
RESEARCH STATEMENT

JEAN YANG

The goal of my research is to help programmers build more reliable software with less effort.
Towards this goal, I developed a programming model that allows selective automation of specific
concerns across the program. This model integrates high-level rules into a familiar paradigm to
reduce programmer burden without requiring a new way of reasoning about the entire program.
My research is about designing language constructs and execution strategies that allow the runtime
to take responsibility for tedious, error-prone tasks that cut across the program.

I have demonstrated how to use this programming model to address the problem of data leaks
and privacy breaches. As more information becomes digital, programmers not only spend more
time enforcing policies for privacy and security, but also make more mistakes. To solve the problem
of missing security checks across the program, I created policy-agnostic programming, a par-
adigm that separates the implementation of information flow policies from the rest of
the program and automates their enforcement. I have implemented this paradigm in a pro-
gramming language with strong theoretical guarantees that I have used to build web applications,
including a conference management system that has run an ACM-sponsored workshop.

1. Experience in Verifying Software Correctness

I began thinking about the power of language-level guarantees when I worked with Chris Haw-
blitzel at Microsoft Research to verify the Verve operating system [12, 13]. In Verve, we leverage
language guarantees to verify end-to-end type and memory safety properties. Traditionally, oper-
ating systems are written in low-level languages with few guarantees. This is because they have
behaviors–such as context switching–that cannot be implemented in type-safe languages. In Verve,
we isolated the subset of the operating system kernel that is necessarily low-level and verified it
with respect to a specification of end-to-end type and memory safety. The specification allows us
to implement the rest of the operating system in a type-safe language, thus simplifying the verifica-
tion task. Our 2010 paper [12] won Best Paper Award at PLDI and was republished as an invited
Research Highlight in the Communications of the ACM [13].

After Verve, I began to think about how to design languages to automate concerns other than
memory management. I was especially interested in information flow, a global and error-prone
concern. I contacted Nikhil Swamy and Juan Chen at Microsoft Research to work on type-based
verification in Fine. The Fine language verifies security policies using dependent types (types that
depend on program values). Fine has a proof-carrying compilation process that automatically
generates proofs that can be stored with bytecode. I contributed to theory and practice to enable
systems using Fine to pass around proof-annotated bytecode in a distributed setting [10, 11].

While working on Fine, I confirmed that verification is not enough to help programmers write
secure software. In existing languages, the programmer is responsible for enforcing information
flow policies explicitly wherever sensitive data is used. For example, to enforce the policy only my
friends who are nearby can see my GPS location, the programmer must enforce the policy wherever
the users location value flows, including through any computations. A mistake in implementing any
of these checks can result in an information leak. While languages like Fine reject programs that
leak information, it remains difficult to write these programs in the first place. Enforcing policies
automatically would reduce programmer burden.

1



2 JEAN YANG

2. A Language for Automatically Enforcing Information Flow Policies

During my Ph.D., I created Jeeves [14, 3], a programming language that automatically enforces
information flow policies. Jeevess policy-agnostic programming model asks the programmer to
associate information policies directly with sensitive data while relying on the runtime system to
enforce the policies. In Jeeves, the programmer defines different views for sensitive values, along
with policies about when and to whom the values may be shown. For each sensitive value, the
runtime simulates simultaneous executions to show the appropriate result based on the viewer. For
the GPS location example, the programmer might create versions of the location corresponding to
the precise GPS location and the current country, associate a policy that says only nearby viewers
may see the value. The rest of the program may be policy-agnostic: code that finds and shows all
the users in a given location does not need to be aware of the policies. The resulting programs are
correct by construction with respect to the stated policies. With Jeeves, the programmer no longer
needs to implement access checks across the program.

I have characterized a theoretical foundation for Jeeves and built a usable implementation.
Jeeves has a big-step dynamic semantics that guarantees 1) private values do not leak to public
viewers (non-interference) and 2) the system correctly determines the access level of a viewer (policy
compliance). The semantics takes into account state updates and implicit flows (potential leaks
through control flow involving sensitive values). In order to support database-backed applications,
I extended Jeeves to create Jinq, a language with with policy-agnostic, integrated queries. I have
used Jinq to build a web framework, Jacqueline, which provides end-to-end guarantees across the
frontend, application, and database. I have implemented Jeeves in both Scala and Python and
Jacqueline as an extension of the Django web framework. I have used Jacqueline to implement a
conference management system used to run an ACM-sponsored workshop (PLOOC 2014).

The ideas in Jeeves have impact beyond my research collaborators. Our POPL [14] and PLAS [3]
papers about the design and semantics of Jeeves have been part of the curriculum for a graduate-
level language-based security course at the University of Maryland. Researcher Eva Rose has
developed a Haskell implementation of Jeeves [9]. In the last year, over 100 developers have
bookmarked the repository for the Python embedding of Jeeves on the web-based repository hosting
service GitHub. In addition to impact within the academic and programming communities, we
have had popular press coverage in New Scientist [2], Gigaom [5, 6], MIT Technology Review [4],
Wired [7], Fast Company [8], and Fast CoLabs [1].

3. Future Directions

In addition to expanding the expressiveness and usability of the policy-agnostic approach for in-
formation flow policies, I am interested in generalizing the approach to other concerns, in particular
domain-specific concerns in social science and biology.

3.1. Providing system-wide security guarantees. Current implementations of policy-agnostic
programming assume that both the runtime and the database are trusted. In order to provide
realistic security guarantees, we need to reduce the amount of trust. I plan to do this by efficiently
integrating cryptography. This involves carefully choosing the kinds of encryption to use, as well as
the parts of the system to encrypt, for instance the database. By factoring out the enforcement of
information flow policies, the policy-agnostic model presents unique challenges and opportunities for
removing trust. There may be, for instance, connections between faceted execution and functional
encryption, a form of public-key encryption that allows a secret key holder to learn a function of
what is encrypted without learning anything else about the program. I have been discussing these
ideas with cryptographers, including Vinod Vaikuntanathan at MIT.

3.2. Expanding policies to handle aggregate values. Information flow is often too strong
a requirement for the properties that programmers want. For instance, information flow policies



RESEARCH STATEMENT 3

cannot permit an average salary to be revealed while protecting individual salaries. To support
such policies, I plan to expand policy-agnostic programming to enforce policies based on aggregate
values. One way to do this is to incorporate differential privacy, which allows an aggregate value
to be revealed if the likelihood of inferring individual values is low. Another potential solution is
to support policies on computation histories, for instance allowing values to be revealed if certain
operators have been applied to derive the result. Runtime support for this would be a natural
extension of Jeevess dynamic multi-execution approach. I have discussed these ideas with Nickolai
Zeldovich and Raluca Popa at MIT, as well as with Fred Schneider at Cornell, who is developing
a theoretical framework for policies over computational histories.

3.3. Making policy-agnostic programming usable by non-computer scientists. Journal-
ists are increasingly interested in uncovering patterns and misdeeds through analyzing data. For
some of this data analysis, for instance in the case of finding medical errors, it is critical that sensi-
tive information from individuals does not get leaked. If trained developers have trouble correctly
implementing privacy policies, we cannot expect journalists to get it right. To help journalists query
semi-private data, I want to make policy-agnostic programming accessible for people who are not
trained as computer scientists. In addition to creating a scalable execution model that works with
realistic data set sizes, I plan to create tools, for instance a policy verifier and a policy visualizer,
that make it easier to create and reason about policies and programs. I became interested in this
goal after taking a course on the impact of technology on journalism. I have continued working
with journalists in NeuWrite Boston, a working group that I run comprised of scientists and science
writers. Members include editors from MIT Technology Review and NOVA.

3.4. Separating program concerns to model biological systems. Researchers have demon-
strated advantages in modeling biological systems operationally (using logical programs) rather
than denotationally (using equations). The logical models of biological systems often suffer from
poor performance. Additionally, implementing logical models often requires biologists to learn an
unfamiliar programming model. Using a policy-agnostic paradigm to model these systems would al-
low the programmer to describe part of the system logically and everything else more procedurally.
Because the programmer specifies the control flow, this potentially mitigates some performance
issues. In addition, the models could look more similar to programs biologists are accustomed to
writing. Something like the Python implementation of Jeeves, for instance, could integrate with
existing molecular dynamics modeling packages in Python. I have been talking with Benjamin Hall
at the University of Cambridge about the feasibility of using policy-agnostic programming to model
protein signaling systems, where policies describe communication between different parts of a cell.

3.5. Concluding thoughts. By demonstrating that programming languages can take responsi-
bility for global concerns, I hope to change the way language designers think about what is possible
to automate in programs. The policy-agnostic approach is a step towards automating what is
repetitive and error-prone in programming.

References

[1] Tina Amirtha. Non-techie ways to prevent your company from suffering the next Heartbleed bug. Fast CoLabs,
May 2014.

[2] Jacob Aron. What your online friends reveal about where you are. New Scientist, January 2012.
[3] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama. Faceted execution of policy-

agnostic programs. 2013.
[4] CSAIL. New programming language removes human error from privacy equation. MIT Technology Review,

February 2014.
[5] Barb Darrow. Mission possible? Jean Yang. Gigaom, May 2013.
[6] Barb Darrow. Want to build privacy into your apps? Check out Jeeves, now available in Python. Gigaom,

February 2014.
[7] Klint Finley. Out in the open: A new programming language with built-in privacy protocols. Wired, March 2014.



4 JEAN YANG

[8] Jessica Leber. A better way to protect privacy? Take the programmer out of the equation. Fast CoExist, March
2014.

[9] Eva Rose. Constraint generation for the Jeeves privacy language. Technical Report MIT-CSAIL-TR-2014-020,
Massachusetts Institute of Technology, October 2014.

[10] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. Secure
distributed programming with value-dependent types. 2011.

[11] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. Secure
distributed programming with value-dependent types. Journal of Functional Programming, 23, 7 2013.

[12] Jean Yang and Chris Hawblitzel. Safe to the last instruction: automated verification of a type-safe operating
system. 2010.

[13] Jean Yang and Chris Hawblitzel. Safe to the last instruction: automated verification of a type-safe operating
system. Commun. ACM, 54(12), 2011.

[14] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for automatically enforcing privacy policies.
2012.


