Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads

Introduction to Haskell Hacking

Joe Near and Jean Yang
IAP 2010: So You've Always Wanted to Learn Haskell?

January 25, 2010

Joe Near and Jean Yang Introduction to Haskell Hacking

Compiling and running

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Schemers, welcome to the other side

AS oU KNOW, WERE IN
THE €IGHTH YEAR OF
OUR NORTHERN WARS L_{
AGAINGT THE HASKE[LERS,,
THERE ARE RUMORS THAT,
MORE OF OUR TROOPS |
ARE DEFECTING TO THE/ (4

Figure: The long war between the untyped and types communities.

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Consider quicksort

527313269|

An O(nlogn) divide-and-conquer
sorting algorithm.

23125786

5 sE 7 B9 1. Pick a pivot.
l l 2. Reorder the list so all elements
12@35678f around pivot.
l L 3. Recursively sort the sub-lists.
1223567809

Figure: Graphical
representation.

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads

Quicksort in C

Compiling and running

void gsort(int a[], int lo, int hi) {

{
int h, |, p, t;
if (lo < hi) {

| = lo; h=nhi; p=alhi];

do {
while ((I < h) && (a[l] <= p)) | = I+1;
while ((h > 1) & (a[h] >= p)) h = h—1;
if (I <h){
t = a[l]; a[l] = a[h]; a[h] = t;

} while (I < h);
alhi] = a[l]; a[l] = p;
gsort(a, lo, 1I-1);
gsort(a, I+1, hi);

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Quicksort in Haskell

gsort [1 =[]
gsort (p:xs) = gsort lesser ++ [p] ++ qsort greater
where

lesser =[]y | y<—xs, y<p]

greater = [y | y <— xs, y>=p]

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads

Why Haskell matters

Purely functional!

Brevity.

Easy of understanding.

Built-in memory management.

Code re-use.

Strongly, statically typed

e Ease of development.
e Ease of understanding.

e Ease of maintenance.

Compiling and running

'From an essay by Sebastian Sylvan. (There is also John Hughes's “Why

Functional Programming Matters”—a must-read!)

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Today's plan

What is Haskell?

Haskell's type system.

Type classes for overloading.
Monads for effects.

BAE o

Compiling and running Haskell programs.

Find these slides online at
people.csail.mit.edu/jeanyang/courses/haskell/lectl.pdf

Joe Near and Jean Yang Introduction to Haskell Hacking

people.csail.mit.edu/jeanyang/courses/haskell/lect1.pdf

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Vocabulary check

Figure: Y combinator tattoo.

Functional

Higher-order functions
e Pure

Effect

Static typing
Polymorphism

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

The gentle introduction to Haskell

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Whitespace sensitive

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Purely functional

Idiom: recursion rather than iteration
Function declaration and application.

fac n = if n = 0 then 1 else n * fac (n-—1)

Idiom: map and fold with higher-order functions

Use of Prelude list function and anonymous A-function.

incl Ist = map (\x —> x + 1) Ist

Pure: all effects captured in monads

main :: 10 ()
main = putStrLn " Hello world!"

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Strongly, statically typed with polymorphism

Simple types
5 :: Integer
'a’ :: Char

Function types

inc :: Integer —> Integer
inc x =x + 1

Polymorphic types

length it [a] = Integer
length [] 0
length (x:xs) 1 + length xs

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Lazily evaluated

Some definitions

e Call by name. Args directly substituted into function body.
¢ Call by need. Memoized version of call by name.

e Haskell's lazy evaluation. Store thunks in heap and evaluate
only when necessary.

A cool consequence: infinite data structures?

fib =1 : 1 : [atb | (a,b) <— zip fib (tail fib)]

zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip xs ys []

2Can also do this with delay in Scheme.

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

3000

el ele]

falele}
300

100

fale}
30

10

[T |

Pretty fast for a high-level language

Hormalized Time-uszed Hedian and Quartiles

LEr é %é

language implementation 15 Jan 2010 uad

Figure: Numbers from the Debian language shootout benchmarks.

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up

Al

Data structures only

Observable
nondeterminism

(unificatinn

v (e

quality)

Deterministi
logic programming

+ search

Relational & logic

+ by—need
synchron. y

Haskell’s type system Type classes Monads

| together now

record
Descriptive
declarative
programming
XML,
S—expressi

+ procedure
First-order
functional

programming

+ closure
Functional

S

programming

I
1
¥ (unforgeable c:
ADT ‘
functional
programming
! Haskell, ML, E
T + thread o

+ cell

Scheme, ML

i

Y,

y+ single assigue""_—. + nondeterminis

Figure: From Peter Van Roy's programming paradigms

Joe Near and

Prolog, SQL Lazy Monotonic | L— Y choice '
embeddings functional dataflow i Nonmonotonic i

+ solver p i programming I low I

I o 1

Constraint (logic) ‘ Haskell Declarative ! programmin !
programming concurrent ! Concurrent logic !
CLP.ILOG Solver | progmmming | | JEVgrrnin 1

Jean Yang Introduction to Haskell Hacking

Compiling and running

chart.

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Back to quicksort

Our original program

gsort [] =]
gsort (p:xs) = qgsort lesser ++ [p] ++ qsort greater
where
lesser =

[y | y<—xs, y<p]
greater = [y

| y <= xs, y>=p]

Alternatively with list comprehensions
gsort []

(]
gsort (x:xs) =
gsort (filter (< x) xs) ++
[x] ++
gsort (filter (>= x) xs)

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Types and typing restrictions

I fixey urtype error

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Haskell's type system

Pedantic version

A restriction of System F,, (polymorphic A-calculus) to rank-1
polymorphic types with a version of Hindley-Milner type inference.
Type inference and checking are both decidable.

Simpler version

e We only have quantifiers at the outermost level of types.

e There are some restrictions on when we can infer a fully
polymorphic type.

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

User-defined data types

Predefined and user-defined

data Bool = False | True

data Color = Red | Green | Blue | Indigo | Violet

Polymorphic definitions

data Point a = Pt a a

Type synonyms

type String = [Char]
type Name = String
data Address = None | Addr String

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Pattern matching

As-patterns

f (x:xs) = x:xs
f s@(x:xs) = x:
Wild-cards

head (x:.) = x
tail (-:xs) = xs

Case expressions

take m ys = case (m,ys) of
(0.-) -]
(-.[1) —=>]
(n,x:xs) —> x : take (n—1) xs

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell’s type system Type classes Monads Compiling and running

Monomorphism restriction

Cannot overload a function without an explicit type signature3.

fl x = show x — Allowed.

f2 = \x —> show x — Not allowed.
f3 :: (Show a) => a —> String

f3 = \x —> show x —— Allowed.

f4 = show — Not allowed.
f5 :: (Show a) => a —> String

f5 = show

3But Haskell has a flag for everything! Can turn off restriction with flag
-XNoMonomorphismRestriction.

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Ad-hoc polymorphism with type classes

llnlvmornlm: cat
" haz class

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

gsort: not parametrically polymorphic

gsort 1 = []
gsort (p:xs) = qsort lesser ++ [p] ++ qsort greater
where

lesser =[]y | y<—xs, y<p]

greater = [y | y<— xs, y>=p |

Does gsort have type [a] -> [al]?
No—need types a for which operations < and > are defined!

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Type classes give us bounded parametric polymorphism

Haskell's Ord class

class (Eq a) => Ord a where

compare it a —> a —> Ordering
(<), (=), (>=), (>») :: a — a —> Bool
max, min a —> a —> a

gsort'’s type signature

gsort :: (Ord a) => [a] —> [a]

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up

Type classes by example: the Eq class

(Reduced) class definition

Haskell's type system Type classes

Monads

Compiling and running

class Eq a where

(==)

a —> a —> Bool

Defining instances

instance Eq Integer where
X =y = x ‘'integerEq ' vy
instance (Eq a) => Eq (Tree a) where
Leaf a — Leaf b = a=—b
(Branch 11 r1) = (Branch 12 r2) = (I1=I12) && (rl
=r2)
- == _ = False

Joe Near and Jeal

n Yang

Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Useful Haskell type classes

Eq

class Eq a where
(==), (/=) it a —> a —> Bool
x /=y = not (x =)

Read and Show

class Read a where
read :: String —> a
class Show a where

show i1 a —> String

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

So we said Haskell is purely functional. ..

But professor. you
said yesterday that
x was equal to 2!

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

A functional programming pattern for handling state

Store state in a value

data S =S { intS :: Integer, strS :: String }

Pass this value around

evaluate :: (S, Exp) —> (S, Exp)
evaluate (state, exp) =
if state.intS = 0
then {— Do something. —}
else {— Do something else. —}

Monads are an abstraction for storing state

evaluate :: S Exp —> S Exp

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Monads

Monads for all effectful computation

e Language support for carrying around state explicitly.

e Requires definitions for how to initialize a value in this state
and how to compute new values in the context of the state.

e How to "lift” something into the monad (return).
e How to sequence operations within the monad (>>=, or bind).

Monads defined as a type class

infixl 1 >> >>—
class Monad m where

(>>=) c:ma—> (a—>mb) —>mb
(>>) ::ma->mb->mb
return a —>m a

fail :: String —> m a

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Monad use example: Maybe

Maybe type

data Maybe a = Nothing | Just a

Unnecessary casing

case ... of
Nothing —> Nothing
Just x —> case ... of

Monad definition

instance Monad Maybe where
return Just
fail Nothing
Nothing >>= f = Nothing
(Just x) >= f f x

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskel

1?7 Wrapping up Haskell's type system Type classes Monads Compiling and running

Syntactic sugar: do

do for sequencing monadic operations

do el ; e2
do p <— el;

= el >> e2
e2 = el >= \p — e2

Example with

Maybe

data MailPre
getMailPrefs
getMailPrefs

nick

nickDB)

data MailSystem =

do let nameDB = fullNameDB sys

prefDB = prefsDB sys
addr <— (lookup name nameDB) ‘mplus‘ (lookup name

lookup addr prefDB

f = HTML | Plain

MailSystem —> String —> Maybe MailPref
sys name =

DB = nickNameDB sys

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Practical monad use: 10

Interacting with the command line
Haskell has the following built-ins:

getChar :: 10 Char
putChar :: Char — 10 ()

We can write the following function:

getlLine :: 10 String
getlLine = do c <— getChar
if c = "\n’

then return
else do | <— getlLine
return (c: 1)

Haskell's 10 library
File processing, exception handling, and more.

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Compiling with the Glasgow Haskell Compiler (GHC)

Compiling “Hello world”

$ ghc --make hello.hs}
[1 of 1] Compiling Main (hello.hs, hello.o)
Linking hello

Fancier compilation
GHC's make will track dependencies for you.

ghc -isrc --make -main-is Main src/Main.hs -o Main -hidir
out -odir out -o ./simple}

GHCi
GHC's interactive interpreter—allows you to load modules, evaluate
expressions, and check types.

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

Important logistical issues

Program entry point
All Haskell programs need a main function which has type 10 O
(“IO unit”).

main :: 10 ()
main = putStrLn " Hello world!"

Compiling modules

e GHC's make searches for module M in the file M.hs.

e make searches for module Dir1.Dir2.M in the file
Dirl1/Dir2/M.hs.

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads Compiling and running

A Haskell program

{— A Haskell file. -}

module Main — Module name
(main) — Exported function

where

{— Namespace imports. —}

import List (find) — Selective import

import Somelibrary.M as M — Aliased import

import Somelibrary.OtherM — A plain old import

— | main, a top—level function.

main :: 10 ()

main = putStrLn strToPrint

where
— | A valued defined in the scope of main.
strToPrint = "Hello world!”

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell’s type system Type classes Monads Compiling and running

Have fun!

oley cat sez:

*
s,‘F

{ 7 > il
see? ur typeproblimwuz not'so hard

-

Figure: Oleg Kiselyov as a A-cat.

Joe Near and Jean Yang Introduction to Haskell Hacking

Why Haskell? What is Haskell? Wrapping up Haskell's type system Type classes Monads

Until tomorrow. . .

Tomorrow

e Discussions of practical programing in Haskell.

e Looking at larger Haskell programs.

Questions?
{ jeanyang, jnear }@csail.mit.edu.

Joe Near and Jean Yang Introduction to Haskell Hacking

Compiling and running

	Why Haskell?
	What is Haskell?
	Wrapping up
	Haskell's type system
	Type classes
	Monads
	Compiling and running

