
TEACHING STATEMENT

JEAN YANG

My goal in teaching is to provide students with a solid foundation to pursue the projects they
want, regardless of discipline. Even though I am a computer scientist, I have diverse interests
ranging from the arts to the physical sciences. I have established my teaching interests through
designing and teaching undergraduate and graduate courses, as well as through mentoring and
cross-disciplinary collaborations.

I have taught introductory courses on programming, formal systems, and programming lan-
guages, as well as a graduate-level course in program analysis and software verification. As a
professor, I can teach undergraduate courses on programming, compilers, and programming lan-
guages and graduate courses on program analysis and software verification.

1. Teaching Interests

As programming becomes more ubiquitous, computer science departments are increasingly re-
sponsible for training broad-minded software engineers, as well as people from other disciplines. As
writer and activist Astra Taylor says, “...programmers and the corporate officers who employ them
are the new urban planners, shaping the virtual frontier into the spaces we occupy, building the
boxes into which we fit our lives, and carving out the routes we travel” [1]. Taking this breadth
and responsibility into account is important when designing lectures, projects, and courses, without
sacrificing rigor and depth.

I have the interest and experience to incorporate these cross-disciplinary principles into rigorous
computer science courses. An example of a topic I would like to explore in teaching is the connection
between functional programming and music: I was exposed to this through working with a composer
interested in programmatically generating music using OCaml. I would also like to design projects
and seminars that allow students to explore computational tools for social science and journalism.
One of the courses that most expanded my own point of view was media scholar Ethan Zuckerman’s
new media course, where we discussed the impact of technology on civic participation, experimented
with using existing technologies in novel ways, and built new technologies.

2. Teaching Experience

As a Teaching Fellow at Harvard for introductory courses in programming, formal systems, and
programming languages, I enjoyed helping students accumulate an arsenal of computational tools
that allows them to apply theory to practice. I like teaching the ins and outs of pointer manipulation
as much as showing the elegance of high-order functions. I learned that with the right presentation,
it is possible to engage students in even the most seemingly dry and difficult topics. For instance,
to demonstrate how memory management works, another Teaching Fellow and I acted out the roles
of the Stack Pointer and of Malloc, Guardian of the Heap. We showed how the Stack Pointer moves
up and down to track function memory and how the program interacts with Malloc to allocate and
deallocate persistent memory. Such teaching strategies led to positive reviews and a nomination
for a teaching award.

During my Ph.D., I have sought out opportunities to teach introductory courses because I want to
encourage undergraduates to think critically about their computational tools. I proposed, designed,
and taught several short courses on different programming languages. During MIT’s Independent
Activities Period, I co-taught a two-day Haskell introduction and a six-day, for-credit C/C++

1

2 JEAN YANG

course. The C/C++ course had sufficiently high enough enrollment that I was given permission to
hire three graders. I also designed a three-day Scala introduction in the undergraduate Elements
of Software Construction course (6.005), taught in Java and Python. I especially enjoyed teaching
the Scala mini-course because I got to show students how a different language could help them
more succinctly express concepts they had just learned. Two of the students became so excited
about what I presented on Scala that they started doing languages research with me. One of them
worked with me for two years building case studies in my research programming language, Jeeves.

I enjoy teaching graduate courses because they allow me to introduce students to tools on another
level. At MIT, I helped Arvind, Martin Rinard, and Armando Solar-Lezama create the graduate
course Foundations of Program Analysis (6.820), combining modules about type theory, model
checking, and abstract interpretation. I learned to present the ideas and tools in a way so that
graduate students across disciplines could see how to apply the material to their own research. A
recitation I led on recent advances in Satisfiability Modulo Theories (SMT) solvers led a student
to investigate whether constraint-solving could help his research in natural language processing.
I look forward to disseminating cutting-edge results from language design, software verification,
program analysis, type systems, and constraint-based programming.

3. Mentoring

As someone who has thought much about motivating people–both through individual mentoring
and through creating ecosystems–I am looking forward to starting my own research group. I
have worked with two high school students, through the MIT PRIMES program, and several
undergraduate research assistants on developing case studies for my research language, Jeeves.
One of my best collaboration experiences was with a Masters of Engineering student I supervised
to build a Python embedding of Jeeves and a web framework based on Jeeves. Through my
mentoring experiences I learned the importance of student compatibility with the group and project.
Through recruiting and supervising students, I observed that my best students were often the ones
who were most excited about the project rather than the ones with the highest grades. I also
observed how mentors can improve compatibility through seeking feedback: I learned valuable
lessons from listening to students about the kinds of pressure and feedback they wanted–and seeing
how modifying my behavior helped them take more ownership of their work.

4. Leadership

In 2010, I started the Programming Languages and Software Engineering Offsite, an annual
one-day event that assembles the MIT research groups in programming languages and software
engineering to give research updates, give advice to graduate students, and discuss the future of
the field. The initial Offsite made such a difference in inter-group communication that the event
has continued each year.

I am particularly interested in creating environments that promote diversity in STEM: I want
to make women and other minorities feel supported in pursuing STEM careers. In 2009, with
two other students, I co-founded Graduate Women at MIT (GWAMIT), an institute-wide group
dedicated to the professional and personal development of graduate women. GWAMIT now has
over 1,800 mailing list members, over 80 graduate women involved in planning committees, and an
annual budget of over $20,000 with which it runs two annual conferences, a year-round mentoring
program, and events throughout the year. I plan to continue supporting STEM diversity by raising
awareness and creating opportunities for discussion.

References

[1] Astra Taylor. Tomgram: Astra Taylor, misogyny and the cult of internet openness, April 2014. [Online; posted
10-April-2014].

