an algorithm. However, there are times when it does not perform

well. Figure 3.3 shows a few examples of this. Clearly, PRI does not seem to rank

segmentations well for these images. To understand why this occurs, let us first rewrite

the expression for PRI. We begin by defining the following functional:

fPRI
(

ℓt, ℓ1...K , pk(l1, l2)
)

=
1

K

∑

k

∑

{l1,l2}

pk(l1, l2)Ei.j

[

gi,j

(

ℓt, ℓk
) ∣
∣ℓk

i = l1, ℓ
k
j = l2

]

.

(3.8)

Notice that this is an iterated expectation over label pairs, with a prior on label pairs

defined by p(l1, l2). With some manipulation, we can express the PRI in this functional
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Figure 3.3: Segmentation ranking according to PRI. The first column is the original

image and the second and third column are two (of many) ground truth segmenta-

tion. The third, fourth, and fifth column show segmentations obtained using various

algorithms, ranked from best to worst according to PRI.

form:

PRI
(
ℓt, ℓ1...K

)
= fPRI

(

ℓt, ℓ1...K , pk
PRI(l1, l2)

)

(3.9)

with a prior on label pairs proportional to the number of pixel pairs with labels {l1, l2}.

This prior can be expressed as

pk
PRI(l1, l2) =

(

1I [l1 = l2] ·
(Nl1

2

)
+ 1I [l1 6= l2] · Nl1Nl2

)

(
N
2

) , (3.10)

where Nl is the number of pixels with label l.

We propose that one discrepancy between how humans evaluate segmentations and

how they are scored according to PRI is caused by uneven region sizes in the ground

truth. When two regions have very different sizes, the prior on label pairs is unevenly

weighted across the regions. For example, the image of the plane in Figure 3.3 contains

one very large region (the background), and a much smaller region (the plane). Assign-

ing the background with l1 and the foreground with l2, we see that the prior on label

pairs has the following relationship:

pk
PRI(l1, l1) ≫ pk

PRI(l1, l2) ≫ pk
PRI(l2, l2).

We can think of p(l1, l2) as the data-dependent weight given to the label pair (l1, l2).

In other words, it is the weight assigned to the success rate of an algorithm when one
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Figure 3.4: Segmentation ranking according to UPRI. The first column is the original

image and the second and third column are two (of many) ground truth segmenta-

tion. The third, fourth, and fifth column show segmentations obtained using various

algorithms, ranked from best to worst according to UPRI.

pixel is drawn from the labeled region l1, and another one is drawn from the labeled

region l2. This relationship of weights for PRI indicates that more weight is assigned to

correctly assigning a pair of pixels that both come from the background than when both

pixels come from the foreground. This is one reason that the constant segmentation

has a better PRI than the last column in Figure 3.3.

With this observation in mind, we propose a new evaluation criterion called the

Uniform Probabilistic Rand Index (UPRI), which takes on the same functional form as

the PRI (Equation 3.8), but has a uniform prior on label pairs:

UPRI
(
ℓt, ℓ1...K

)
= fPRI

(

ℓt, ℓ1...K,
1
(
Lk

2

)

)

(3.11)

Figure 3.4 shows the updated rankings using the UPRI. Notice that using UPRI to

evaluate segmentation performance has fixed many of the problems in ranking that

PRI failed at. However, an undesirable outcome with using UPRI is that the best

airplane and snake segmentations are no longer truly the best. We attribute this result

to the fact that the Rand Index does not penalize mislabeling pixel pairs as much as it

should.

We therefore consider another measure in the same functional form, called the Area-

Weighted Probabilistic Rand Index (APRI). The original PRI was essentially weighting

the priors by the square of the number of pixels in the region; the APRI instead weights
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Figure 3.5: Segmentation ranking according to APRI. The first column is the original

image and the second and third column are two (of many) ground truth segmenta-

tion. The third, fourth, and fifth column show segmentations obtained using various

algorithms, ranked from best to worst according to APRI.

the priors proportional to the number of pixels in the region. The APRI can be written

as:

APRI
(
ℓt, ℓ1...K

)
= fPRI

(

ℓt, ℓ1...K ,
(Nl1 + Nl2)

2

)

. (3.12)

Figure 3.5 shows the ranksing using the APRI.

It seems like the errors with the plane have been fixed, but those of the snake have

not. At this point, we believe that there is no clear way of choosing these priors to

accurately evaluate segmentations across all images.

To understand the differences between PRI, UPRI, and APRI, we consider the

following example. We examine the relationship of the measures with region size and

error rates on segmentation. For an image with N pixels, we generate a ground truth

segmentation with two regions: one of size aN , and one of size N − aN . We then

corrupt the N − aN region with some probability of error Pe. We compare the three

evaluation criteria using this corrupted segmentation with a segmentation that puts

all pixels in the same label. Figure 3.6 shows an example ground truth, corrupted

segmentation, and single region segmentation. For a range of a and Pe values, the

decision regions for the better segmentation (the corrupted vs. the single region) based

on PRI, UPRI, and APRI are shown in Figure 3.7. When using PRI as the segmentation

measure, the better segmentation depends on the relative area of the ground truth and

the probability of error. For example, when the ground truth contains a small region
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(a) Ground truth (b) Corrupted (c) Single region

Figure 3.6: The corrupted segmentation incorrectly labels a pixel in the green region

with probability Pe. We evaluate PRI, UPRI, and ULI for a range of a and Pe values.

(a) PRI (b) UPRI (c) APRI

Figure 3.7: The decision regions based on different measures. The green region cor-

responds to the single region segmentation having a higher score than the corrupted

segmentation. The red region corresponds to the corrupted segmentation having a

higher score than the single region segmentation. The blue lines indicate where the two

segmentations are equal.

(i.e. when a is small), only very small Pe values can be tolerated. In general, PRI favors

the single region segmentation when the ground truth contains a small region. This can

be directly attributed to the prior on label pairs for PRI (expressed in Equation 3.14)

which puts higher priors on larger region pairs. When a is small, PRI does not strongly

penalize segmentations if the small aN region is missed because most of the prior weight

is on the larger region. In stark contrast, because of the uniform prior on label pairs,

UPRI has no dependence on the relative areas of the regions. The Area-Weighted PRI

is somewhere in between PRI and UPRI.
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Parameterized Likelihood Form

We have additionally considered another parameterized form of evaluation criteria re-

lated to the PRI which we will refer to as the Likelihood Index. Measures in this

functional form have depend on the number of observed segmentations (assuming some

random, generative model), which could be important when considering the ill-posed

nature of the segmentation problem. When developing the PRI, the authors of [10]

express it as the following

PRI
(
ℓt, ℓ1...K

)
=

1
(
N
2

)

∑

{i.j}

pi,j

(
ℓt
)

= Ei,j

[
pi,j

(
ℓt
)]

, (3.13)

where the likelihood of a pair of pixels, pi,j

(
ℓt
)

is defined as

pi,j

(
ℓt
)

= 1I
[
ℓt
i = ℓt

j

]
Pr (ℓi = ℓj) + 1I

[
ℓt
i 6= ℓt

j

]
Pr (ℓi 6= ℓj) , (3.14)

and the probabilities, Pr (ℓi = ℓj) and Pr (ℓi 6= ℓj), are the empirical probabilities from

the set of ground truth segmentations. In other words, the PRI is finding the empirical

expected value of pi,j

(
ℓt
)
.

We take a different approach by considering the likelihood of the entire labeling

(properly normalized). We call this measure the Likelihood Index (LI):

LI
(
ℓt, ℓ1...K

)
=
∏

{i,j}

pi,j

(
ℓt
)

1
(
N
2

)

. (3.15)

The LI can also be expressed as

LI
(
ℓt, ℓ1...K

)
= exp

[
Ei,j

[
log pi,j

(
ℓt
)]]

. (3.16)

We note here that this form of the Likelihood Index is very similar to the PRI in

Equation 3.13; the only difference between the two expressions is the use of a different

loss function (log versus linear) which, as eluded to earlier, was the root of the problem

in the UPRI measure.

With some manipulation, we can write a functional Likelihood Index (similar to

Equation 3.8) as

fLI
(

ℓt, ℓ1...K , pk (l1, l2)
)

= exp




1

K

∑

k

∑

{l1,l2}

pk(l1, l2)Ei.j

[

log pi,j

(
ℓt
)∣
∣ℓk

i = l1, ℓ
k
j = l2

]



 .
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Figure 3.8: Segmentation ranking according to ULI. The first column is the original

image and the second and third column are two (of many) ground truth segmenta-

tion. The third, fourth, and fifth column show segmentations obtained using various

algorithms, ranked from best to worst according to ULI.

We define the Uniform Likelihood Index (ULI) which, like previously, uses this func-

tional form with a uniform prior on label pairs:

ULI
(
ℓt, ℓ1...K

)
= fLI

(

ℓt, ℓ1...K,
1
(
Lk

2

)

)

(3.17)

We note that some regularization must be used because missing one pixel pair that all

ground truth images agree on will make the likelihood index go to zero. We add uniform

noise to the probability of a pixel agreeing and disagreeing in the following fashion:

Pr (ℓi = ℓj) =
1

K + 1
5

[
K∑

k=1

1I
[

ℓk
i = ℓk

j

]

+
1

10

]

, (3.18)

Pr (ℓi 6= ℓj) =
1

K + 1
5

[
K∑

k=1

1I
[

ℓk
i 6= ℓk

j

]

+
1

10

]

. (3.19)

Figure 3.8 shows the updated rankings using the ULI. Notice that an algorithm’s

performance seems to be ranked according to how a human would rank the images.

The example in the previuos section considered how the prior on label pairs were

reflected in region size and probability of error. The following example, shown in Figure

3.9, shows the difference between measures of the functional PRI form and the function

LI form. We generate a set of K ground truth binary segmentations, each composed

of three different sections: the first section is always labeled in one region, the second
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Figure 3.9: An example of generating a ground truth image. The image on the left

shows the three separate sections. Pixels in the black band are randomly assigned a

label for each generated ground truth image. Two example ground truth images are

shown to the right.

Figure 3.10: An example of generating a ground truth image. The image on the left

shows the three separate sections. Pixels in the black band, B, are randomly assigned

a label for each generated ground truth image. Two example ground truth images are

shown to the right.

section is always labeled in the other region, and the third region is labeled randomly.

We consider segmentations containing one horizontal cut in the image for each of the

measures. The different measures as a function of the horizontal cut index are shown

for a different number of ground truth images in Figure 3.10. Clearly, the PRI and

UPRI are not functions of the number of ground truth images whereas the ULI is.

While the banded region is randomly labeled, if only one ground truth segmentation is

given, one has no way of knowing that the labels in that region were assigned randomly

(ignoring the spatial dependencies). Because of the statistics over the set of ground

truth segmentations, it is only with multiple ground truth images where the labeling is

random in each of the banded regions that one would know that the labeling is truly

random. Mathematically, this can be seen by considering the probability that a pixel

in one region has the same label as a pixel in the banded region, B, as a function of the
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number of ground truth images, K.

Pr

[

Pr [ℓi = ℓj|j ∈ B] =
k

K

]

=

(
K
k

)

2K
, ∀k ∈ [0,K] (3.20)
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