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Chapter 1

The dangers of method dispatch

If debugging is the process of removing bugs, then programming must be the process of
putting them in. -Edsger Dijkstra

In languages without compile-time type-checking, bugs may lie dormant for months until their
branch of the code is executed. Though it is best to catch errors as early as possible, programmers
often choose these dynamically typed languages over ones with compile-time correctness guarantees.

Dare we conclude that programmers are risk-loving? Because compile-time type-checking nec-
essarily approximates run-time behavior, static type systems provide correctness guarantees only
at the cost of ruling out programs that could be correct. When forced to take sides between static
correctness and dynamic flexibility, the programmer may choose the latter.

In this thesis I present a favorable compromise between static and dynamic mechanisms. My
investigation focuses on language constructs for grouping types by functionality. Careless coding
and lack of language support frequently combine to cause the error of attempting to dispatch a
method f that has not been defined for some object obj of type τ . Determining when it is safe to
call f on obj requires knowing the types on which f has been defined. Current language support
for doing this falls short, sacrificing either safety or flexibility.

I show that extending Haskell’s static type class construct provides us with safe dynamic dispatch
of type class methods. Haskell provides type classes for grouping types by functionality, but the
static resolution prevents method dispatch when the types are not known until run time. I present
a new library, ClassDynamic, and a source-to-source translation that support dynamic type class
method dispatch.

In the remainder of this chapter, I examine the shortcomings of current language frameworks
for method dispatch. In the rest of this thesis I give context to my solution (Chapter 2), describe
the solution and its applications (Chapter 3), provide the implementation details (Chapter 4), and
convince the reader of the importance of continued work in this area (Chapter 5).
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1.1 Expressiveness or safety?

In this section I examine the safety and flexibility tradeoffs with Java interfaces and Haskell type
classes. Neither Java nor Haskell, two of the few languages with support for grouping types by
functionality, provides a desirable solution.

1.1.1 The dangerous dynamics of Java interfaces

Java provides the interface construct for encapsulating groups of related methods. A Java interface
defines a set of methods required for objects implementing the interface.

I could create the Java interface Picklable to represent objects on which we can dispatch the
serialization method pickle:

public interface Picklable {
public String pickle();

}

A class providing an implementation must define the required function pickle and have the
heading

public class className implements Picklable.

Please refer to Figure 1.1 for two classes implementing the interface.

Figure 1.2 demonstrates how we can use interfaces for determining which methods we can call on
a given object. The printPickledValue takes an object, casts it to an object of type Picklable

if we have an appropriate instance of the Picklable class, and prints the result of calling pickle

on the object1. The static instanceof operator allows us to check whether an object has been
declared as a subclass of the given class. Querying instanceof for an interface can tell us whether
a class implements the interface. When the class is not known until run time, we can use the
dynamically dispatched isInstance method, which is defined for all Java classes, to check whether
we have an appropriate subclass. Changing the check from (obj instanceof Picklable) to
(obj.isInstance(Picklable)) would make the check dynamic.

There are many points of dynamic failure. The program will throw the IllegalAccessException
if obj has primitive type. The program could also raise the ClassCastException for many rea-
sons: if the user provided a class that does not implement the Picklable interface; if there is
no public, no-argument constructor; if c is a null reference. These exceptions create a lose-lose
situation: careless error catching allows dynamic exceptions; careful error handling causes bloated
code, which obscures meaning and impedes the reader from reasoning about it easily.

1The reader may be inclined to ask why we did not just restrict the argument type to Picklable instead of Object.
I provide two reasons: 1) this works better for this example and 2) perhaps we are getting an object from the network
and can make not static guarantees about its type.
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public class UserObject1 implements Picklable {
String userValue1;

public String pickle() {
return userValue1;

}
}

public class UserObject2 implements Picklable {
String userValue2;

public String pickle() {
return userValue2;

}
}

Figure 1.1: Classes implementing the Picklable interface.

void printPickledValue(Object obj) {
if (obj instanceof Picklable) {

Picklable p = (Picklable)obj;
String s = p.pickle();
System.out.println(s);

} else {
System.err.printf("Unable to perform request.");

}
}

Figure 1.2: Classes implementing the Picklable interface.
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class Picklable a where
pickle :: a -> String

data UserObject1 = UserObject1 { userValue1 :: String }
instance Picklable (UserObject1 uVal) where

pickle v = uVal

data UserObject2 = UserObject2 { userValue2 :: String }
instance Picklable (UserObject2 uVal) where

pickle v = uVal

printPickledValue :: (Pickle a) => a -> IO ()
printPickledValue obj = putStrLn (pickle obj)

Figure 1.3: Haskell version of the Picklable library. It declares the new user defined data types
UserObject1 and UserObject2, each with its own value field.

1.1.2 Haskell’s safer but limiting type classes

Haskell’s statically-checked type classes eliminate the need for verbose exception-handling. Type
class declarations specify an interface of methods and their type signatures; instances of type classes
must implement the required methods.

Please see Figure 1.3 for the Haskell version of the previous example. This code defines a type
class Picklable of types for which the pickle method is defined. The (Picklable a) constraint
on the polymorphic argument of the pickle function allows the type checker to rule out dispatches
to inappropriately-typed values at compile time.

Unfortunately, there is no Haskell mechanism that allows us to pass pickle a type that is not
known to be an instance of Picklable at compile time. To achieve the equivalent functionality of
isInstance in Haskell, we must go through the instances of the Picklable class to see whether
we have a value of an appropriate type (Figure 1.4). I will explain the Dynamic data type and the
Maybe constructor in more detail in the next chapter. The take-away point is that this mechanism
for dispatching type class methods is undesirable, as it produces unnecessarily long code about
which it is difficult to reason. Also, adding an instance of the Picklable class requires adding an
additional case to printPickledValue.

1.2 A safer expressiveness

In this thesis, I show that we can support safe dynamic dispatch in Haskell with an extension that
does not affect existing code. This extension allows us to specify method calls that discriminate
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printPickledValue :: Dynamic -> IO ()
printPickledValue v =

case fromDynamic v of
Just (j :: UserObject1) -> putStrLn (pickle j)
Nothing ->
case fromDynamic v of

Just (p :: UserObject2) -> putStrLn (pickle j)
Nothing -> putStrLn "Unable to perform request."

Figure 1.4: Type case required for calling pickle on dynamic values.

based on whether we have an appropriate instance of some type class. To support this functional-
ity, I have implemented a library ClassDynamic that contains a function for performing dynamic
dispatch. I have also implemented a source-to-source translation that generates 1) a run-time dic-
tionary mapping method names to instance definitions and 2) dynamic dispatch code for handling
methods with variable result types.



Chapter 2

A brief history of typing

Strong typing is for people with weak memories. -Unknown

This chapter begins with an overview of type systems and ends with a discussion of Haskell’s
polymorphic type system and related work on type reflection and dynamic types.

2.1 Type systems and their guarantees

To motivate the existence of static type systems, let us step into a world without static checks.
In Python, a dynamically checked language, there are few language abstractions preventing pro-
grammer error from causing run-time errors. Please refer to Figure 2.1 for a transcript of such a
program. This program appears to run normally until the user enters 52, at which point it halts
upon looking up the function undefinedFunction, which has apparently not been defined.

The source code of the program (Figure 2.2) reveals that the program was just waiting for an
error to occur. There is a loop that prompts the user for integers, printing “No error yet!” until
the user enters a number greater than or equal to 50. Because Python performs no checks on code
branches until execution, careless errors such as calls to undefined functions can go undetected for
months until the particular branch of code is executed.

Many of these errors can be ruled out at compile time. The desire for language prevention of
programmer error has led to the rise of languages with stronger static guarantees. In many lan-
guages, static type systems provide a framework for the programmer to communicate expectations
about the behavior of the code to machine and human readers. When I use the term type-checking,
I refer to the compile time resolution of typing constraints. Type-checking can be based on explicit
programmer-supplied annotations or involve type inference. Checking for constraint satisfaction is
not limited to compile time: I use the term static to refer to what occurs at compile time and
dynamic to refer to what occurs at run time. Static type systems are necessarily conservative:
while they can prove the absence of certain bad program behaviors, they may reject programs

6
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Please enter an integer: 6
No error yet!
Please enter an integer: 7
No error yet!
Please enter an integer: 42
No error yet!
Please enter an integer: 52
Traceback (most recent call last):

File "test.py", line 6, in <module>
print undefinedFunction(x)

NameError: name ’undefinedFunction’ is not defined

Figure 2.1: Transcript of a Python that runs until the user enters 52, at which point it encounters
a run-time error.

while (True):
x = int(raw_input("Please enter an integer: "))
if x < 50:
print ’No error yet!’

else:
print undefinedFunction(x)

Figure 2.2: Source code of Python program with run-time error.
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that actually behave well at run time. For instance, most type-checkers will reject at compile time
program like

if <true> then 42 else <ill-typed expression>.

Type systems can enforce type safety and type abstractions statically or dynamically. In a
type-safe language, the type checker prevents primitives from being applied to incorrect argument
types. A basic type checker can check that the programmer does not pass a string when an integer
argument is expected. Languages supporting type abstractions also make it possible to extend
primitive types with new type constructors. This allows the programmer to take advantage of type-
checking mechanisms to enforce constraints hiding details of an abstract type’s implementation. For
instance, in a language where integers but not boolean values are defined, the programmer can either
encode boolean values as the integers 0 and 1 or create a new data type. Doing the latter will allow
the type checker to rule out the case in which an undefined value (i.e., 42) is used as a boolean.

2.2 Polymorphism comes in many forms

Creating type systems that allow polymorphic functions, which are defined for values of multiple
types, is a difficult problem. When all values must have a type, how do we express and compute
with a data structure that contain values of any type? In considering such problems we differentiate
polymorphism into two categories, parametric and ad hoc.

Parametric polymorphism describes functions that exhibit the same behavior on all types and
is useful because it allows programs to focus on algorithms rather than implementation details. A
prototypical parametric polymorphic system is System F, also known as the polymorphic lambda
calculus, discovered independently by logician Jean-Yves Girard (1972) and computer scientist John
Reynolds (1974). System F allows for function definitions with quantified types such as

f : ∀X.(X → X)→ X → X.

The type signature says that f , defined on all types X, takes a function of type X → X, a
value of type X, and returns a value of type X. This type signature is revealing: the only action
one could do with such requirements is to apply the first argument to the second. While this is
theoretically beautiful, it becomes tedious to explicitly quantify and instantiate type signatures.
ML, a descendent of System F, uses the Damas-Milner type inference algorithm to determine
whether a program is type-safe in the absence of explicit type annotations [Pie02]. Haskell uses a
variant of this ML’s type system and type inference. While this type system is expressive enough
to allow explicit and implicit quantifications, there are certain limitations. For instance, the type
checker requires that all values be assigned a type at compile time.

Ad hoc, or overloading, polymorphism refers to the definition of a function that exhibits different
behaviors on different data types. For instance, ‘+’ could be defined to perform arithmetic addition
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on integers but concatenation of strings. There is an inherent ambiguity associated with ad hoc
polymorphism owing to the question of which of many actual functions/methods to invoke when
the names are overloaded. Haskell’s type classes provide a flexible and powerful form of overloading
polymorphism.

Compiling with polymorphism is especially difficult because functions can have arguments of
unknown type, functions can create record values whose types are unknown, and it is difficult to
decide what code to generate when compiling an ad hoc polymorphic operation with arguments of
variable type. In compiling ad hoc polymorphic programs, it is useful to use intensional polymor-
phism, which permits examination of run-time types [HM94]. The extension I propose relies on the
examination of run-time types.

2.3 Key Haskell constructs

Here I focus on two of Haskell’s language constructs, type classes and monads. Type classes provide
a nice framework for ad hoc polymorphism and are the basis of the extension proposed in this thesis.
Monads provide a useful pattern for encapsulating computation.

2.3.1 Notation

Before we begin, let us discuss how to interpret Haskell’s type annotations. Haskell requires type
signatures for type class method declarations and allows type signature annotations for function
definitions. The type signature

f :: Int -> String

represents a function that takes a single integer argument and return a string. An example of a
full application is

f (42 :: Int).

We need to attach a type annotation to 42 to disambiguate whether it is an integer- or real-valued
number. A function taking two arguments, an integer and a boolean, and returning a string would
have the signature

f :: Int -> Bool -> String.

We write the argument types this way because the function can also be partially applied: it is a
function that, when given an integer, returns a function of type Bool -> String.

More formally, a type signature has the form

fn :: [cx⇒]τ,

where fn is the function name, cx is the optional context, and τ is the type of the function.
The context consists of one or more type class constraints specifying the expected behavior of the
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class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

Figure 2.3: Haskell declaration of Ord type class [Com08a].

arguments. The type can be a simple type, a type variable, an arrow type representing a function,
or the result of a type constructor application. Informally,

τ := τ | α | τ → τ | τc τ.

An example of a simple type is Int; an example function type is Int -> String, a function that
takes an Int argument and returns a String; an applied type constructor is [Int], which is []

(the list constructor) applied to Int.

The type τ → τ represents a higher-order type. A higher-order type, also called an arrow type,
is one representing the type of a function. For instance, the anonymous function (λx.x+ 1), which
takes an argument and returns the result of adding 1 to it, could have type Int→ Int, a function
type that takes an integer as an argument and returns an integer result.

The type τc τ represents the application of a higher-kinded type. A kind is the type of a type
constructor. We write ? for the kind of a type, such as Int, and ? → ? for the kind of a type
constructor, such as Maybe or [] (the list constructor), which takes a type and returns a type.
For instance, the type [Int], representing a list of integers, consists of the higher-kinded type
constructor []:: ?→ ? applied to Int:: ?.

2.3.2 Type classes

Type classes group types by the functions that have been defined for them. The type signature

f :: Ord a => Int -> a -> String

allows the second argument to be polymorphic within the Ord type class. This means that the
second argument can now be of any type for which an instance has been defined for the Ord class.
The Ord class (Figure 2.3) contains types for which comparison functions have been defined.

A class declaration introduces a new class and the operations associated with it. It generally
has the form:

class cx => u where [declarations]
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When declaring a type class we declare new class methods, the optional fixity1 of the class methods,
and optional default class methods. Class methods live in the top level namespace with variable
bindings and field names, meaning within a module, methods must have unique names [P+03].

An instance of a class C with superclass cx and type variable u is introduced with the following
declaration:

instance cx′ => C (T u1 . . . uk) where {d }

where k ≥ 0 and the type (T u1 . . . uk) must take on the form of a type constructor T applied
to simple (monomorphic) type variables u1, . . . , uk. Such polymorphic instance declarations are
forbidden:

instance C a where ...
instance C (Int,a) where ...

An instance declaration has the following static restrictions: 1) a type may be declared as an
instance at most once in a program, 2) the class and type must share a kind, and 3) the type
variables must satisfy the appropriate constraints [P+03].

The following code shows an instance declaration of the Ord class [Com08a]:

instance Ord Char where
c <= c’ = fromEnum c <= fromEnum c’

The fromEnum function converts a Char to an integer; the <= on the right hand side is invoking the
integer comparison operation. Type classes are open: the programmer can easily add new instance
definitions.

2.3.3 Monads

Since Haskell is meant to be a purely functional language, it has a curious way of handling side
effects. Side effects are computations such as input/output and mutation with the property that the
number of times we run them affects the output of the program. For instance, repeatedly running a
procedure that prints the number “1” will output the unary representation of the number of times
it is run. A pure computation has no side effects. We want functions to be pure because it is easier
to reason about them for correctness checking and optimization.

To support computations with effects, Haskell uses the monad abstraction. Monads allow us to
build delayed computations that are performed at run time. Since the computations are delayed,
the monadic expressions are pure. To perform I/O within our function f from before, we could
change the signature to

f monadic :: Ord a => Int -> a -> IO String,

1The fixity of a function f describes how f is to be called. If f is prefix, we call it before the arguments: i.e., given
some argument v, we have the call f v. If f is infix, we call it between the arguments: i.e., given arguments v1 and
v2, we have the call v1 f v2.
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which lifts the computation into the IO monad. The function f monadic returns a delayed expres-
sion that, when run, returns a String. Running f performs a side effect, but the abstraction IO

String prevents us from actually running the command.

Once we have entered a monadic computation, we can never get out: everything occurring after
a delayed computation must also be delayed. Fortunately, we can build a whole program as a series
of sequenced monadic commands. For instance, if we have

readInt :: Int -> IO Int,

which reads and returns an integer from standard input and

writeInt :: Int -> IO (),

which takes an integer and returns a computation printing the integer to standard output, we can
compose readInt and writeInt using the command

bind :: IO Int -> (Int -> IO ()) -> IO (),

which gives us the sequential composition

bind readInt writeInt,

This function reads an integer and then prints it out to screen.

To use a monad, we must have ways of lifting into the monad and sequencing monadic operations.
Formally, a monad consists of a triple (M, return, >>=), which represents a type constructor M and
the operations on M :

return :: ∀α.α→M α

(>>=) :: ∀α, β.M α→ (α→M β)→M β

The >>= function is the generalization of bind. Haskell’s Control.Monad class defines a type class
framework for creating monads and performing operations within them [Com08b].

The Maybe monad provides a nice way of handling errors. The Maybe monad has two construc-
tors, Just α and Nothing. If a computation could fail, lifting the computation into the Maybe

monad allows us to return Just (r :: a), where r is the result of some type a, or Nothing.
Suppose our previous function f can only return a string if the input satisfies some properties.
Rewriting the signature of f as

f optional :: Ord a => Int -> a -> Maybe String

allows us to return Just (s :: String) upon success and Nothing otherwise [Com08a].
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2.4 Related work

The Typeable library supports type reflection by providing a type class for types that can admit
a representation at run time. Type reflection allows us to have dynamic types.

2.4.1 Typeable type reflection

Haskell’s Typeable library defines the Typeable type class of types that can admit a run-time
representation [BS02]:

class Typeable a where
typeOf :: a -> TypeRep

TypeRep is a data constructor containing a runtime representation of an object’s type. The
Typeable library supports the manipulation of type representations and includes the following
functions [Com08a]:

mkAppTy :: TypeRep -> TypeRep -> TypeRep
mkFunTy :: TypeRep -> TypeRep -> TypeRep
funResultTy :: TypeRep -> TypeRep -> Maybe TypeRep

The functions mkAppTy and mkFunTy allow for the creation of TypeRep objects. The mkAppTy

function takes a type constructor and a type to create a type representation; mkFunTy takes two
types τ1, τ2 and creates an arrow type representation of τ1 → τ2. For instance, to build a run-time
representation of the type Int -> String we would call

mkFunTy [typerep Int] [typerep String].

There are also dual functions that take apart a type representation: funResultTy takes a repre-
sentation of τ → µ and a representation of τ ′ and returns a representation type µ if τ ≡ τ ′.

Typeable also gives us the type-safe cast function[Wei00]

cast :: (Typeable a, Typeable b) => a -> Maybe b,

which allows us to examine the type representations of a and b and return the result of the cast
if and only if a and b are structurally equivalent. In Scrap Your Boilerplate, Lämmel and Peyton
Jones present a design pattern that uses type-safe cast for generating the boilerplate code necessary
for traversing data structures [LP03]. This method allows for the creation of generic, structure-
agnostic algorithms. In the next chapter, we will use generic traversal in a motivating example.
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listToString :: [Dynamic] -> String
listToString nil = ""
listToString h::rest =

(case fromDynamic d of
Just (i :: Int) -> pickle i
Nothing ->
case fromDynamic d of

Just (s :: String) -> pickle s
Nothing ->
case fromDynamic (b :: Bool) -> pickle b
Nothing -> "<list element>") ++ (listToString rest)

Figure 2.4: Case analysis on types for printing list of type [Dynamic]. For the purposes of this
example, assume that instances of Picklable have been defined for Int, String, and Bool.

2.4.2 Dynamic types

The Dynamic library, built using the Typeable class, provides the Dynamic data type, which stores a
value of any type with its type representation. Dynamic allows us to have dynamically typed values
that escape the static type checker. Dynamic types are useful for representing objects whose types
are not known at compile time. Dynamic typing is important when doing persistent programming,
where values of any type are stored and retrieved from storage, and distributed programming,
where remote programs exchange data and code [SSP97].

The Dynamic library has functions that allow the programmer to convert to and from a Dynamic

value, get the type representation of a Dynamic value, and apply Dynamic functions to Dynamic

values [Com08a]. In particular, the function

toDyn :: Typeable a => a -> Dynamic

takes a value of any type a and creates a Dynamic value that stores the value with its type repre-
sentation. In the context of a type a, the function

fromDynamic :: Typeable a => Dynamic -> Maybe a

takes a Dynamic value and returns Just (v :: a), where v is the value with type a, or Nothing.

Because Dynamic allows us to subvert the type checker, we can use Dynamic to create heteroge-
neous lists. Since all Haskell values must have a concrete type at run time, we cannot have a list
of type [α], where α is of variable type. Dynamic provides a way of getting around this: we can
have a list of type [Dynamic], as the type Dynamic is of monomorphic type. Because the Dynamic

constructor retains the type representation, we can examine and reify the types of the list values.
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Consider the list definition

dynList = [toDyn (42 :: Int), toDyn "Hello World", toDyn True].

In Figure 2.4 I show code to traverse a list for printing. Printing requires case analysis on the types
because the call to fromDynamic needs to be assigned a type at compile time. Because the case
variables have appropriate compile-time types, we can call pickle.

There are two drawbacks to this approach: 1) the type case can get quite extensive and 2) the
function definition is not open to adding new types to the list. For instance, if someone were to
add a real-valued number to the list, I would need to add a case to accommodate Float. Such a
function would not do well in a library, as it cannot accommodate any user-defined data types. In
the next chapter I describe a more preferable mechanism.



Chapter 3

Using dynamic type class method

dispatch

One of my most productive days was throwing away 1000 lines of code. -Ken Thompson

In this chapter I provide a more complete specification of the problem, describe the solution,
and demonstrate that the solution is useful.

3.1 Dynamic dispatch for type class methods

Recall from Chapter 1 discussion of why it would be useful to dispatch type class methods on values
of dynamic type. To use the type class functions with values of type Dynamic, we need to perform
a (perhaps extensive) case analysis to cast the values at each of the possible types. It would be
convenient to be able to cast a dynamic value as an element of a type class:

printPickledValue :: Dynamic -> IO ()
printPickledValue v =
case fromDynamicClass Picklable v of

Maybe (p :: (Picklable a) => a) -> putStrLn p
Nothing -> putStrLn "Unable to perform request."

In this function we want p to have variable type a, where a can be any instance of the Picklable
class. Unfortunately, since Haskell requires that p have a concrete type at compile time, the
Haskell type checker will not permit this. In the next sections I describe how we can achieve this
functionality in the current Haskell framework.

16
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dynamicDispatch :: Map String [Dynamic] -> String -> Dynamic ->
Maybe Dynamic

dynamicDispatch dictionary funName arg =
let valTy = dynTypeRep arg

matchType ty tyList = List.filter (applicableToTy ty) tyList
in case (Map.lookup funName dictionary) :: (Maybe [Dynamic]) of

Just dynFuns ->
case (matchType valTy dynFuns) of
fn:_ -> dynApply fn arg
[] -> Nothing

Nothing -> Nothing

Figure 3.1: Basic version of the dynamic dispatch function.

3.1.1 Fitting into the Haskell framework

The extension I propose provides the equivalent functionality as the cast by performing dynamic
dispatch on the type class method. To perform dynamic dispatch, we need to know at run time the
type class instances that have been defined and we need a way to represent methods. To address
these issues I provide a way for constructing run-time dictionary mapping function names to typed
instance declarations. For purposes of method lookup it is most sensible to represent method as
strings containing their names.

Having the dictionary of instance declarations allows us to write a dynamicDispatch function
to perform dynamic dispatch (Figure 3.1). function compares the type representation of the argu-
ment arg against the type representations of the dictionary functions, returning a Dynamic value
containing the applied result if successful and Nothing otherwise.

The dynamicDispatch function allows us to write printPickledValue as the following function,
where PicklableInstances represents a dictionary containing the defined instances of Picklable:

printPickledValue :: Dynamic -> IO ()
printPickledValue v =
case dynamicDispatch PicklableInstances "pickle" v >>= fromDynamic of

Maybe (s :: String) -> putStrLn s
Nothing -> putStrLn "Unable to perform request."

The dictionary consists of pairs like

("pickle", [toDyn (c :: Int -> String), toDyn (c :: Bool -> String)]).

The list elements must be typed to specify which instance of the method should be invoked. For
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class C2 a b where c2 :: a -> b -> String
instance C2 Int Int where c _ _ = "(Int, Int)"
instance C2 Int Bool where c _ _ = "(Int, Bool)"

Figure 3.2: Multi-argument type class method.

this purpose it is particularly convenient to use Dynamic constructor because 1) we want to con-
struct a list of heterogeneous type and 2) we want to store the type representation for use in the
dynamicDispatch function.

3.1.2 A more flexible Dynamic

While using Dynamic and dynamicDispatch works for a function like pickle, we encounter prob-
lems with type representation with multi-arguments methods. With a multi-argument method, we
need the full application to determine unambiguously which method definition to invoke. Consider
the definition of the c2 function in Figure 3.2. The full application

(c (1 :: Int) (2 :: Int))

would yield the result "(Int, Int)". The partial application

c (1 :: Int)

yields a function that could be applied to a value of type Int or Bool. When returning the
dynamically dispatched result we want to represent the type

[Int -> String, Bool -> String],

but the Dynamic data type only supports monomorphic representations.

As a solution I propose the ClassDynamic data type, which stores a list of type representations.
The ClassDynamic library that I present in the next chapter has functions for manipulating values
of type ClassDynamic. The library includes the classDispatch, the ClassDynamic version of
dynamicDispatch.

3.1.3 Methods with variable result type

With this approach we still have an issue with methods with variable result types. Currently, the
Haskell type checker requires the program to provide the context for disambiguating the method
dispatch. Since this approach is suboptimal for dealing with values of dynamic type, I introduce a
more flexible mechanism.
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case classDispatch instanceDictionary "read" "True" >>= fromClassDynamic of
Just (x :: Bool) -> putStrLn (show x)
Nothing -> putStrLn "Couldn’t process request."

Figure 3.3: Code for calling classDispatch on read :: (Read) => String -> a. Assume we
have a dictionary instanceDictionary.

When calling the Read class method

read :: (Read a) => String -> a,

we must provide enough context for the type checker to infer the type of the result. For example,
we can make the call

read "True" :: Bool.

However, the type checker has no way of distinguishing this from the call

read "True" :: Int,

which it also allows because there is no way to statically determine whether the call will fail.
Because of particular definition of read, this call will actually raise the run-time exception “no
parse.”

With dynamic dispatch we have the same ambiguity problem in a different form. The call

classDispatch [dictionary] "read" "True"

would give us ClassDynamic value representing all instance declarations of the Read class, for
which read is a method. We must supply a type when calling fromClassDynamic to get back the
corresponding value for the code in Figure 3.3. This code, which dispatches on the read function
and converts the result back from a ClassDynamic value, would output “True.” If we changed
(x :: Bool) to have another type, such as (x :: Int), we would get the run-time error “no
parse.”

This solution for methods of variable result type is unsatisfactory for dynamic dispatch: when
receiving a arbitrary strings across the network, we may not be able to statically anticipate the
result type of a call to read. In such situations it would be convenient to make a call like

dispatchOn read,

which returns a value of type [ClassDynamic], the list of all values for which read could return a
value.
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I implement this functionality by constructing a specialized function for each type class method.
Please refer to Figure 3.4 for the specialized dispatch function for read, which tries to call read for
all instance types and returns the results for which the call did not raise an errors. This computation
must be lifted into the IO monad because it handles exceptions. For dynamic dispatch of general
functions with variable result type, I define a keyword dispatchOn which allows the call

dispatchOn read "True",

translating it into the call
dispatch read "True".

I implement a source-to-source translation that generates the dispatch f corresponding to the
method f.

This solution generalizes for function with n arguments and variable result type. For a method f,
dispatch f must take the same number of arguments: we need to apply all arguments to determine
the result type. When we have n arguments, we cast on n-tuples. For instance, for some method
doubleArgs with 2 arguments we could construct a function like the following:

dispatch_doubleArgs :: ClassDynamic -> ClassDynamic -> IO [ClassDynamic]
dispatch_doubleArgs x0 x1
case (fromClassDynamic x0, fromClassDynamic x1) of

(Just (b0 :: type1), Just (b1 :: type2)) ->
...

We can generalize the function to return the results in any container. Using the MonadPlus class,
which requires the definitions of the empty element mzero and an accumulation function mplus, we
can generate a function with signature

dispatch read :: (MonadPlus m) => ClassDynamic -> IO (m ClassDynamic),

where we replace ++ with mplus and [] with mzero. Now we can get our matching results in the
data structure of our choice.

3.2 Applications

These new mechanisms are useful not just for handling dynamic types, but also for increasing the
flexibility of method dispatch. In this section I demonstrate the use of dynamic type class method
dispatch for multiple dispatch, for reusing type class method code, for guarantees on the behaviors
of methods, and for convenient interpretation of method names to methods.
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dispatch_read :: ClassDynamic -> IO [ClassDynamic]
dispatch_read x0 =

case fromClassDynamic x0 of
Just (b0 :: String) ->
do t1 <- E.catch (do return $! (read b0) :: Bool

return [toClassDyn $! (read b0 :: Bool)]
$ (\_ -> return [])

t0 <- E.catch ...
...
-- Int case

return (t1 ++ t0)
Nothing -> []

Figure 3.4: The dispatchOn function for read, which tries calling read on each of the instances.
We make each call twice: the first is to see if we raise an exception; the second call to return the
applied result occurs only if the first did not raise and exception. The $ operator is a sequencing
operator that eliminates the need to put parentheses around the expression to the right of the
operator. The ! operator forces the evaluation; otherwise, Haskell only evaluates an expression
when it is used.

3.2.1 Flexible multiple dispatch

Haskell allows a rigid form of static multiple dispatch. Dynamic dispatch helps eliminate boiler-
plate code when performing multiple dispatch on dynamic values and increases the flexibility of
dispatching on overloaded methods by providing a mechanism for returning all appropriate dispatch
results.

Multiple dispatch describes a solution to determining which method to dispatch for an overloaded
multi-argument method. Single dispatch refers to the situation where a single argument determines
the dispatch; multiple dispatch refers to the situation where all arguments participate in the decision.
Multiple dispatch avoids problems of asymmetry. If we had an implementation that determined
the type of the result based on the type of the first argument, the expression 42Integer + 43.1Real

would evaluate to 85 while the express 43.1Real + 42Integer would evaluate to 85.1. The asymmetry
of single dispatch can cause behavior that makes no mathematical sense [Cha92].

There are two issues with current Haskell-style multiple dispatch: 1) we would need to specify all
types and 2) it does not extend well to Dynamic values. Consider the multiply dispatched method
parameterized by both argument types and by the return type in Figure 3.5. For the type checker
to unambiguously determine the method dispatch, we would need add type annotations to each of
our arguments:

m (43.1 :: Float) (42 :: Int) :: Float.

To use this method with Dynamic arguments, we would need to perform a type case for each of
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class Multi a b c where
m :: a -> b -> c

instance Multi Int Int Int where
m x y = x + y

instance Multi Float Int Int where
m x y = y

instance Multi Float Int Float where
m x y = x

Figure 3.5: Type class definition and instance declarations for multiple dispatch method.

processMultiDynamic :: Dynamic -> Dynamic -> IO ()
processMultiDynamic x y =

case (fromClassDynamic x, fromClassDynamic y) of
(Just (i0 :: Int), Just (i1 :: Int)) ->
...

...

Figure 3.6: Type case necessary for multiple dispatch on dynamic types.

the arguments, as shown in Figure 3.6. Matching on all types is undesirable because 1) it places
unnecessary burden on the programmer, 2) it is difficult to reason about the correctness of the
resulting code, and 3) the number of cases explodes combinatorially as the number of arguments
grows.

The dynamic dispatch extension provides two options for performing multiple dispatch on
Dynamic values: if we know the desired result type, we can use the classDispatch function.
If we want all possible result types, we can use the dispatchOn function to try all possible result
types. Please refer to Figure 3.7 for the code with classDispatch, which produces a result by
sequencing operations within the Maybe monad. The function calls classDispatch to apply the
function to the first argument, applies the result to the second argument, and calls the pickle

method to print the result as a string.

The code using dispatchOn (Figure 3.8) shows that the extension also provides a more flexible
mechanism for multiple dispatch by allowing us to expressing all possible results of a dispatch. The
call processValues (toPolyDyn "42") (toPolyDyn "24") matches all methods and displays

<<[<<Int>>, <<Int>>, <<Float>>]>>.

Note that even when we know the types of the arguments, we can construct ClassDynamic values
and call classDispatch in order to get all matching results.
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processMultiValues :: ClassDynamic -> ClassDynamic -> IO ()
processMultiValues a b =

let polyApp f = polyDynApply f y
-- Sequence operations in Maybe monad to produce result.
processResult r = polyDispatch functionMap "pickle" r >>= fromPolyDynamic
r = polyDispatch functionMap "m" x >>= polyApp >>= processResult

in
case r of
Just (s :: String) -> putStrLn s
Nothing -> putStrLn "Couldn’t process request."

Figure 3.7: Multiple dispatch dynamically with classDispatch. Assume that an instance of
pickle has been defined for lists.

processMultiValues :: ClassDynamic -> ClassDynamic -> IO ()
processMultiValues a b =

case dispatchOn m a b of
_:_ -> putStrLn (pickle v)
[] -> putStrLn "no results"

Figure 3.8: Multiple dispatch dynamically with dispatchOn.
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3.2.2 Reusable type class code

Dynamic dispatch allows us to define type class methods in terms of other type class methods
without an explicit constraint in the type signature.

This is useful is for writing generic functions. In Chapter 2, I mentioned that Lämmel and
Peyton Jones show how to use type-safe cast to generate the boilerplate structure-traversing code.
The result is incorporated into the Data type class, which aids the Haskell programmer in writing
generic, parametrically polymorphic functions that perform the same action regardless of the type
of the argument. Putting Data in the function’s context guarantees that we can call structure-
traversing methods on the argument.

For those wondering why type-specific code would be useful when defining a type-agnostic
method, consider the following example. Suppose we wanted to write a generic serialization method

gpickle :: (Data a) => a -> String

that recursively serializes the elements of some structure. Given our goals, it makes sense to write
this in terms of method pickle from before. Unfortunately, there is no Picklable restriction on
the polymorphic argument a, as gpickle should be able to serialize any structure. Thus we cannot
pickle in the body of gpickle without extensive case analysis, as shown in Figure 3.9. With the
extension, we could easily write gpickle in terms of pickle, as shown in Figure 3.10.

One may object that such functions are no longer generic, as their behavior depends on run-time
type analysis. Though the functions are no longer type-agnostic, the specialized behavior occurs
at the type class level rather than the type level. The classDispatch abstraction makes the code
easier to reason about, as the only typed-based discrimination that occurs is whether the type has
been defined as an instance of some type class.

3.2.3 Functional guarantees

With the extension we can also build frameworks for passing around computation with enforceable
behavioral guarantees. In a Haskell framework for passing code around a network, we could use
types to exclude potentially harmful computations such as disk I/O. Such guarantees would be
useful for peer-to-peer networks and for applications like λbot, a command line tool written in
Haskell that runs an interactive interpreter loop through web chat. λbot accepts Haskell code, runs
it, and returns the serialized result. λbot rules out potentially harmful computation by rejecting
computations with unserializable results. Since types lifted into monads have not been defined as
serializable, λbot does not accept computations with side effects.

If we were accepting functions as arguments but wanted to restrict the function types to have
the form

(Typeable a) => a -> String,
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gpickle = ( \t ->
"("

++ (case (cast t :: Maybe Int) of
Just i -> pickle i
Nothing ->

case (cast t :: Maybe Float) of
Just f -> pickle f
Nothing ->

case (cast t :: Maybe Bool) of
Just b -> pickle b
Nothing ->
...
-- After we’ve listed all Picklable instances...
Nothing -> showConstr(toConstr t))

++ concat (gmapQ ((++) " " . gpickle) t)
++ ")"

)

Figure 3.9: The gpickle function without the extension. The methods showConstr and toConstr
are methods of the Data type class for manipulating a data type. The call showConstr (toConstr
t) returns the string representation of t’s constructor.

gpickle = ( \t ->
"("

++ (case polyDispatch funDict "pickle" (toDyn t) of
Just x -> case fromClassDynamic x of

Just (s :: String) -> pickle s
Nothing -> showConstr(toConstr t)

Nothing -> showConstr (toConstr t))
++ concat (gmapQ ((++) " " . gpickle) t)
++ ")"

)

Figure 3.10: The gpickle function in terms of pickle.
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runFunction :: () Dynamic -> a -> IO ()
runFunction f x =
case classDispatch funDict "run" f of

Just x -> case polyDynApply fn (toPolyDyn x) of
Just polyR -> case fromClassDynamic polyR of

Just (r :: String) -> putStrnLn r
Nothing -> putStrLn "Wrong"

Nothing -> putStrLn "Failed in application.\n"
_ -> putStrLn "No valid function was provided.\n"

Figure 3.11: This function only runs functions of type (Typeable a) => a -> String.

we could write the following class:

class (Typeable a) => Run a where
run :: (a -> String) -> a -> String

The first argument is a function of type (a -> String), which takes any value that can admit
a type representation and returns a string. The String return type prevents the function from
lifting the computation into any monad.

We could use Run to make sure we only accept functions with types of a particular structure by
defining the instances we are willing to accept. With classDispatch, we can easily write functions
that only accept “appropriate” methods, as shown in Figure 3.11. This function requires the caller
to declare the argument f as an instance of the class. We could make the following instance
declaration:

instance Run Int where
run :: (Int -> String) -> Int
run f v = f v

The function applies f to x, yielding a string. With these declarations, a call to

runFunction (toPolyDyn (λ (x :: Int) -> show (x + 10)))

(42 :: Int)

would yield the integer 52. A call to

runFunction (toPolyDyn (λ (x :: Int) -> putStrLn (show (x + 10))))

(42 :: Int)

would yield the output “No valid function was provided.”
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class FunctionGroup a b where
fun1 :: (Typeable a) => a -> IO ()
fun2 :: (Typeable b) => b -> IO ()

instance FunctionGroup Int String where
fun1 i = putStrLn (pickle i)
fun2 s = putStrLn s

Figure 3.12: Type class for the purpose of dispatching methods from string representations.

classDispatch funDict "fun1" (toClassDyn (42 :: Int))
classDispatch funDict "fun2" (toClassDyn (42 :: Int))
classDispatch funDict "fun2" (toClassDyn "Hello World")

Figure 3.13: Example dynamic type class method dispatches, where funDict is the dictionary
containing the instance definitions. Note that the second dispatch will return Nothing since the
argument is of an incompatible type.

3.2.4 Strings to methods

Since we now have at run time a dictionary mapping strings to type class methods, we also have
a convenient way to use strings to invoke type class methods. Currently, running methods whose
names are passed in as strings is only possible through performing case analysis on the possible
names.

Because we have a run-time dictionary of all type class method names, which live in the top
level namespace, we can call

classDispatch [dictionary] [method name] [first argument].

For example, if we had a set of methods we might want to call, we could define something like the
class in Figure 3.12. This allows us to make calls like the ones in Figure 3.13.

This mechanism provides a limited form of the functionality of Lisp/Python’s eval function,
which can take a string and evaluate it as code. Using classDispatch is much safer than using
eval, as the result is lifted into the Maybe monad. The static type checker requires the programmer
to consider both the Just case and the Nothing case when recovering the result. This leverages
the type system to for static enforcement of proper error handling.



Chapter 4

Behind the scenes

Simplicity does not precede complexity, but follows it. -Alan Perlis

In this chapter I describe the implementation of the ClassDynamic library, the code generation
for run-time dictionaries, and the code generation for type class methods with results of variable
type. The implementation of is quite clean because the Glasgow Haskell Compiler (GHC) provides
good abstractions: the Typeable library provides a good abstraction for type reflection and the
GHC API library provides a nice interface for dynamically parsing Haskell source code into type-
checked abstract syntax.

4.1 ClassDynamic library

The novel contributions of the ClassDynamic library are 1) its support for representing intersections
of sets of type class instances and 2) the classDispatch function, which handles dynamic type
class method dispatch. In this section I highlight the key functionality of the library; please refer
to Appendix .1 for the complete library interface.

The ClassDynamic library defines the ClassDynamic data type, which stores a list of values
with their respective type representations:

ClassDynamic = [∃τ.(v :: τ, typeRep τ)].

I use the existential quantifier to represent a list of values, each of which has some type. The
existential quantifies only over each list item: the ClassDynamic data type itself does not leak any
information about τ . The typeRep allows us to crawl over ClassDynamic to discover the identity
of τ in order to use v at the type τ . The ClassDynamic data type can store handle higher-order
types (i.e., Int -> String) and applications of higher-kinded types (i.e., [Int]).

28
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The ClassDynamic library has the following constructors and destructors.

toClassDynamic :: ∀τ.τ → ClassDynamic

fromClassDyn :: ∀τ.ClassDynamic→ τ → Maybe τ

fromClassDynamic :: ∀τ.ClassDynamic→ Maybe τ

The fromClassDyn function takes a default argument of type α and returns a value of the type α
if one exists in the type representation; otherwise it returns the default argument. The function
fromClassDynamic infers a type τ from the calling context instead of the default context, returning
a value of type Maybe τ .

Claim 1. We have the following relationships1:

e :: τ, d :: τ
fromClassDyn (toClassDyn e) d = e :: τ

e :: τ ′, d :: τ, τ ′ 6= τ

fromClassDyn (toClassDyn e) d = d :: τ

If τ is the type from the calling context, we have:

e :: τ
fromClassDynamic (toClassDyn e) = Just e

e :: τ, τ 6= τ ′

fromClassDynamic (toClassDyn e) = Nothing

Since Haskell values are necessarily monomorphic, the length of the ClassDynamicInst list
corresponding to e’s representation must have a single element. Thus in the above definitions there is
a unique e such that e ∈ `i, where `i is the list of instances in the polymorphic representation. Both
fromClassDyn and fromClassDynamic must return the unique element, which is a representation
of e.

We have the classDynApply function for applying ClassDynamic functions to ClassDynamic

arguments, defined as

classDynApply :: ClassDynamic -> ClassDynamic -> Maybe ClassDynamic.

The function takes a representation of a function f :: t -> u and a representation of a value x

:: t’ and returns the result Just ((f x) :: u) if t is the same as t’:

f :: τ → µ, x :: τ
classDynApply (toClassDyn f :: τ → µ) (toClassDyn x :: τ) = Just (toClassDyn (f x) :: µ)

(4.1)
1The statements above the line represent the assumptions and the statement below the line represents the claim.
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f :: τ → µ, x :: τ ′, τ 6= τ ′

classDynApply (toClassDyn f :: τ → µ) (toClassDyn x :: τ) = Nothing
(4.2)

Note that t and u can be polymorphic, as each ClassDynamic can consist of a list of possible
instances. To handle this polymorphism, we try each of the instance combinations in order to
generate the list of instances for the resulting ClassDynamic value.

The most important function is

classDispatch :: [ClassDictEntry] -> String ->

ClassDynamic -> Maybe ClassDynamic,

for dynamic type class method dispatch. The classDispatch function takes a dictionary, the name
of a type class method, and the value to pass to the function. The data type ClassDictEntry stores
a mapping from type class method names to a list of ClassDynamic value storing the method
instance. I define it as the record type

data ClassDictEntry = CDE { name :: String, fns :: [ClassDynamic] }

Similar to the dynamicDispatch function in the previous chapter, classDispatch returns a Maybe

ClassDynamic representing the function applied to all matching type class methods.

Because we can have a ClassDynamic value that stores multiple values for a concrete type τ , we
also need to be able to return a list of all values of a given type.

Claim 2. The functions fromClassDyn and fromClassDynamic evaluate nondeterministically.
That is, given p :: ClassDynamic and a type τ , p = ClassDynamic `i, there may exist multiple
e ∈ `i such that e :: τ .

Consider the class declaration

class C a where c :: a -> String
instance C Int where c _ = "Int"
instance C Float where c _ = "Float"

This is because if we had a ClassDynamic value v resulting from a call to read consisting of

[1 :: Int, 1.0 :: Float]

and called
classDispatch funDict "c" v,

the result would be a representation of

["Int" :: String, "Float" :: String].
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Calling toClassDyn and toClassDynamic would yield only one of these; either one could be re-
turned.

Because of the possible nondeterminism we also have the function

fromClassDynamicAll :: ∀µ, τ.(MonadPlus µ)⇒ ClassDynamic→ µ [τ ],

which uses a monad to generalize over data structure constructors.

Another useful function is

combineClassDynamic :: ∀µ, τ.(MonadPlus µ)⇒ µ ClassDynamic→ Maybe ClassDynamic,

which takes a data structure of ClassDynamic values and combines them into a single ClassDynamic
value if the values have the same kind. This function is especially useful for combining the list of
type [ClassDynamic] we get from calling dispatchOn. For instance, we could have a call to read

that returns a list representing

[42 :: Int, 42.0 :: Float].

We can combine these two values into a single ClassDynamic value for continued computation.

Please refer to Appendix .2 for example uses of the ClassDynamic library.

4.2 Implementation

The GHC API allows us to both parse Haskell source code into abstract syntax and generate
abstract syntax elements producing compilable source code. With the GHC API we can dy-
namically import libraries and dynamically load source code into parsed, type-checked abstract
syntax [Com08b].

4.2.1 Crawling over the abstract syntax

Generating code for the dictionary and dispatch functions for unparameterized result types involves
crawling over the abstract syntax tree (AST) for the necessary type class information and producing
new abstract syntax for the produced modules. We can crawl over AST to collect the necessary
information about type class declarations and instance declarations.

The program-supplied type class declaration and instance definition information provide us with
all information we need for the extension. The standard class and instance declarations in Figure 4.1
provide enough information to determine that we have methods with the signatures

c :: Int -> Bool -> Int -> Int,
c :: Float -> String -> Float -> Int.
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class (Typeable a, Typeable b) -> C a b where
c :: a -> b -> a -> Int

instance C Int Bool where
c _ _ _ = 0

instance C Float String where
c _ _ _ = 1

Figure 4.1: Standard Haskell type class declaration and instance definitions.

For the source-to-source translation I store 1) a map from type class names to the type variables
of type classes and the type schemes of the functions and 2) a map from method names to the
types of the instance definitions. For the example above, we would associate the type class C with
the variables [a, b] and the signature

c :: a -> b -> a -> Int.

We would store the that c has instance definitions for [Int, Bool] and [Float, String]. This
information allows us to instantiate the method signatures to create a method name to instance
map with pairs like

("c", Int -> Bool -> Int -> Int).

With such a map we can easily generate our dictionaries and dispatch functions. No type-checking
information is necessary.

4.2.2 Generating code

Using the GHC API and the map of method names to method signatures, generating the dictionary
as abstract syntax is straightforward. The GHC API has functionality that allows me to pretty-print
the AST as code to a local file, which is by default DynamicDispatch.hs. I name the dictionary
instanceDictionary and give it the type [ClassDictEntry]. A sample dictionary is as follows:

instanceDictionary =
[CDE "c"

[toClassDyn (c :: Int -> Bool -> Int -> Int,
toClassDyn (c :: Float -> String -> Float -> Int)]]

We can also generate the dispatch functions using the map of method names to signatures.
From the signatures we can derive the number of arguments, the types of each of each of the
arguments, and the types of the intended results. Creating the case statements for a given function
involves crawling over the instance definitions and their types. Again, we can use the pretty printer
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to generate code from abstract syntax1. These functions also live in DynamicDispatch.hs by
default.

4.2.3 Typing requirements

To use the ClassDynamic constructor, which calls typeOf to examine type representations, we must
declare all type class variables in the context of Data.Typeable. We can do this without affecting
existing code2.

1As of GHC version 6.8.2, there is a bug in the GHC API pretty-printer that sometimes inserts gratuitous newlines.
We must remove these newlines before the resulting code can compile. I anticipate that this bug will be fixed at some
point.

2Since versions of GHC higher than 6.8 allow type class derivation to be declared after the initial type declaration,
we could define instances of Typeable for all types for which we need it.



Chapter 5

Conclusions

In man-machine symbiosis, it is man who must adjust: The machines can’t. -Alan
Perlis

Our investigation of Haskell commenced with the search for a favorable compromise between
static correctness and dynamic flexibility for method dispatch. Currently, Haskell’s type classes
provide a nice framework for grouping types by functionality, but we have no convenient mechanism
for using them when types are not known until run time. In this thesis I have shown that we can
extend the Haskell framework to support dynamic dispatch of type class methods.

The ClassDynamic library I present provides a way to specify dynamic dispatch: the function
classDispatch essentially allows us to dynamically discriminate membership in type classes for
the purpose of method dispatch. I also provide the dispatchOn mechanism as a solution to issues of
ambiguity in dispatching methods with variable result type. The dispatchOn mechanism is useful
when the result type of a method dispatch is not known at compile time. By providing respite from
the exacting Haskell type checker, dynamic dispatch allows for much more flexibility.

These extensions make dynamic dispatch in Haskell as safe as possible: dynamic method dis-
patches raise exceptions only in cases when analogous static dispatches would also raise exceptions.
For example, the call to

read "True" :: Int

raises the run-time exception “no parse” from both static and dynamic dispatch. The new mech-
anisms use the Maybe monad to encapsulate all other forms of error. Using the statically checked
monad construct minimizes the points of failure by leveraging the type checker to enforce proper
error handling.

In the remainder of this chapter I address future directions for this work and attempt to convince
the reader that it is important to continue work in combining dynamic and static type-checking.

34



35

5.1 Future work

There are various extensions that would allow for a more seamless integration of the new mech-
anisms. The most natural extension is to build support for dynamic type class dispatch into the
Glasgow Haskell Compiler by having the compiler generate the dictionary and dispatchOn func-
tions. This might permit cleaner syntax. For instance, we might be able to shift responsibility of
handling the method dictionary to the compiler.

One limitation of the new mechanism is that it does not support separate compilation: the
source-to-source translation requires access to the complete source of code, as all instance declara-
tions are relevant. We could modify the Glasgow Haskell Compiler to store type class declaration
and instance definition information with compiled binaries. This would allow us to compile files
separately and examine the binaries for the necessary information.

We could also think about modifying the language to create more convenient syntax that reflects
the grouping of types by type class:

printPickledValue :: Dynamic -> IO ()
printPickledValue v =
case fromDynamicClass Picklable v of

Maybe (p :: (Picklable a) => a) -> putStrLn p
Nothing -> putStrLn "Unable to perform request."

Another issue that still exists is in the handling of exceptional cases: if a method receives a
value of an inappropriate type, the sender of the value has no direct role in the error handling. For
instance, consider the following function:

printPickledValue :: ClassDynamic -> IO ()
printPickledValue v =
case classDispatch funDict "pickle" v >>= fromClassDynamic of

Just s -> putStrLn s
Nothing -> putStrLn "Can’t do anything; we were given a bad value."

Since printPickledValue does not return a value to its caller, it has no convenient way of
communicating an error to the sender of some bad value. It would be useful to devise a language
mechanism for throwing an error to the sender.

One of my longer-term goals is to use Haskell concepts in building a better language that
simultaneously accommodates prototyping and development for production. Haskell’s type system
requires programs to be coherent at all times: all values must have a type at compile time and all
types must be consistent. When prototyping, we often do not know where we are going, so having
such an exacting type system could hinder development. For production code, however, we want the
security of static guarantees. I would like to have a language that allows me to create a dynamically
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type-checked prototype that can subsequently be annotated for compile-time correctness-checking
and optimization. It would be even better to find a way to allow code to coexist in these two phases
such that I could 1) run prototyping code with production code and to 2) run flexible dynamic
code with code for which static correctness is more critical.

5.2 Looking ahead

Finding a favorable compromise between dynamic flexibility and static correctness will continue to
be important. Consider a perhaps unexpectedly prevalent use of the Internet for exchanging com-
putation and data: as of January 2008, the Berkeley Open Infrastructure for Network Computing
(BOINC), which manages scientific computing efforts, had 1,237,468 active users downloading com-
puting projects to run on their personal computers [fNC08]. (Compare this to Jabber, a popular
open-source platform for chat software, which had 301,434 users at around the same time [Fou08].)
BOINC provides evidence that users are willing to accept complex computations from across the
network provided that there are some safety guarantees. Developing languages with flexible dy-
namic features that simultaneously provide technical guarantees on program behavior will liberate
people from trust-based networks and allow for more expressive interactions across the network.
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Appendix

.1 ClassDynamic interface

The public interface of the ClassDynamic library is as follows.

• data ClassDynamic = ClassDynamic [ClassDynamicInst]

The type constructors for the ClassDynamic type. Rather than storing a single type repre-
sentation an object, we are storing a list of possible instances. ClassDynamic is an instance
of Typeable and Show. Data type ClassDynamicInst currently has the same definition as
TypeRep, but we hope to extend this to accomodate polymorphic type representations.

• data PolyDictEntry = CDE { name :: String, fns :: [ClassDynamic]}

Stores data type for mapping function names to instantiated functions.

• toclassDyn :: Typeable a => a -> ClassDynamic

Wraps an object with a ClassDynamic constructor and stores the value with the type repre-
sentation. Uses Typeable ’s typeOf function to determine the type representation.

• fromClassDyn :: Typeable a => ClassDynamic -> a -> a

fromClassDynamic :: Typeable a => ClassDynamic -> Maybe a

fromClassDynamicAll :: Typeable a, MonadPlus m => ClassDynamic -> m a

Returns the actual representation of the value if it is monomorphic and the request type
represents the type representation. Function fromclassDyn calls fromClassDynamic and
returns the second argument (a default value of type a) if fromClassDynamic returns Nothing.
Function fromClassDynamicAll returns all values of the given type.

• combineClassDynamic :: MonadPlus m => m ClassDynamic -> Maybe ClassDynamic

Takes a list of ClassDynamic values and combines them into a single multi-type value if all
values are similarly kinded.

• classDynApply :: ClassDynamic -> ClassDynamic -> Maybe ClassDynamic

classDynApp :: ClassDynamic -> ClassDynamic -> ClassDynamic
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Applies all type/value combinations to all type/value combinations of the argument and
creates a new ClassDynamic value containing all new possible

• classDynTypeReps :: ClassDynamic -> [TypeRep]

Returns the lists of types represented by a ClassDynamic value.

• classDispatch :: Map.Map String [ClassDynamic] -> String ->

ClassDynamic -> Maybe ClassDynamic

Dynamic type class method dispatch function.

.2 Using the ClassDynamic library

Suppose we had the following corresponding dictionary to the previous definition of type class C:

funDict :: [ClassDictEntry]
funDict =
[ PDE "c" [toClassDyn (c :: Int -> Bool -> String),

toClassDyn (c :: Bool -> Bool -> String),
toClassDyn (c :: Int -> Int -> String)] ]

We could use this dictionary to dispatch on the function c:

main = do {
let fCDyn = case classDispatch functionMap "c" (toClassDyn (1 :: Int)) of

Just f -> f
Nothing -> error "bad"
; putStrLn (show fCDyn)

-- Fully apply it.
; let fCAppDyn = classDynApp fCDyn (toClassDyn True)
; putStrLn (show fCAppDyn)

-- Get the result back out.
; case fromClassDynamic fCAppDyn of

Just (s :: String) -> putStrLn s
Nothing -> putStrLn "no result"

}

This code would produce the following output:

<<[<<Bool -> Char]>>, <<Int -> [Char]>>]>>
<<[<<[Char]>>]>>
(Int, Bool)
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Note that the ClassDynamic class also worked for types that contain type applications of higher-
kinded types. We would declare a type class with such a class as follows:

class CCons c a where cCons :: c a -> String
instance CCons [] Int where cCons x = "list"

With this, a call to cCons with a valid integer list will yield the resulting string "list".
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