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Abstract

We propose a conditional dispatch operator for constrained poly-
morphic definitions which applies function f to argument v if and
only if v’s type is in a class that supports f, and returns a de-
fault value otherwise. Such a mechanism is particularly useful in
Haskell, where type classes provide the basis for ad hoc polymor-
phism. In this paper we describe our dispatch operator and its imple-
mentation, which we support with an extension to Template Haskell
and our ClassDynamic library. We show that by extending Template
Haskell to allow greater access to the compile-time type-checking
environment, one can easily implement such constructs in libraries
rather than as language extensions. Our work has two main impli-
cations: 1) it is useful to have type-class-based reflection and 2)
extending Template Haskell to allow more access to the compile-
time environment allows for useful features to be implemented as
libraries rather than compiler extensions.

Categories and Subject Descriptors CR-number [subcategory):
third-level

General Terms terml, term2

Keywords keywordl, keyword2

1. Introduction

Type analysis is useful for handling structure-specific details of
generic programming and for effective programming with dynamic
types. Type classes are useful for defining classes of types that sup-
port a given set of behaviors and for allowing assumptions about the
operations supported by types in polymorphic functions (Wadler
and Blott 1989). We claim that type analysis with type classes al-
lows for greater flexibility in dispatch than is provided by type-
classes alone, as well as better support for programming with dy-
namic types.

Suppose we wish to implement a set over some abstract element
type. At a minimum, we need some equality operation for elements
to implement the member function which determines membership
in a set. Hence, it is natural to require the element type to be in
the Eq class. However, if the element also provides an ordering
operation, then we can implement sets more efficiently (e.g., using
a balanced binary tree as opposed to a list.) Thus, for efficiency’s
sake, we might hope that elements satisfy the Ord class.
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Ideally, we should be able to choose a set implementation based
on what type-classes the element satisfies. Given such a facility for
testing type-class membership, we might write the following insert
function:

insert (Eq a) => a —> Set a —> Set a
insert x t_or_1 =
case cast (x (Ord a) => a) of
Just x_ord —> insert_tree x.ord t_or_1
Nothing —> insert_list x l_or_1

This function tests whether the element type satisfies the Ord class
and if so, uses the efficient tree-based representation. Otherwise,
the function falls back on a simple list representation which only
requires the Eq class.

Unfortunately, we cannot currently write such an implementa-
tion because we do not have a notion of type-class case in Haskell.
We must instead decide whether to sacrifice the possibility of an
efficient implementation or whether to bound the polymorphism of
insert to the Ord class, which would require defining other order-
ing operators such as max and min, over any data type for which
we would like to use Set. When faced with such a tradeoff, the rea-
sonable library implementor is likely to choose the latter: in the
Haskell Set library, the restriction is Ord.

In this paper, we propose a dispatch operation, which supports
type-class conditional dispatch, and thereby addresses this issue.
Our implementation examines the type class instances that have
been defined for a program and encodes the possible dispatches
using a universal representation similar to Haskell’s type Dynamic
. Our solution uses an extended version of Template Haskell for
examining the static type-checker environment and a new library
ClassDynamic to support conditional dispatch. In this paper we
describe

1. the semantics of the dispatch operation,

2. an implementation of dispatch involving an extension to the
Template Haskell processor of GHC and the ClassDynamic li-
brary, and

3. examples where dispatch is useful.

In Section 2, we go into more detail with the Set example and show
our solution for it. We then describe examples and provide details
on the implementation and the ClassDynamic library.

2. Conditional dispatch for the set example

In this section we describe the Set example in greater detail and
show how to use conditional dispatch to achieve the desired goal of
being able to use both Eq and Ord methods.

2.1 The type class restriction tradeoff

Consider the following interface for sets:

empty :: Set a
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insert :: Eq a => a —> Set a —> Set a
member :: Eq a = a —> Set a
isSubsetOf Eq a => Set a => Set a => Bool

The context restriction Eq a requires that any argument of type a
has (==) defined.

The context restriction also imposes an implementation restric-
tion: the Eq a context restriction only allows dispatch of (==) on the
arguments. To demonstrate this, let us consider implementing our
set as a balanced tree. We can implement the Set data type to allow
for either a tree or list representation:

data Set a = TreeRep (Tree a)
| ListRep [a]

‘We can now have two different insertion routines, one for elements
that have total ordering defined:

insert_tree (Ord a) = a —> Set a —> Set a
insert_tree x t_or_l =
case t_or_1 of
TreeRep t —> TreeRep (Tree.insert x t)
ListRep - —> raise Impossible

which uses insertion routine shown in Figure 2, and one for ele-
ments that only have equality defined:

insert_list (Eq a) = a —> Set a —> Set a

insert_list x’ l_or_1 =
case t_or_1 of
TreeRep _ —> raise Impossible

ListRep 1 —
case 1 of
[T — [x7]
_:_ —> if elem x’ 1
then 1
else x’:1

To implement our set as a balanced tree, we would need a total
ordering on the elements, which we would want the programmer
to define because we cannot easily derive such an ordering in a
programmatic way. Since we may only assume that the arguments
have (==) defined with Eq, we must turn to Ord, which has methods
(<) and (>). Unfortunately, we have no way of showing that we
have an argument whose type is an Ord instance.

This reason why we cannot dispatch on Ord methods with an Eq
restriction is that in order to show the compiler that we can dispatch
a method of a type class C on a value v, we need to show that v
has a type that has been defined as an instance of C. Currently, we
have no way of expressing that x is an instance of the Ord class
without performing type analysis and a cast to a specific type. This
would require using Haskell’s dynamic cast function, provided by
the Data. Typeable library, and would look something like this:

insert x t_or_1 =
case (cast x Maybe Bool) of
Just b —> insert_tree b t_or_1
Nothing —>
case (cast x Maybe Int) of
Just i —> insert_tree i t_or_1
Nothing —>
— And it goes on...
— For all instances ...
case (cast X Maybe String) of
Just s —> insert_tree s t_or-1
Nothing —> insert_list x t_or_I

Alas, this definitions is closed and cannot support further instances
of the Ord class.

Because we must declare the type class context of the arguments
in the function signature, we must make a choice between the suf-
ficient context restriction and one desired for efficient implementa-
tion. In order to dispatch on Ord methods in the body of the func-
tion, we can either strengthen the context restriction from Eq to

class Ord a where
compare a —> a —> Ordering
(<) :: a—> a —> Bool
(>=) :: a—> a —> Bool

(>) :: a—> a —> Bool
(<=) :: a —> a —> Bool
max :: a —> a —> a
min :: a —> a —> a

Figure 1. Haskell library definition for Ord class.

insert Ord a => a —> Set a —> Set a
insert x t
= case t of
Tip —> singleton x
Bin sz y 1 r
—> case compare x y of
LT — balance y (insert x 1) r
GT —> balance y | (insert x r)
EQ — Bin sz x 1 r

Figure 2. Haskell Set library’s insert function.

Ord or perform type analysis in the body of the function. Since the
type analysis is necessarily closed to new type definitions and type
classes are useful because they are open to new type definitions,
the latter method will not do.

To use the Haskell Set library for her new data type, the pro-
grammer must now associate it with the Ord class which has many
methods that are irrelevant to the fact that the value will be used in
a set. This not only requires more work on the programmer’s part,
but violates the principle of modularity: details relevant only to the
implementation are revealed in the interface.

2.2 Solution with conditional dispatch

Our class-based dispatch operators allow us to write the following
Set implementation:

insert (Eq a) => a —> Set a —> Set a
insert x t_or_1 =
let fns = $(inst ’insert_tree)
x’ = toClassDyn x
tl > = toClassDyn t_or._1

in case fromClassDynamic
(dispatch (dispatch fns x’) tl’) of
Just v —> v
Nothing —> insert_list x t_or_l

5

In the code above, the call $(inst ’ insert_tree ) is a Template
Haskell call which builds a collection of specialized versions of the
insert_tree function and returns the collection as a ClassDynamic.
The ClassDynamic is represented as a list of Dynamic values (i.e.,
values paired with a representation of their type.) The versions are
built by taking the set of all types that satisfy the Ord class, and
by specializing insert_tree to those types. The dispatch operation
takes two ClassDynamic values and attempts to calculate the cross
product by applying every function in the first collection to every
value in the second collection. The result is returned as a new, pos-
sibly empty ClassDynamic. In the example above, if the type a ends
up being an instance of the Ord class, then fns will be a singleton
set of the insert_tree operation specialized with a’s Ord methods.
Consequently, the first calls to dispatch on the singleton collections
x” and tI” will result in a singleton value which we project using
the fromClassDynamic function. On the other hand, if a does not
implement the Ord interface, then fns will be the empty collection.
In turn, this will mean that the dispatches return an empty collec-
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tion, and the call to fromClassDynamic will yield Nothing. Thus, we
invoke the default operation of inserting the value into a list.

3. Overview of conditional dispatch

We describe the semantics of the conditional dispatch operator
dispatch. We implement codedispatch by examining the relevant
type class instances associated with a bounded polymorphic func-
tion in order to determine whether a specific dispatch is valid. We
also present the ClassDynamic library to support the type analysis
required for resolving dispatches.

We use an extended version of Template Haskell to write a
function that allows us to get all possible instantiations of a function
signature:

inst :: Name — Q Exp

The function inst takes a function and returns an expression that,
when reified, is a value of type ClassDynamic which contains a
representation of the instantiations of the function. Type Exp is a
Template Haskell data type that reifies into expressions; Q is the
Template Haskell monad which supports reification.

Consider the following type class with the following instances:

class SomeClass a where
is_member a —> Bool

instance SomeClass Int where

is_member _ = True
instance SomeClass Bool where
is_.member _ = False

The call $(inst ’is.member) would return the following value of
type ClassDynamic:

combineClassDynamic
[ toClassDyn (is_-member
, toClassDyn (is-member

Int — Bool)
Bool — Bool) ].

Type ClassDynamic stores a collection of Dynamic values; the code-
ClassDynamic library provides support for handling multiple rep-
resentations of a value’s associated type.

The inst function and the data type ClassDynamic allow us to
write the following function:

dispatch ClassDynamic —> ClassDynamic

—> ClassDynamic

This function takes a list of possible dispatches and applies all
of the relevant ones to the argument. Note that the result could
potentially contain an empty set of type representations.

We provide the details of Template Haskell and the implemen-
tation in Section 5.

3.1 Disambiguating the dispatch

Disambiguating the dispatch involves 1) determining whether we
have a value whose type has an appropriate dispatch and 2) deter-
mining which function to dispatch. We can resolve both of these
issues by examining the set of instances that have been defined
and the possible instantiations of a function. The issues of con-
ditional dispatch occur only when we have type class constraints:
when there is a type class constraint, we know a function is not fully
polymorphic but bounded to only a set of types. Given a value, we
must determine if we have a valid type in the set, and which dis-
patch should occur.

Given the declared instances of a function, we know all of the
possible instantiations, or ways to dispatch on, a given function
signature. If we know the type of a value, we can then examine
this set to determine the dispatch.

3.2 Building on Dynamic

We a new type ClassDynamic, which we can think of as representing
a list of Dynamic values, to store a collection of possible values
because we need to represent the multiple possible representations
when the dispatch is ambiguous. There is ambiguity whenever a
function’s there are type variables that do not appear in a function’s
first argument. This is the case with both of the following functions:

some_function
show_with_level

(SomeClass a b) => a —> b —> Int
(Show a) => Int —> a —> String

Once a function is fully applied the dispatch is necessarily unam-
biguous, so if we have some way of representing ambiguity in par-
tially applied functions the final result will be the correct one. We
describe the ClassDynamic library more in Section 6.

3.3 Solution in Haskell framework

To get the appropriate instances of a function, we take advantage of
Template Haskell’s capabilities for reifying abstract syntax and ac-
cessing the compiler environment (Sheard and Peyton Jones 2002).
In Section 5 we describe our extension to the Glasgow Haskell
Compiler to gain sufficient information from the type checker en-
vironment.

To store such a dictionary and to perform type analysis, we need
to 1) have a type representation that allows us to have values with
types that are uncertain and 2) be able to perform type analysis.
We use Haskell’s Typeable library, which allows us to access type
representations of values at run time with the Typeable class (Baars
and Swierstra 2002):

class Typeable a where
typeOf a —> TypeRep

TypeRep is a data constructor containing a runtime representation of
an object’s type. Haskell’s Typeable library gives us the type-safe
cast function:

cast :: (Typeable a, Typeable b) => a —> Maybe b.

This function allows us to examine the type representations of a
and b and return the result of the cast iff a and b are structurally
equivalent. The type information from b comes from the static
type-checking environment. Haskell’s type Dynamic uses Typeable
to store values with their type representations in order to express
types whose values may not be known until run time. The library
has functions that allow the user to convert to and from a Dynamic
value, get the type representation of a Dynamic, and apply Dynamic
functions to Dynamic values.

4. Other uses for class-based method dispatch

We describe the use of conditional dispatch for heterogenous list,
for safe dynamic dispatch, and for conditional use of type class
methods depending on context.

4.1 First class type qualifiers for heterogeneous lists

Kiselyov et. al. describe the shortcoming of Haskell support for
heterogeneous lists, citing using lists of type [Dynamic] as an un-
satisfying solution (Kiselyov et al. 2004). We present a way of han-
dling heterogeneous lists that provides more information about list
elements than using type Dynamic.

Consider a design pattern that involves taking heterogeneous el-
ements associated with some operation and performing the opera-
tion on them. For instance, suppose we were making a graphical
user interface and had different kinds of widgets, each associated
with their own functions for displaying. We could define a type
class for capturing this information:
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class Display a where
display a —> Displaylnfo

where DisplayInfo is a data type that contains information for a
rendering procedure.

If we had a variable number of objects we might want to display,
it is reasonable to have a diplay function take a list of such widgets.
In Haskell we are allowed to write the following type signature:

display_all (Display a) => [a] — ()

Unfortunately, this type requires that all items in the list have the
same type. The type signature we want is

display_all [(Display a) => a] — ()

Haskell does not support this because it only allows qualifiers to
appear at the head of the expression.

According to the theory behind System F, we should be able
to write our desired type signature. In System F , with qualified
types, we have types of the following form (Jones 1992):

ocu=7|0c—o|Vro|T=0

According to this definition, we should be able to have impred-
icative qualified types. By impredicative, we mean that for a type
such as

T =Voa.a — a,

« is allowed to range over all types, including 7 (Pierce 2002).
Because a qualified type is a legitimate type, which should be able
to write the type

[m = q],

a list where each type « satisfies the type qualifier 7.
We can use class-based method dispatch to simulate having such
lists. We can have a function

display_all [ ClassDynamic] —> ()
display_all elts = map try_display elts >> ()
where
try_display
try_-display e =
case fromClassDynamic (dispatch $(inst
display) e) of
Just a — a
Nothing — ()

ClassDynamic —> ()

B

This function gives us a way of displaying only the displayable
elements in the list without having to do specific type-cases.

4.2 Safe dynamic dispatch

There is suboptimal support for dynamic dispatch in Haskell, as it
requires explicit type-casting to monomorphic types, a process that
is error-prone and full of boilerplate. Conditional function dispatch
allows us to perform safe dynamic dispatch by dispatching on types
based on membership in the appropriate classes.

We illustrate the convenience of safe static dispatch and the
need for safe dynamic dispatch with an anecdotal example from
Abelson and Sussman’s Structure and Interpretation of Computer
Programs (Abelson and Sussman 1996).

The premise of the exercise is that Insatiable Enterprises, Inc.,
“a highly decentralized” company with "’a large number of indepen-
dent divisions,” has just been interconnected in a way that allows
any user to regard the entire network as a single computer. The
problem is this:

Insatiable’s president, in her first attempt to exploit the abil-
ity of the network to extract administrative information from
division files, is dismayed to discover that...the particular
data structure used varies from division to division. A meet-
ing of division managers is hastily called to search for a

strategy to integrate the files that will satisfy headquarters’
needs while preserving the existing autonomy of the divi-
sions.

The exercise says to assume each division has its own way of
keeping personnel files, each personnel file has its own way of
keeping records, and each record has its own structure. The reader’s
assignment is to implement get—record and get—salary procedures
for the employee records of each division and a find—employee—
record procedure that finds the record for a given employee. The
exercise also asks the reader to think about how the central sys-
tem should incorporate changes when Insatiable takes over a new
company.

To solve this problem in Haskell, we could define the following
type classes:

class Record r where
getSalary r —> Int

class PersonnelFile (Record r) => f r where
getRecord f—>r

class FileCabinet (Record r) => ¢ r where
findRecord ¢ — EmployeelD —> Maybe r

We have declared a class Record over types that can tell you
about the salary the record stores, a class PersonnelFile over types
that can give you the record it stores, and a class FileCabinet over
types that can eventually produce a record given some value of type
EmployeelD. (We assume that EmployeelD is a predefined type.)

For the example implementation below we would declare the
following instances:

data DivRecord = DivRecord { salary :: Int }
data DivFile = DivFile { employee :: Int
, record :

DivRecord }
newtype Cabinet0 = Map EmployeelD DivFile

instance Record DivRecord where
getSalary = salary
instance PersonnelFile DivFile where
getRecord = record
instance FileCabinet Cabinet0 DivRecord where
findRecord fc eid =
case lookup eid fc of
Just file —> getRecord file
Nothing —> Nothing

With this solution, we will only be allowed to call the type
class methods on types that are statically guaranteed to support the
appropriate dispatches. The catch is that we are on the network, and
it is not clear how we may be getting this information. Since the
network by nature uses a uniform represenation for values, in using
Haskell we will need a way to convince the static type checker that
we will be using a value of the appropriate type.

To support types that are not known until run time we can
use Haskell’s Typeable type class, which allows intensional type
analysis. For instances in the class of type «, Typeable requires the
definition of the function typeOf :: o — TypeRep. The presence of
the type representation allows for the definition of type Dynamic, a
universal type with a constructor of type @ — Dynamic that allows
marshalling in and out of a representation of a value with its type
representation.

To get the representation of a data type instance of the FileCabinet
, we can write a function that looks something like the following:

fileCabinetFromDyn (Record r)
=> Dynamic —> EmployeelD
—> Maybe r
fileCabinetFromDyn v eid = case fromDynamic v of
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Just v’
Nothing —
case fromDynamic v of
Just v’ Cabinetl —> getRecord v’ eid
Nothing —

Cabinet0 —> Just v’

Nothing —> Nothing

This solution is undesirable because 1) it involves a good deal of
boilerplate, 2) the solution is closed—each new type class definition
involves an additional case here, and 3) it is prone to programmer
error, as it relies on the programmer to correctly enumerate all types
it expects here. Though Haskell provides nice support for defining
classes of types for purposes of determining dispatch, we can get
none of these benefits when programming with type Dynamic. Dy-
namic dispatch in Haskell currently involves either knowing the ex-
act type of the dynamic value in question or producing boilerplate
code to determine the type.

Our ClassDynamic library has a function typeclasscase that
would allow the definition

fileCabinetFromDyn’ :: (Record r)
=> ClassDynamic —> EmployeelD
—> Maybe r
fileCabinetFromDyn’ v eid =
fromClassDynamic
(dispatch
(dispatch

$(inst ’findRecord) (toClassDyn v))
(toClassDynamic eid))

The dispatch operator is a function defined in terms of Template
Haskell functionality that looks up the instances of the FileCabinet
class at in the compile time type environment and constructs the
corresponding conversions. This is a better model in a large, decen-
tralized system such as Insatiable’s because it leaves the definitions
of these cases open.

4.3 Conditional use of type class methods

Conditional dispatch is useful for when we want to use the defined
functions for all type class instances and define some other default
behavior.

On the Haskell Wiki, Keslyov and Peyton Jones address the
issue of declaring a type-class instance based on context (Keslyov
and Jones April 2008). The problem they address is that of having
a default operation for types that are not defined as part of the class.
They give the following example for trying to reuse Show functions
for Print as illegal in Haskell code. This is wrong because the heads
of the two instances declarations are the same:

instance Show a => Print a where
print x = putStrLn (show x)

instance Print a where
print x = putStrLn ”No show method”

They provide a solution using functional dependencies and over-
lapping instances, using an auxillary class Print’ and a new class
ShowPred that has no methods but behaves the same as Show. This
solution involves declaring instances for ShowPred for the possible
flag types, HTrue and HFalse, and then writing the following non-
overlapping instances for Print’:

instance (Show a) => Print’ HTrue a where

print’ _ x = putStrLn (show x)
instance Print’ HFalse a where
print’ _ x = putStrLn ”No show method”

Our solution allows you to write the following:

print :: (Typeable a) = a — 10 ()
print x =
case fromDynamic

(dispatch $(inst ’show)
(toClassDyn x)) of
Just str —> putStrLn str
Nothing —> putStrLn ”"No show method”

5. Implementation
We have implemented

1. a patch to the Glasgow Haskell Compiler (GHC) that provides
Template Haskell with the possible instantiations of a function
given its name, and

2. the ClassDynamic library, which has an implementation relying
on the patch to Template Haskell.

We have been working with GHC 6.11 and our extension of Tem-
plate Haskell’s compile-time meta-programming capabilities.

We had an initial implementation involving a source-to-source
transformation using the GHC API, which allowed us to dynam-
ically load Haskell code to parse into astract syntax and generate
abstract syntax elements to produce compilable Haskell code. The
Template Haskell implementation is much cleaner.

5.1 Modifying Template Haskell

Our implementation relies on compile-time metaprogramming fea-
tures of Template Haskell, which allows for the algorithmic con-
struction of programs at compile time (Sheard and Peyton Jones
2002). With Template Haskell the programmer can programmati-
cally construct abstract syntax for reification at compile time. The
result is compiled and type-checked.

To obtain a list of the possible instantiations of a function,
we have extended the GHC compiler to provide access to type
class instance definitions in the type-checking environment. Our
change involves extending the functionality of how the typechecker
splices in Template Haskell code so that it can reveal compile-time
type checking information. We add the following function, which
returns a list of the possible instantiations of a given function:

instantiations TH.Name —> TcM [TH. Info]

This function does the following:

1. Looks up the signature associated with the function name.

2. Looks the instances associated with the class contexts in the
signature.

3. Finds all possible instantiations of the function signature given
the instances.

For instance, consider the following function signature:
f :: (Typeable a, Ord a) — a —> a —> Bool

Suppose we had the following instances Typeable Int, Typeable
Bool, and Typeable String for Typeable and the instances Ord Int
, Ord String for Ord. The instantantiations of f that satisfy all
requirements on type variable a are

f :: Int — Int — Bool,
f :: String — String —> Bool.

We then wrap these in ClassDynamic constructors in the inst func-
tion, which returns the expression for reification.

5.2 Using a modified Template Haskell

With this extension we implement the inst function as shown in
Figure 3 using an extension of Template Haskell. This function
gets from the compile-time environment a list of Template Haskell
expressions representing the functions with instantiated signatures
based on the instances we have defined. We construct an expression
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insts :: Name —> Q Exp
insts t = do
instantiations <— instances t
cd’s <— listE (map proc instantiations)
AppE (VarE (mkName “combineClassDynamic”))
cd’s
where
proc (Varl nty - _) =
return $ AppE (VarE (mkName ”toClassDyn”))
(SigE (VarE n) ty)

Figure 3. The inst function for getting instantiations from the
type-checker environment.

that wraps each of the instantiations in a ClassDynamic data type
and applies the function combineClassDynamic to yield a single
representation. The compiler splices a reified version version of this
expression into the program.

5.3 Typeable issues

In order to use the ClassDynamic constructor, type class variables
must be declared in the context of Data.Typeable. This is so that
we can call typeOf to examine type representations at runtime. We
can programmatically declare as data types instances of Typeable
without affecting existing code, as versions of GHC higher than
6.8 allow type class derivation to be declared after the initial type
declaration.

We have also run into an issue with TypeableN: the current
ClassDynamic type only handles instances of the Typeable class.
The Dynamic library gets around this problem by having DynamicN
; since Haskell does not have kind polymorphism this may be the
most desirable solution for generalizing the ClassDynamic library.

5.4 Static vs. dynamic conditional dispatch

An issue with this extension is the overhead required when the
types are known at compile time. It is important to note that we
do not intend the dispatch keyword to necessarily dynamic. Having
a static conditional dispatch construct is quite useful: the Set, Print,
and heterogenous list examples do not involve dynamic types. If
we can statically examine the types, then the dispatches that can
be resolved statically incur no overhead. A solution in the current
framework with Template Haskell would involve inlining the calls
to dispatch and examining the type environment.

6. ClassDynamic library

We implement dynamic dispatch using the functionality of a library
we call ClassDynamic, which is based on Haskell’s Data.Dynamic
library (libraries@haskell.org May 2009), of which we show the
interface in Figure 4. The novel contributions of the ClassDynamic
library are

1. its support for sets of type class instances and

2. the dispatch function, which handles dynamic type class method
dispatch.

We show the interface for our ClassDynamic module in Figure 5.
The ClassDynamic library deviates from Dynamic in the following
ways:

e Instead of having dynApply and dynApp, we have the dispatch
function to handle dispatch among the possible specialized
versions of a function.

® ClassDynamic has the combineClassDynamic function which
takes a list of type [ClassDynamic] and combines the value-

module Data.Typeable

data Dynamic

toDyn :: Typeable a => a —> Dynamic

fromDyn Typeable a => Dynamic —> a —> a
fromDynamic Typeable a => Dynamic —> Maybe a
dynApply Dynamic —> Dynamic —> Maybe Dynamic
dynApp Dynamic —> Dynamic —> Dynamic
dynTypeRep Dynamic —> TypeRep

Figure 4. Interface for module Data. Dynamic.

module Data.Typeable

— Analogous ClassDynamic functions .
data ClassDynamic
toClassDyn Typeable a = a —> ClassDynamic
fromClassDyn Typeable a => ClassDynamic — a

—> a
fromClassDynamic Typeable a
=> ClassDynamic —> Maybe a
combineClassDynamic [ ClassDynamic |

—> ClassDynamic
classDynTypeRep ClassDynamic —> TypeRep
— Template Haskell function for accessing
instantiations .
inst :: Name —> Q Exp
— Conditional dispatch function.
dispatch ClassDynamic —> ClassDynamic
—> ClassDynamic

Figure 5. Interface for module ClassDynamic.

representation pairs to create a single ClassDynamic value if all
values have the same kind, raising an exception otherwise.

6.1 Basics

The ClassDynamic data type stores collection of values with their
associated type representations:

ClassDynamic = [37.(typeRep, 7)].

Since the existential is quantified over the right-hand side of the
expression, the ClassDynamic constructor provides a universal ab-
straction over the type of the value. As with Dynamic, the presence
of the typeRep allows us to crawl over ClassDynamic and discover
the type .

The ClassDynamic library has the following constructors and
destructors.

toClassDynamic :: V7.7 — ClassDynamic
fromClassDyn :: V7.ClassDynamic — 7 — T
fromClassDynamic :: V7.ClassDynamic — Maybe 7

The fromClassDyn function takes a default argument of type o and
returns a value of the type « if one exists in the type representation;
otherwise it returns the default argument. The fromClassDynamic

function infers a type 7 from the calling context instead of the
default context, returning a value of type Maybe 7.

Claim 1. We have the relationships:

exT,d:T

fromClassDyn (toClassDyne)d =e:: T

ezt duT, T £
fromClassDyn (toClassDyne)d =d:: 7
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If T is the type from the calling context, we have:
e T

fromClassDynamic (toClassDyne) = Juste

exT, THT

fromClassDynamic (toClassDyne) = Nothing

Since Haskell values must be associated unambiguously as-
sociated with some type in in the static type environment, the
length of the ClassDynamiclnst list corresponding to e’s represen-
tation must have a single element. Thus in the above definitions
there is a unique e such that e € ¢;, where ¢; is the list of in-
stances in the polymorphic representation. Both fromClassDyn and
fromClassDynamic must return the unique element, which is a rep-
resentation of e.

6.2 Class-based dispatch
A key feature of this library is the function

dispatch ClassDynamic —> ClassDynamic

—> ClassDynamic

which takes a representation of a function f :: t —> uand arepre-
sentation of a value x :: t’ and returns the result Just ((f x) :: u)
if t is the same as t’, as shown in Figure 6. This is analogus to
dynApp in the Dynamic library but handles dispatching for all ver-
sions of a function with appropriate types. We show the body of
dispatch in Figure 7. The dispatch function takes each of the type
representations of the function and compares it to each of the type
representations of the arguments, adding each of the valid results to
the set of type representations for the result. Like dynApply in the
DynamicLibrary, we call unsafeCoerce once we determine we have a
value of the appropriate type. We show some rules for dispatch in
Figure 6.

Note that t and u can be polymorphic, as each ClassDynamic can
consist of a list of possible instances. To handle this, we try each of
the instance combinations in order to generate the list of instances
for the resulting ClassDynamic value.

In the programs we get the instances using the function

inst :: Name —> Q Exp

which returns us a list of type ClassDynamic.

The dispatch operator, when used with inst should exhibit the
same behavior as static dispatch, since inst returns a representation
of all possible instances. Since the dispatch function refines the
possible types as the function is applied to its arguments, dispatch

should have the same semantics as in the case of static disptch,
except instead of raising a type error it will return a value with an
empty set of type representations.

6.3 Multiple representations and casting back

Claim 2. A fully applied function contains multiple type represen-
tations only when the initial function has a type variable for the
type of the result.

We get our type representations from all instantiations of a func-
tion signature; these instantiations are unique. Since each argument
of the function must be a concrete, monomorphic type, the only
way to get multiple type representations when a function is fully
applied is if the function signature has a type variable in the result.
An example of such a function is

read :: (Read a) => String — a

In the case of such functions, the cast back out with fromClassDyn
or fromClassDynamic will only return a value of the appropriate

type.
Consider the class declaration

dispatch ClassDynamic —> ClassDynamic
—> ClassDynamic
dispatch (ClassDynamic fnlnsts)
(ClassDynamic arglnsts) =
let tryApply (ClassDynamiclnst tl1 f)
(ClassDynamiclnst t2 x) =
case funResultTy tl t2 of
Just t3 —>
[ClassDynamiclInst
t3 ((unsafeCoerce f) x)]
Nothing — []
applyFnToArgs f =
foldr (++) []
(List .map (tryApply f) arglnsts)
appliedInsts =
foldr (++) []
(List .map applyFnToArgs fnlnsts)
in ClassDynamic appliedInsts

Figure 7. Source for for dispatch.

class C a where
f :: Imt — a —> String

When we dispatch f on an integer, we will get back a ClassDynamic
value containing a function of type a —> String for all instances a
of the class C.

The function

fromClassDyn (Typeable a)

=> ClassDynamic —> a — a

casts back to an arbitrary element in the type representation. If there
is only one possible type, then this function will exhibit the correct
behavior. We show that this is the case with fully applied functions.
(For functions, we can use dispatch to perform the appropriate
function application, so this is not a problem.)

7. Related work

Much work has been done with using dynamic types in a statically
typed language (Abadi et al. 1989, 1994; Weirich 2000). Dynamic
typing has allowed for the type analysis necessary for the Scrap
Your Boilerplate approach to generic programming. In Scrap Your
Boilerplate, Lammel and Peyton Jones present a design pattern
for generic programming that uses type-safe cast for type analy-
sis when generating structure-traversing boilerplate (Ldmmel and
Peyton Jones 2003).

As we mentioned before, there has been desire to make type
classes more flexible. We described in the examples section Haskell
Wiki’s proposed way of defining a default behavior for non-
instances of a type class (Keslyov and Jones April 2008). The
HLIST library supports strongly typed heterogenous collections:
they point out that it is important to have guarantees on the ele-
ments in heterogenous lists and provide a way for doing so (Kise-
lyov et al. 2004). On the Haskell mailing list, Hal Daume posted a
method for simulating class-based dynamic dispatch using existen-
tial types (Daume March 2003).

Somewhat related work in the vein of making ad-hoc poly-
morphism more flexible and usable is the work of Vytioniotis et.
al. on Az. Az combines the name-based type class mechanism
for ad hoc polymorphism with polymorphism base on type struc-
ture (Vytiniotis et al. 2005). They observe that there are two com-
mon ways of defining ad-hoc polymorphic operations: inductively
on the structure of types using intensional type analysis or over
sets of types. Intensional analysis reduces structure-related boiler-
plate but is closed to extension by user-defined types. Type classes
are open, but they may require tedious specialized boilerplate for
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forT—opxoT

dispatch (toClassDyn f :: 7 — pu) (toClassDynx :: 7) = Just (toClassDyn (f z) :: p)

fuorT—opaat, T#T

1)

dispatch (toClassDyn f ::7 — u)

) — " (@)
(toClassDyn z :: 7) = Nothing

Figure 6. dispatch rules.

new types. Az combines both forms of polymorphism with a type-
case operator for structural type analysis that is extensible to new
user-defined types; the language has a first-class map from labels
to expressions associated with the branches for typecase.

8. Conclusion

In this paper we have described a mechanism for function dispatch
based on the type class memberships of a value’s type. This allows
us to base control flow on type class membership and provides more
support for programming with dynamic types. We have

1. Proposed a mechanism for class-based conditional dispatch in
the form of the dispatch operator.

2. Described an implementation within the current GHC frame-
work using a proposed extension to Template Haskell and our
ClassDynamic library.

We also speculate that this mechanism would be quite useful if it
were more integrated with the Glasgow Haskell compiler.
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