
Programming with Delegation

Abstract
It is often difficult to implement and maintain supporting function-
ality that is intertwined with the core program. For instance, ensur-
ing information flow security requires global reasoning about how
seemingly unrelated interactions in the core program can leak in-
formation. There is rich literature on technologies that can check
the correctness of these interactions, but the programmer is fully
responsible for producing correct programs. Information flow type
systems can check that the program does not leak values, but the
programmer is responsible for designing safe code. To address this
problem, we present programming with delegation, a model that al-
lows the programmer to transfer responsibility for parts of the pro-
gram. The programmer transfers authority to the runtime system
by introducing nondeterminism via deferred values, which the sys-
tem determines according to declarative constraints that can refer to
contexts in which the values will be used. The programming model
builds on constraint functional logic programming, extended with
implicitly bound parameters. To efficiently support this model, we
present an execution strategy that takes advantage of the assump-
tion that the program is mostly deterministic. The interpreter per-
forms symbolic execution only when necessary to handle deferred
values, and invokes an external SMT solver to resolve instances of
nondeterminism. In this paper, we describe the semantics for pro-
gramming with delegation, describe the implementation of an ef-
ficient interpreter, and demonstrate how to use programming with
delegation for information flow and other related cross-cutting con-
cerns.

1. Introduction
In software development, innovation is often at odds with robust-
ness and security; the rapid prototyping and experimentation in-
volved in developing new features precludes the kind of care-
ful design and reasoning that leads to stable and secure systems.
Eddie Kohler—the creator of the HotCRP system that runs this
conference—reflected on this conflict in relationship to a serious
security bug in his system. In his words, “More security-minded
programmers wouldn’t have perpetrated this bug, but they might
not have written the system in the first place: the mindset required
to write new features seriously differs from the mindset required to
enumerate how combinations of features can be abused”[6]. This
basic tension often means that there is no room in the timeline for
both innovation and robustness. The race to deliver features to the
market faster has more than once resulted in the release of software
with serious security vulnerabilities [cite].

One reason for this tension between innovation and robustness
is a lack of modularity between a core program and its cross-cutting
concerns. Specifically, security and robustness properties are cross-
cutting concerns that require coordination across the entire system.

[Copyright notice will appear here once ’preprint’ option is removed.]

In the case of information flow, determining whether an assignment
from a variable x to y can leak information requires us to be aware
of the confidentiality policies of every value that may have been
involved in the computation of x and ensure that they are consistent
with the use of every value that may eventually depend on y. This
lack of modularity makes it difficult to retrofit information flow
security into a system not initially designed to accommodate it.

In this paper, we present programming with delegation, a model
that supports flexible implementation of cross-cutting concerns by
allowing the programmer to selectively transfer responsibility to
the system. Our model allows the programmer to write a core
functional program and separately provide declarative constraints
as a specification for how the system should handle cross-cutting
functionality. In order for the system to guarantee that the behavior
of the program will always satisfy the specification, it needs to be
given some control over the program execution. The programmer
provides this control by introducing nondeterminism via delegated
values that the system can control. Deferred values and constraints
allow the programmer to delegate cross-cutting concerns to the
runtime with minimal changes to the code.

We have implemented this model in a language Jeeves that ex-
tends an ML-like functional language with 1) constructs defer and
concretize and 2) support for implicit contexts. For example, to
ensure that a password is only seen by authorized users, the pro-
grammer can introduce a delegated expression with the appropriate
constraint.

defer passwd
{ if (Authorized context.viewer)

then (passwd == some realpasswd)
else (passwd == none) }

This constraint says that the variable passwd is an option type that
is either equal to some of the real password or to none based on
whether the viewer is authorized. The variable context is an im-
plicit parameter that allows the constraint to refer to the context in
which the delegated variable will flow. Deferred expressions of type
τ can be used interchangeably with expressions of type τ : the sys-
tem is responsible for propagating delegated expressions through
computations and requiring the appropriate concretization context.
The programmer can call concretize with different contexts, allow-
ing the system to ensure that the correct version of the value is re-
vealed when, for example, sending passwd to the owner of the pass-
word and to unauthorized users. Jeeves allows the programmer to
implement the core functionality independently of this and other se-
curity policies. This provides the “flexible information flow layer”
Kohler calls for when describing this exact bug in the HotCRP sys-
tem [6].

Programming with delegation builds on functional logic pro-
gramming [11] extended with implicit parameters [9]. To efficiently
support this model, we present an execution strategy that takes ad-
vantage of the assumption that the program is mostly determinis-
tic. The programming idiom we anticipate is that the programmer
will write a functional core program and introduce delegated val-
ues to handle sensitive information. We describe an interpreter that
performs symbolic execution only when necessary to handle dele-
gated values and performs eager simplifications to reduce the size
of the symbolic state. The execution engine invokes an external
SMT solver to resolve instances of nondeterminism.

This work is under submission. 1 2010/11/19

In this paper, we describe the semantics for programming with
delegation, describe the implementation of an efficient interpreter,
and demonstrate how to use programming with delegation for in-
formation flow and other related cross-cutting concerns. Our main
contributions are as follows:

• We present programming with delegation, a programming
model that provides modularity for cross-cutting concerns.
• We demonstrate how to use programming with delegation to

handle access control and information flow.
• We present a formalization of this programming model in terms

of Jeeves, an ML-style functional language extended with con-
straints and implicit contexts.
• We describe an efficient execution model and interpreter imple-

mentation. We report performance on using programming with
delegation for information flow and data processing examples.

We begin by demonstrating how programming with delegation
works in the context of access control and information flow. We
then describe the semantics of underlying programming model:
how we combine constraint functional programming and implicit
parameters to support defer and concretize. We then discuss useful
idioms for programming in Jeeves and the implementation of the
Jeeves interpreter, which uses the SMT solver Yices in the back
end. We then describe an additional case study in using Jeeves for
the cross-cutting concern of handling missing values in a census
data processing example.

2. Information Flow with Delegation
We show how to use programming with delegation and Jeeves to
handle access and information control in the context of a simple
social network example.

Consider a social network where we have users uploading pho-
tographs with tags. Users can upload photographs and tag their
friends to associate them with the photos. We store users and pho-
tographs as follows:

data user { uid : user_id
; photos : [photo_id]
; friends : [user_id] }

data photo { pid : photo_id
; image : jpg
; owner : user_id
; tagged : [user_id] }

To get the list of users tagged in a photograph, it is simple to write
the following function.

let get_photo_tags (p : photo) = p.tagged

The goal is to be able to implement access control and information
flow with minimal changes to this function.

2.1 Information Flow without Delegation
Consider what happens without delegation if we want to add poli-
cies about who is allowed to view the photos and tags. For instance,
user may want to restrict who can see the tags on a photograph. A
general strategy for implementing permissions involves checking
accesses to sensitive data:

(∗ Function that returns true if two users are friends . ∗)
let is_friends (u : user_id) (other : user_id) : bool =

elem users [u]. friends other

let get_photo_tags_w_viewer
(p : photo) (viewer : user_id) =
filter (\(tag : user_id) −> is_friends viewer tag) p.tagged

This strategy for enforcing permissions requires tracking permis-
sions and use context throughout the program. The first issue is that
the policy on who can see the tags is associated with the function
to retrieve the tags rather than the tags themselves. To add or mod-
ify policies about tags, the programmer is required to make sure all
parts of the program enforce these policies. A second issue is that
it is also now important to keep track of the user to whom the tags
will be displayed.

2.2 Programming with Delegation
Programming by delegation allows the programmer to introduce
delegated values to handle part of the program via declarative con-
straints. In this section we introduce the mechanisms for introduc-
ing nondeterminism through the defer construct and determinizing
via concretize. We also describe the role of implicit contexts for
allowing constraints to refer to the contexts in which the delegated
values will be used.

2.2.1 Defer and Concretize
Programming with delegation is based on the idea of introduc-
ing nondeterministic delegated values that are associated with con-
straints. These constraints are used when the programmer later re-
quests a concrete value for the delegated variable. We can introduce
a delegated variable x as follows:

let x : delegated int = defer x’ { x’ > 0 }

This binds the variable x to a delegated variable that is greater
than 0. We introduce the variable x’ to be able to refer to it in the
constraint. To get a concrete value for x, we can write

let result : option int = concretize x

This sets result to a value consistent with the constraints on x. The
function concretize has type delegated τ → option τ and returns a
value consistent with the constraint environment if one exists. The
result is an option type, returning some v if there is a satisfying
assignment v and none otherwise.

As we saw above, Jeeves constraints can refer to not just the
delegated variable,but to other variables in scope. This allows the
programmer to add constraints to delegated variables:

let result : option int =
let _ : unit = { x > 42 } in
concretize x

This allows the programmer to refine the constraints on a delegated
value after its creation.

A key advantage is that delegated values can be used inter-
changeably with core program values. We have the subtyping re-
lationship delegated τ <: τ : any function that expect type τ can
take a value of type delegated τ . For example, we can write:

let result : option int = concretize (x + 42)

The execution of the program can also further constrain the value of
delegated variables. For example, the following use of x constrains
it to be at least 58:

let g (a : int) (b : int) : int =
defer z { (z == a + b) && (z > 100) }

let sum’ : option int = concretize (f x 42)

If the constraints are not satisfiable, the call to concretize will
return none.

2.2.2 Delegation Contexts
To allow constraints to refer to the context in which a a variable
is concretized, the programming model supports implicit contexts.
For example we can define a context that is a flag determining what
“mode” the computation is in:

This work is under submission. 2 2010/11/19

data mode = POS | NEG
data ctxt { m : mode }

The context is an implicit argument to the constraint and needs to
be supplied when calling concretize. To allow constraints to refer
to the context variable Jeeves provides the context keyword:

let x : delegated ?ctxt int =
defer x

{ if (context.m == POS) then (x > 0) else (x < 0) }

The call to code concretize must supply the appropriate context:

let result : int =
let c : ctxt = { m = NEG } in
concretize c (x + 42)

This would give us the constraint x < 0, yielding a result less
than 42. The system propagates the context types; programmer
does not have to write the annotations explicitly. Note that separate
concretizations are independent. We could have the following value
that also depends on val:
let result ’ : int = concretize { m = POS } val

These are independent calls to concretize: val does not have to be
same value for these two calls.

2.2.3 Bounded Quantification
Jeeves supports bounded quantification to allow the programmer
to easily express policies that apply to all elements of some data
structure:

let lst : list int = [0, 1, defer x, 3]
let _ : unit = { forall elt in lst . (elt > 0) }

An example of something this facilitates is a mechanism for grant-
ing access to some piece of sensitive data to all users some list.

2.3 Information Flow with Delegation
We will now show how to delegate the cross-cutting concerns
of access control and information flow by introducing delegated
values with contexts.

2.3.1 Basic access control
It is straightforward to use delegation and contexts to handle access
control. We can define a context containing the viewer of the
protected piece of data.

data vctxt { viewer : user_id }

We can delegate the access control decision to the system. Below is
code showing showing how we can enforce the policy that a viewer
can only access tags if the viewer is friends with the user tagged.

let get_photo_tags_w_access (p : photo) =
let can_see (tag : user_id) =
defer acc { acc == is_friends tag context.viewer } in
filter can_see p.tagged

The implicit context frees the programmer from having to propa-
gate the context through the program. Next, we will show how the
programmer can attach the policy to the tag when it is created rather
than when it needs to be used. This allows for more separation be-
tween the core program and the security policies.

2.3.2 Information Flow
We can also use delegation to directly control the flow of sensitive
values. Recall the definition of the photo data type:

data photo { pid : photo_id
; image : jpg
; owner : user_id
; tagged : [user_id] }

Since a value of type delegated user_id can be used anywhere a
photo tag is expected, we can store each tag as a delegated value and
with a policy attached to what value is released. To create records
with the policy attached, we can write the following function.

let add_photo_policy (p : photo) : photo =
(∗ Function for adding a policy to a tag. ∗)
let add_tag_policy (actual_tag : user_id) =
defer t ’

{ if (is_friends actual_tag context.viewer)
then (t ’ == actual_tag) else (t ’ == null) } in

(∗ The new photo record. ∗)
{ photo_id = p.photo_id
; image = p.image
; owner = p.owner
; tagged = map add_tag_policy p.tagged }

This function takes a record of type photo and creates a new
record where the tags have type delegated user_id and whose
value depends on the tag policy. When concretized in a context
with some viwer, this delegated value will reveal the actual tag.
will reveal the actual tag if the viewer is friends with the owner
and the null tag otherwise. Here, null is a keyword referring to the
reserved ID belonging to no record.

We can use the same get_photo_tags : photo −> [user_id]
function we defined before. If we have photos created as above
where the tags are delegated values, then the call to get_photo_tags
will return a value of type delegated [user_id] . The code below
shows how we can use concretize to get a concrete list of tags
visible to a user.

let show_tagged (v : user_id) (p : photo) : unit =
(∗ Get tags . ∗)
let tags : [user_id] = get_photo_tags p in
(∗ Create a viewer context . ∗)
let ctxt : vctxt = { viewer_id = v } in

print_list (concretize ctxt tags)

This code will print a list of tags that only show a user if that user
is friends with the viewer. Delegation allows the programmer to
write the program so that the security policy only needs to appear
in the creation of the photo record and when a value needs to
be used (in this case, displayed); intermediate functions such as
get_photo_tags can remain oblivious to the security concerns.

2.4 Substituting Different Policies
Because the information flow policies are attached to the values
themselves, it is easy to change policies or use photo records with
different policies. For instance, we may want to implement a policy
that the viewer can see photo tags if the viewer is friends with the
photo owner.

let add_photo_policy’ (p : photo) : photo =
let add_tag_list_policy (tags : [user_id]) =
defer lst

{ if (is_friends p.owner context.viewer)
then (lst == tags) else (lst == []) } in

{ photo_id = p.photo_id
; image = p.image
; owner = p.owner
; tagged = add_tag_list_policy p.tagged }

We can easily have photo records with different policies on infor-
mation flow of the different fields while using the same code for the
rest of the program.

We can also easily combine policies: applying the composition
add_photo_policy ◦ add_photo_policy’ produces a photo record
where a given tag is only visible if the viewer is friends with both
the owner and the tagged user. A policy may also be affected by

This work is under submission. 3 2010/11/19

other policies. For example, if the friends field of a user record is
protected by a policy that friends are only revealed in the case of
mutual friends, then a policy regarding a photo tag that depends on
is_friends of two users also incorporates the friend-privacy policy.

2.5 Combining Policies
Having constraints specifying access control and information flow
allows the system to collect constraints along the way. Suppose that
instead of having is_friends as the sole basis for the policies of
who can view the tags, tag viewing can be determined by various
factors. For example, perhaps a user can set a permission that their
photo can be visible to anybody. We could take this into account in
the tag permissions by checking some property of each user, but we
can take advantage of the declarative nature of the Jeeves policies
by using a can_view_tags user_tag context.viewer for specifying
the tag policy.

let add_tag_policy (actual_tag : user_id) =
defer t ’

{ if (can_view_tag tag context.viewer)
then (t ’ == actual_tag) else (t ’ == null) } in

We can define can_view_tag as a delegated value with a default
policy that says a user can view a tag if the viewer is friends with
the tagged user:

let can_view_tag (tag : user_id) (viewer : user_id) : bool =
defer cvt { (is_friends tag viewer) implies cvt }

The programmer can refine the policy for can_view_tag elsewhere
in the proram. For instance, we could write the following function
to refine the policy for a given user:

let expose_all_tags (u : user) : unit =
{ forall viewer in users . (can_view_tag u.uid viewer.uid) }

Being able to refine constraints also allows us to add policies
about photo tags when other data structures change. For instance,
suppose the programmer extended the system so that users belong
to networks and wanted to allow users to set tags to be visible
to all users in the same network. The programmer could add the
following policy without touching the photo records:

let expose_to_network (u : user) : unit =
{ forall viewer in users .

(if (viewer .network == u.network)
then (can_view_tag u.uid viewer.uid) else true) }

Being able to create delegated values with constraint-based speci-
fications for sensitive values allows the programmer to extend both
the system and the security policies with small, local changes.

3. The Jeeves Language
In this section we describe the surface Jeeves language, the core
Jeeves language, and the translation from the surface language to
the core language.

3.1 Surface Language
Jeeves extends a standard Hindley-Milner polymorphic functional
language with 1) the constructs defer and concretize associated
with constraints and 2) implicit contexts.

The expression defer n { γd } introduces a delegated value with
an associated constraint γd that can refer to the current value as
n. The constraint can also refer to the implicit context variable
context. Deferred values are associated with an implicit context;
a delegated expression of type τ has type ?τcτ , where τc is the
type of the context. The system checks that a context of type τc
is supplied when there is a call to concretize. The expression
concretize ec e produces a core program value from e based on the

constraints that have been introduced and the context expression
ec.

Delegated expressions of type τ can be used interchangeably
with expressions of type τ , allowing the programmer to write the
core program independent of delegated cross-cutting behaviors.
The system evaluates delegated expressions as symbolic expres-
sions, collecting constraints in order to derive consistent expres-
sions when evaluating concretize.

3.2 Core Jeeves
We describe the semantics of programming with delegation in
terms of core Jeeves, which is System F extended with defer
and implicit contexts. The system has polymorphism that allows
delegated expressions of type τ to be used as expressions of type τ .
In the core programming model there is explicit propagation of the
constraints used in concretization. We show the core Jeeves syntax
in Figure 1; we describe the semantics in the next section. [Say why
we have this core model and what properties we have from it.]

3.3 Translation to Core
There is a trivial translation from the surface syntax to a monadic
representation that captures effects and makes constraint propaga-
tion explicit. We can then translate to core. . . [Say more explicitly
how this happens.]

4. Core Jeeves
In this section we describe the core semantics of Jeeves. We de-
scribe how constraints are introduced, propagated, and used for
concretization. We also describe the semantics fo implicit contexts
for concretization. [Describe how everything works at a high level
and what people should get out of reading this section.]

[Figure out where you want to say this.] Semantics are nonde-
terministic (P(·) indicates the power set), but not implemented us-
ing backtracking; rather, symbolic execution and SMT solver. We
eta-expand some denotations for clarity.

4.1 Static Semantics
[Talk about the motivations for presenting the static semantics:
what are we ruling out, what people should be looking for while
reading the rules, etc.] [Cite the paper(s) this is based on and say
how we are similar and different (at a high level).]

We show the static semantics in Figure 2. [Go through the rules,
highlighting the non-standard ones and telling people how they
should understand them.]

[Prose your way through safety theorems.]

4.2 Dynamic Semantics
[Talk about the motivations for presenting the dynamic semantics.
What is the main idea? What is the high-level idea? What should
people get out of reading the rules? How does this correspond to
the actual implementation?] [Cite references and how we differ.]

We show denonational rules for the dynamic semantic rules in
Figure 3. [Talk about the rules in more detail, spending more time
on the unusal ones.]

4.3 Extensions
[Talk about these in a more positive way.] What is not in the
language that should be in real Jeeves:

• Priority of nondeterminism (i.e., e1 [] e2 with e1 preferred, or
{| e1 | e2 |}maximizing e3).
• Effects (in real language, would be treated monadically, and

would require closed deterministic values as operands).

This work is under submission. 4 2010/11/19

e ::= x | ?x | λx.e | e1 e2 | let x = e1 in e2 | e1 with ?x = e2

| defer τ | {| e1 | e2 |} esat eunsat

| n | b | e1 :: e2 | nil
| e1 (arith) e2 | e1 (cmp) e2 | e1 (b_logic) e2 | (u_logic) e

| list_rec ec en e | word_rec ez es e | bool_rec et ef e
n ::= 0 | 1 | . . . | M
b ::= true | false

(arith) ::= + | − | ×
(cmp) ::= = | 6= | ≤ | ≥ | < | >

(b_logic) ::= ∧ | ∨
(u_logic) ::= ¬

τ ::= α | τ1 → τ2 | list τ | word | bool
σ ::= ∀~α.C ⇒ τ

C,D ::= ?x1 : τ1, . . . , ?xn : τn

x ::= lambda- and let-bound variable names
?x ::= implicit variable names
α ::= type variable names

Figure 1. Abstract syntax of core Jeeves.

Γ(x) = τ

C; Γ; ∆ ` x : τ
VAR

Γ(x) = (∀~α.D ⇒ τr) D[~τ/~α] ⊆ C
C; Γ; ∆ ` x : τr[~τ/~α]

POLYVAR

C(?x) = τ

C; Γ; ∆ ` ?x : τ
IMPLICITVAR

C; Γ; ∆ ` e1 : τ1 → τ2 C; Γ; ∆ ` e2 : τ1

C; Γ; ∆ ` e1 e2 : τ2
APP

C; Γ[x 7→ τ1]; ∆ ` e : τ2

C; Γ; ∆ ` λx.e : τ1 → τ2
ABS

D; Γ; ∆ ` e1 : τ1 σ = gen(D,Γ, τ1) C; Γ[x 7→ σ]; ∆ ` e2 : τ2

C; Γ; ∆ ` (let x = e1 in e2) : τ2
LET

C[?x 7→ τ2]; Γ; ∆ ` e1 : τ1 C; Γ; ∆ ` e2 : τ2

C; Γ; ∆ ` (e1 with ?x = e2) : τ1
WITH

C; Γ; ∆ ` defer τ : τ
DEFER

C; Γ; ∆ ` e1 : τ1 C; Γ; ∆ ` e2 : bool C; Γ; ∆ ` esat : τ1 → τ2 C; Γ; ∆ ` eunsat : τ2

C; Γ; ∆ ` {| e1 | e2 |} esat eunsat : τ2
CONCRETIZE

C; Γ; ∆ ` ec : τ1 → τ2 → τ2 C; Γ; ∆ ` en : τ2 C; Γ; ∆ ` e : list τ2 ∆ ∼ e
C; Γ; ∆ ` list_rec ec en e : τ2

LIST_REC

Figure 2. Static semantics of core Jeeves.

This work is under submission. 5 2010/11/19

T [[·]] ∈ Exp→ Set

T [[bool]] = {true, false}

T [[word]] = {0, 1, 2, . . . ,M}

T [[list τ]] =
⋃
i∈N

Li(τ), L0(τ) = {()}, Li+1(τ) = T [[τ]]× Li(τ)

T [[τ1 → τ2]] = T [[τ1]]→ T [[τ2]]

E [[e]] ∈ ((CtxtΓ,C → ICtxtC → T [[τ]])→ P(T [[τ]]))→ P(T [[τ]])

where e ∈ Exp, C; Γ; ∆ ` e : τ, and CtxtΓ,C , ICtxtC are contexts appropriate to Γ and ∆, resp.1

E [[x]]k = k(λρ.λγ.ρ(x))

E [[?x]]k = k(λρ.λγ.γ(?x))

E [[λx.e]]k = E [[e]](λr.k(λρ.λγ.λv.r(ρ[x 7→ v])γ))

E [[e1 e2]]k = E [[e1]](λr1.E [[e2]](λr2.k(λρ.λγ.(r1 ρ γ)(r2 ρ γ))))

E [[let x = e1 in e2]]k = E [[e1]](λr1.E [[e2]](λr2.k(λρ.λγ.r2(ρ[x 7→ (λγ′.r1 ρ γ
′)])γ)))

E [[e1 with ?x = e2]]k = E [[e2]](λr2.E [[e1]](λr1.k(λρ.λγ.r1ρ(γ[?x 7→ r2 ρ γ]))))

E [[defer τ]]k =
⋃

v∈T [[τ]]

k(λρ.λγ.v)

E [[n]]k = k(λρ.λγ.n)

E [[b]]k = k(λρ.λγ.b)

E [[e1 :: e2]]k = E [[e1]](λr1.E [[e2]]λr2.k(λρ.λγ.(r1 ρ γ, r2 ρ γ)))

E [[b]]k = k(λρ.λγ.())

Figure 3. Dynamic semantics of core Jeeves.

a I.e., ρ ∈ CtxtΓ,C if for all x free in Γ, γ̂(ρ(x)) ∈ T [[Γ(x)]] (where ·̂ denotes extended substitution); and γ ∈ CtxtC if for all ?xi : τi inC, γ(?xi) ∈ T [[τi]].

• General recursion/nontermination (for illustrative purposes, we
show that even with this kind of angelic nondeterminism, the
language can be terminating, but real Jeeves should have gen-
eral recursion).
• Arrays/finite maps.

5. Useful Idioms
In programming with Jeeves we have found certain idioms useful
for associating constraints with values. We have built support for
these idioms in the Jeeves interpreter.

5.1 Type-Level Constraint Functions
Many of introductory information flow examples involved func-
tions that associate record types with constraints. A useful pro-
gramming abstraction is type-level constraint functions, which al-
low the programmer to define constraints that apply to all delegated
expressions of a given type.

Below is an example of how we can define a new type with an
associated type-level constraint function:

data t = { f1 : int ; f2 : int } with { this . f1 > this . f2 }

If either fields f1 or f2 of an expression e : t is a delegated expres-
sion, then this constraint is added to the constraint environment.

The constraint can refer to the current value with the this keyword.
The programmer can also define a type that attaches constraints to
an existing type:

type t ’ = t with { this . f1 == this.f2 }

This defines a constraint function that incorporates the constraint
already associated with type t. In this case, we have (redundantly)
the constraints f1 > f2 and f1 == f2 for expressions of type t ’
when either field is a delegated expression. The type t ’ is a subtype
of type t: expressions of type t ’ have the same fields as expressions
of type t and satisfy at least as many constraints.

5.2 Hidden Values
In the information flow examples we described, we create deferred
values that reveal the “actual” value if some constraint is satisfied.
To be able to write type-level constraint functions that refer to the
“actual” values, we introduce 1) the construct hidden for introduc-
ing a delegated expression that stores the “actual” value and 2) the
operator ! for accessing the “actual” value from within a type-level
constraint function. We can use this extension as follows:

data ctxt = { b : bool }
let x : int =
hidden x 3 { if (context.b) then (x == !x) else (x == −1) }

This work is under submission. 6 2010/11/19

Evaluation of concretize b = true x would yield 3; evaluation of
concretize b = false x would yield −1.

With type-level constraint functions and hidden values, we can
rewrite the policy-application functions from the introductory ex-
ample by defining policy types like the following:

type photo_tagp = photo with
{ forall tag in this .tagged .

(if (is_friends tag context.viewer)
then (t ’ == actual_tag) else (t ’ == null)) }

Each of these policy-types can be used as code photo types.

5.3 Default Values
To set boundaries on nondeterminism it is useful to have default
values, which we allow the programmer to supply when deferring
a value:

let x : int = defer x’ { x’ > 0 } default 42

This binds x to a deferred value that is greater than 0. In the absence
o f further constraints on x, concretization of x will yield 42. Def
ault values are useful for ensuring that access controls are set to be
more restr ictive by default.

Default values are useful in specifying access control and infor-
mation flow policies. Recall the following function from the intro-
ductory example determining whether a user viewer has access to a
given tag:

let can_view_tag (tag : user_id) (viewer : user_id) : bool =
defer cvt { (is_friends tag viewer) ==> cvt }

The function does not constrain deferred value cvt to be false so as
to allow other policies to set can_view_tag. It is useful, however, to
be able to set the access to false in the absence of any constraints
indicating otherwise. We can write this constraint as follows:

let can_view_tag (tag : user_id) (viewer : user_id) : bool =
defer cvt { (is_friends tag viewer) ==> cvt } default false

If there are no constraints setting cvt to true, then the viewer ca
nnot view the tag.

6. Implementation
The Jeeves interpreter is designed to minimize the size of the sym-
bolic state and constraint environment. The interpreter consists of
an OCaml evaluation loop, a C++ implementation of the environ-
ment for storing possibly symbolic expression, and the Yices con-
straint solver for resolving constraints. To improve programmabil-
ity, the Jeeves interpreter supports the idioms we have describe.

6.1 Interpreter loop
The frontend performs preprocessing, drives the evaluation loop,
and performs type-level constraint function applications. The in-
terpreter loop is responsible for minimizing constraint derivation
time by short-circuiting application of type-level constraints, either
when it encounters constraints on concrete values or when implica-
tion conditions are false. To avoid unnecessary traversal of concrete
data structures and to avoid building constraints that are not used,
the interpreter loop only constructs constraints for the symbolic
components of data structures. When traversing data structures to
collect constraints the interpreter takes advantage of primary keys:
if equality of a primary key field is a condition, the interpreter will
check that equality to determine whether to continue evaluating the
constraint.

6.2 Environment
The environment keeps track of currently live expressions being
evaluated and their corresponding constraints, storing expressions

users File proc. (s) Eval. (s) Yices (s)
128 0.004 0.004 0.000
256 0.016 0.004 0.000
512 0.084 0.004 0.000
1024 0.348 0.012 0.000
2048 1.540 0.024 0.000
4096 6.220 0.056 0.000
8192 30.634 0.151 0.000

Table 1. Times for resolving is_friends when one user is symbolic
and each of n users is friends with each other.

as directed acyclic graphs of nodes. Two key factors in Jeeves’s
performance feasibility are the environment’s eager garbage col-
lection and eager expression simplification. The backend performs
reference counting garbage collection; this is important because
many expressions quickly become garbage due to the optimiza-
tions. Whenever it binds an expression, the environment performs
two main optimizations: constant propagation and common sub-
expression elimination. Constant propagation simplifies all con-
crete portions of live expressions, allowing the environment state
to remain small when most of the computation is concrete. Com-
mon sub-expression greatly reduces the state growth: for instance,
the state now grows linearly rather than exponentially in the num-
ber of variable appearances in substitution. To combine common-
subexpressions we have implemented the structural hashing tech-
niques performed by SMT solvers such as UCLID [8] and STP [3].
The environment also supports common optimizations for data pro-
cessing such as storing tables as hash tables indexed by primary
key. Without implementing common-subexpression sharing envi-
ronment can grow exponentially from storing symbolic expres-
sions, by a factor of the number of variable appearances for each
variable substitution.

6.3 Solver
The environment makes calls to the Yices SMT solver via the
Yices C interface. The implementation uses basic interface func-
tions to declare variables and assert constraints; it also uses the
push_context and pop_context functions for helping with calls to
concretize with different contexts.

Because the system accumulates small linear constraints that
SMT solvers are optimized for solving, it makes the most sense to
use an external solver to resolve these constraints. Note, however,
that the reason we have small linear constraints is because of
optimizations in the environment; it would not be feasible to use
the solver directly for performing symbolic evaluation.

7. Information Flow Measurements
We demonstrate the feasibility of this execution model by taking
some measurements of the performance of our prototype inter-
preter. We show that evaluation time is reasonable and constraint
solving time, is as expected, negligible.

First consider the example where photo tags are visible to
friends of the photo o wner. We can express this with the following
type-level constraint function, which says that the list of tagged
users is to be displayed only if the viewer is friends with the photo
owner:

type photo_tagp = photo with
{ if (is_friends this .owner context.viewer)

(this .tagged == !this.tagged) else (this .tag == [])) }

We ran some tests accessing on the times it takes to access a
specific tag list for a specific viewer. During evaluation with on
a users table of size n, context.viewer is a symbolic variable that

This work is under submission. 7 2010/11/19

users Constraint deriv. (s) Total eval. (s) Yices (s)
128 0.512 0.528 0.008
256 2.396 2.456 0.040
512 10.128 10.377 0.016
1024 41.703 42.738 0.700

Table 2. Times for applying constraints to delegated photo tags.

can equal any of the n users, so the is_friends function creates a
symbolic expression comparing context.viewer to all elements of
the owner’s friends list. We show in Table 1 that the interpreter can
resolve the symbolic comparisons in less than one second (far less
than the time it takes to process the file) and that the Yices solving
time is negligible.

We also examine the case when we resolve permissions for each
individual photo tag based on whether the viewer is friends with the
tagged user:

type photo_tagp = photo with
{ forall t in this .tagged .

if (is_friends tag context.viewer)
then (t == !t) else (t == null) }

Deriving the constraint for each tag involves creating a symbolic
value based on the is_friends function. We show the running
times in Table 2. These times show that evaluating the constraints
takes up the bulk of evaluation time. We expect that engineering
optimizations such as deriving constraints lazily and memoization
can reduce these times.

8. Application: Data Processing
We demonstrate how to use programming with delegation for pro-
cessing data with missing values. To evaluate the Jeeves language
and interpreter implementation we implemented benchmarks that
process real census data according to documented strategies for
handling missing values in a way that does not bias the results.
In this section, we describe the following.

• We measured the performance of the Jeeves interpreter on doc-
umented data processing strategies to process real data from the
U.S. Census Bureau. The Jeeves interpreter was able to process
almost 400,000 records with negligible constraint solving time;
the performance scales linearly.
• We compared the Jeeves implementation to implementations

in SQL and Python. We found that Jeeves has expressiveness
advantages to both languages and that Jeeves performance is
comparable to that of Python on the census data benchmarks.

8.1 Current Population Survey and imputation
We use data from the U.S. Census Bureau’s Current Population
Survey’s [18] Annual Social and Economic (ASEC) March supple-
ment. The Census Bureau documents standard procedures for re-
constructing answers from nonresponse from other available infor-
mation [19]. The documentation refers to the following strategies:
relational imputation involves inferring the missing value from
other characteristics on the person’s record or within the house-
hold; longitudinal edits involve looking at the previous month’s
data; “Hot deck” imputation infers the missing value from a dif-
ferent record with similar characteristics. The supplement data sets
contain preprocessed data that is annotated with a set of fields con-
taining flags indicating how certain values from certain fields have
been filled in.

8.1.1 Data Processing with Jeeves
We use selected columns of the Current Population Survey data [18]
to use the following record type:

data cps_data { household : int
; line_no : int
; age : int
; marital_status : int
; spouse_no : int
; num_hot_lunch : int}

Each household has a unique ID and the data identifies individuals
according to their line number with respect to a household. Each
individual has an integer age. Marital status can be integer values
0 − 9 indicating statuses including “single, never married” and
“widowed.” The number of children in a household who get hot
lunch is an integer that should be the same for all children in a
household.

We tested the performance of the LogLog implementation on
the following kinds of strategies for filling in missing values:

1. Relational. We derive missing marital status and spouse fields
for a record with household ID h line number ` by looking at
whether there is another record with household h listing ` as the
spouse line number.

2. Longitudinal. We derive missing ages by looking up the value
in a reference table.

3. “Hot deck.” We derive a missing hot lunch number for a record
with household ID h by using a value from another record with
household ID h.

4. Combined. We combine these three strategies, creating a type
with all three constraints and performing a sum over the age
field conditional on the value of the “hot lunch” field.

For each example, we created a data set with missing values by
examining the relevant flags. For example, for the relational test
we use the flags for the marital status and spouse line number to
set the implicated items as missing while leaving the other items
intact. For the longitudinal example, we used the original data set
as the reference table. The input data for the “combined” example
has missing items in all relevant columns.

Below is a type defined in terms of cps_data that adds the
relational constraints.

type cps_infer_relational = relation cps_data
with

{ forall r in this .
forall r ’ in this .

((r .household == r’.household) and
(r .spouse_no == r’.line_no)) implies

((r . line_no == r’.spouse_no) and
(r . marital_status == r’.marital_status)) }

This constraint function says that for each record in the census re-
lation, if there is another record with the same household identifier
that lists the current individual as the spouse, then they should have
matching marital status and spouse information. We write the other
constraints analogously.

8.1.2 Running times
Our results suggest that blended execution scales well on real-world
applications. We ran the tests on increasingly large subsets of the
data with the following total percentages of records with missing
items:

Relational Longitudinal “Hot deck” Combined
0.433% 1.445% 0.588% 1.450%

We reconstruct the missing fields by looking at the flags in
the original data set. These percentages correspond to the actual
documented missing data and how the released data sets were
processed.

This work is under submission. 8 2010/11/19

Total # bad Relational Longitudinal “Hot deck” Combined
records Cnsts. Total Cnsts. Total Cnsts. Total Cnsts. Yices Total

8,192 66 0.02 0.08 0.04 0.08 0.02 0.06 0.10 0.000 0.16
16,384 152 0.06 0.15 0.07 0.16 0.06 0.12 0.20 0.000 0.32
32,768 344 0.25 0.33 0.14 0.33 0.12 0.26 0.42 0.000 0.67
65,546 1007 0.28 0.64 0.30 0.69 0.25 0.54 0.88 0.000 1.40

131,072 1990 0.57 1.30 0.64 1.46 0.53 1.11 1.82 0.000 2.87
262,144 3745 1.16 2.62 1.32 3.02 1.09 2.30 3.86 0.000 6.04
392,550 5693 1.81 4.09 2.04 4.62 1.67 3.54 5.82 0.000 9.04

Table 3. Times (in seconds) for 1) deriving constraints on the input with incomplete values (Cnsts.) and 2) running the interpreter on the
entire program (Total). We show the total number of records on the left, along with the total number of missing records in the data set
combining all missing items.

0.0 100000.0 200000.0 300000.0 400000.0

Number of total records (entries)

0

1

2

3

4

5

6

7

8

9

10

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Census Data Processing Times.

Relational
Longitudinal
‘‘Hot deck’’
Combined

Figure 4. Jeeves data processing scales linearly with increasing
input sizes, even in the presence of missing data.

We show the running times from a machine with an Intel Core
2 Quad Q9650 processor (3.0 GHz, 12M L2 cache, 1333MHz
FSB) running 64-bit Linux in Figure 3. The results show that
the constraint-solving time is negligible and the total execution
time is low. As we show in graph in Figure 4, the running times
scale linearly. Since the Jeeves runtime system performs aggressive
simplifications on the constraint environment, Yices is good at
solving unquantified constraints, and we derive constraints linear
in the number of missing records, we expect constraint solving to
be reasonable across Jeeves programs. Constraint derivation and
symbolic evaluation scaled linearly on programs processing such
large inputs, we do not expect performance to be an issue for
reasonable uses of delegation.

8.2 Comparison with other languages
We found that SQL was less natural for implementing the impu-
tation strategies because it requires the programmer to manually
manage how and when each imputation occurs. SQL can perform
fast queries (under 0.10 seconds) for each individual imputation
strategy, but when many items can be missing it is up to the pro-
grammer to manage the order of the updates and other dependen-
cies. In SQL, the programmer has to determine how to store the
imputed values and is responsible for managing different versions
of tables. The SQL programmer would need to manually consider
all cases and manually execute the imputations by hand, in the right
order. The programmer needs to propagate information for mutu-
ally dependent imputation strategies and chains of dependencies by
hand and via intermediate tables.

Records Rel. Long. “Hot deck” Combined
8,192 0.02 0.02 0.02 0.11

16,384 0.03 0.03 0.03 0.15
32,768 0.06 0.06 0.07 0.25
65,546 0.13 0.14 0.13 0.43

131,072 0.33 0.31 0.30 0.9
262,144 0.72 0.72 0.68 2.22
392,550 1.29 1.28 1.17 3.68

Table 4. Python running times (in seconds) for benchmark exam-
ples.

We found that the Jeeves benchmarks had comparable perfor-
mance to Python and that Jeeves made it easier to handle missing
values. In Table 4 we show the Python running times: the prototype
Jeeves interpreter is only a constant factor of three times slower
than the Python 2.5.2 interpreter. We also found that it took signifi-
cantly less time to write a bug-free version of the example in Jeeves
than in Python. This code was more difficult to write in Python
because the Python code needs to consider the different ways in
which missing items could manifest. Also, the longer length made
the code more difficult to debug: we had a performance bug that we
did not catch until we graphed the results.

9. Related work
Programming with delegation builds on the constraint functional
programming semantics that Mück et al. present [11]. This con-
straint functional model has also been implemented by languages
such as Mercury [17] and Curry [4]. The implicit contexts in our
language is based on the implicit parameter semantics described by
Lewis et al. [9].

Current language support for implementing cross-cutting con-
cerns does not ease the process of writing secure code. Information
flow type systems such as Jif [12] and Fine [1] can check that the
program does not leak values, but the programmer is responsible
designing a system that performs the appropriate propagation and
checks to adhere the specifications. System-level data flow frame-
works such as Resin [20] provide abstractions for the programmer
to insert checking code but do not help the programmer with pro-
ducing and maintaining this code.

Aspect-oriented programming [5] mitigates propagation prob-
lem by providing support to hook in explicit annotations at join
points, but changes in the core program require reasoning about
the implications in the aspect code. Douglas Smith proposes view-
ing cross-cutting concerns as logical invariants [16] and describes a
method for generating aspect code for behaviors such as error log-
ging automatically [15]. The method Smith proposes involves re-
constructing extra-computational values such a history and the run-

This work is under submission. 9 2010/11/19

time call stack. The execution model we propose allows for more
direct recording and propagation of program data and metadata.

Our work is also related to previous work in executing declara-
tive specifications alongside prescriptive code. The difference with
our approach is that rather than executing constraints as isolated
subprocedures, our execution model propagates constraints along-
side the core program. Carroll Morgan’s specification statements,
which specify parts of the program that are “yet to be developed,”
are intended to execute as isolated procedures [10]. Squander, a
mixed interpreter for declarative and imperative statements, exe-
cutes declarative specification statements as subroutines [13]. Dem-
sky’s data structure repair uses goal-oriented programming to pro-
duce a concrete repaired structure when a data consistency property
has been violated [2]. Plan B, a system for dynamic contract check-
ing, uses a constraint solver to produce a value when it discovers
a contract violation [14]. Kuncak et al.’s approach for complete
functional synthesis inlines partially applied decision procedures to
dynamically produce program expressions in a localized way [7].

10. Conclusions
In this paper, we make the following contributes:

• We present programming with delegation, a programming
model that provides modularity for cross-cutting concerns.
• We demonstrate how to use programming with delegation to

handle access control and information flow.
• We present a formalization of this programming model in terms

of Jeeves, an ML-style functional language extended with con-
straints and implicit contexts.
• We describe an efficient execution model and interpreter imple-

mentation. We report performance on using programming with
delegation for information flow and data processing examples.

References
[1] J. Chen, R. Chugh, and N. Swamy. Type-preserving compilation of

end-to-end verification of security enforcement. SIGPLAN Not., 45
(6):412–423, 2010. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/
1809028.1806643.

[2] B. Demsky and M. Rinard. Data structure repair using goal-directed
reasoning. In ICSE ’05: Proceedings of the 27th international confer-
ence on Software engineering, pages 176–185, New York, NY, USA,
2005. ACM. ISBN 1-59593-963-2. doi: http://doi.acm.org/10.1145/
1062455.1062499.

[3] V. Ganesh and D. L. Dill. A Decision Procedure for Bit-Vectors and
Arrays. In Computer Aided Verification (CAV ’07), Berlin, Germany,
July 2007. Springer-Verlag.

[4] M. Hanus, H. Kuchen, J. J. Moreno-Navarro, R. Aachen, and I. Ii.
Curry: A truly functional logic language, 1995.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. In ECOOP,
pages 220–242, 1997.

[6] E. Kohler. Hot Crap! In WOWCS’08: Proceedings of the conference
on Organizing Workshops, Conferences, and Symposia for Computer
Systems, pages 1–6, Berkeley, CA, USA, 2008. USENIX Association.

[7] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional
synthesis. In PLDI, pages 316–329, 2010.

[8] S. K. Lahiri and S. A. Seshia. The UCLID Decision Procedure. In
CAV, pages 475–478, 2004.

[9] J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields. Implicit
parameters: dynamic scoping with static types. In Proceedings of the
27th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’00, pages 108–118, New York, NY, USA,
2000. ACM. ISBN 1-58113-125-9. doi: http://doi.acm.org/10.1145/

325694.325708. URL http://doi.acm.org/10.1145/325694.
325708.

[10] C. Morgan. The specification statement. ACM Trans. Program. Lang.
Syst., 10(3):403–419, 1988. ISSN 0164-0925. doi: http://doi.acm.org/
10.1145/44501.44503.

[11] A. Mück and T. Streicher. A tiny constraint functional logic language
and its continuation semantics. In ESOP ’94: Proceedings of the 5th
European Symposium on Programming, pages 439–453, London, UK,
1994. Springer-Verlag. ISBN 3-540-57880-3.

[12] A. C. Myers. JFlow: Practical mostly-static information flow control.
In In Proc. 26th ACM Symp. on Principles of Programming Languages
(POPL, pages 228–241, 1999.

[13] D. Rayside, A. Milicevic, K. Yessenov, G. Dennis, and D. Jackson.
Agile specifications. In OOPSLA Companion, pages 999–1006, 2009.

[14] H. Samimi, E. D. Aung, and T. D. Millstein. Falling back on exe-
cutable specifications. In ECOOP, pages 552–576, 2010.

[15] D. R. Smith. A generative approach to aspect-oriented programming.
In G. Karsai and E. Visser, editors, GPCE, volume 3286 of Lecture
Notes in Computer Science, pages 39–54. Springer, 2004. ISBN 3-
540-23580-9.

[16] D. R. Smith. Aspects as invariants. In O. Danvy, H. Mairson, F. Hen-
glein, and A. Pettorossi, editors, Automatic Program Development: A
Tribute to Robert Paige, pages 270–286, 2008.

[17] Z. Somogyi, F. J. Henderson, and T. C. Conway. Mercury, an efficient
purely declarative logic programming language. In In Proceedings of
the Australian Computer Science Conference, pages 499–512, 1995.

[18] The Bureau of Labor Statistics and the Census Bureau. Current
Population Survey. http://www.census.gov/cps/, 2009.

[19] U.S. Census Bureau. Current Population Survey, 2009 Annual Social
and Economic (ASEc) Supplement, 2009.

[20] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving
application security with data flow assertions. In Proceedings of the
22th ACM Symposium on Operating Systems Principles (SOSP ’09),
Big Sky, Montana, October 2009.

This work is under submission. 10 2010/11/19

