Introduction Computational model Synthesis strategy Conclusions and future directions

Synthesizing Robustness in Log Processing

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe
MIT CSAIL

March 4, 2009

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model

Synthesis strategy Conclusions and future directions

Data processing programs often have simple semantics

| City | Year | ADA-compliant | Total stations |
Boston ; : :
2000 | 37 53
Chicago 2000 | 14 141
New York || 2000 | 30 468
Total 2000 | 56 598

num_compliant := 0;

num_total := 0;

Table: Railroad station data for 2000.

foreach ¢, t in compliant, total do
num_compliant := num_compliant + c;

num_total := num_total + t;

end

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe

Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

What about missing fields?

] City H Year \ ADA-compliant \ Total stations

Badville || 2000 | Unreported Unreported

Table: Railroad station data for 2000.

num_compliant := 0;
num_total := 0;
foreach c, t in compliant, total do

if ¢, t are reported then
num_compliant := num_compliant + c;

num_total := num_total + t;
end

end

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

But wait! There is other information. ..

] City H Year \ ADA-compliant \ Total stations
Baduville || 1999 | 5 9
2000 | Unreported Unreported
2001 | 5 9
2002 | 5 10

Table: Railroad station data for Badville across multiple years.

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Getting more information from data

num_compliant := 0;

num_total := 0;

foreach ¢, t in compliant, total do
if ¢, t are reported then

end

else
prev_reported := previous ¢, t are reported;

next_reported := next c, t, are reported,;

tightly_bounded := prev. ¢ == next c, prev. t == next t;

if prev_reported N\ next_reported A tightly_bounded then
num_compliant := num_compliant + (previous c);
num_total := num_total + (previous t);

end

end
end

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Troublesome cases: some stylized facts

WEIRD — MY CODES CRASHING
WHEN GIVEN F’R’E—l‘?m DATES.

EFOCH F‘AlL'

'3

e 70% of the code in reliable software is for handling edge
cases [Gehani '92].

o % of system crashes come from exception failures [Flaviu '95].

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

One man’s work, another woman'’s boilerplate

Goal.
Generalize a brittle program to handle edge cases.

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Application to ad-hoc data processing domain

Goal.
Generalize a program to handle missing data correctly.

1. Focus on semantic robustness.

2. Robustness comes from programmer knowledge.
Input program = 7?7 = Robust program

1. Determine space of correct behavior(s) given missing inputs.

2. Generate more robust program that exhibits desired behavior.

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Data processing execution model

N 0 4 N 1 A4 N 1 4
Input Relation 1 Relation 2 Output
Y A\ v A\ 4 A\

Figure: Model of data processing.

Computational model based around
1. data declarations;
2. stateful transformers;

3. constraints.

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Loglog, a logic-based language for logs

type stationdata { compliant :: int, total :: int }
type citydata = stationdata list
input input_data :: citydata list

constraint {

idata :: citydata list.
i, j :: int.
length idata[i] = length idata[j].

}

V(d : citydata list),(i:int),(j : int).
(length d[i]) = (length d[j]).

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Loglog constraints for missing inputs

constraint {
c :: citydata.
i, j, ko int. j=1i+1. j=k— 1.
missing c[j].compliant.
c[i].compliant <= c[]j].compliant.
c[k].compliant <= c[k].compliant.

V(c: citydata), (i : int), (j : int), (k : int).
(i=74+1)AN(j=k—1)A (missing c[j|.compliant)A
—((missing c[i].compliant) V (missing c[k|.compliant)) =
(c.compliant[i] < c.compliant[j])A
(c.compliant[j] < c.compliantl[k])).

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Implicit constraints from stateful transformers

function count_compliant(city_info :: citydata list
, year_index :: int) =
num_compliant = 0;
num_total = 0;

foreach city_entry in city_info:
num_compliant += city_entry [year_index].compliant;
num_total += city_entry[year_index].stations;
return (num_compliant, num_total);

But num_compliant, num_total may depend on missing inputs. ..

] Iter. \ Input \ num_compliant constraints ‘

0 2 num_compliant = 2
1 [3,6] | (num_compliant > 5) A (num_compliant < 8)
2 42 (num_compliant > 47) A (num_compliant < 50)

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Synthesis for practical programs

e Can easily solve constraints with respect to concrete data.

e For real data, impractical to solve constraints for each
instance of missing values!

e Use inductive synthesis techniques to synthesize programs to
handle general case of missing data.

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Pseudocode for robust output

type cint := Concrete int | Range (int, int);

count_compliant (city_info, year_index)
num_compliant := Concrete 0;

num_total := Concrete 0;

foreach city_entry in city_info do
num_compliant :=

city_entry[year_index].compliant +. num_compliant;
num_total := city_entry[year_index].total 4. num_total;
end
return num_compliant, num_total;

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Synthesizing robustness

Input program = Synthesis =- Robust program

1. Determine the space of correct behaviors.
e Use symbolic values to model missing data.
e Discover constraints on desired behavior.
e Solve for correct behavior(s).
2. Enrich original program to handle symbolic values.
e Develop concrete representation for missing data and
associated operations.
e |nsert code for concretizing missing values.
e Rearrange constraint checking for efficiency.

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Conclusions

e We have:

e Framed our problem in the data processing domain.

e Defined a computational model for symbolic computation.

e Prototyped a Loglog interpreter that handles constraints.
e Future work:

e Implement full program generation.
e Infer constraints.

e Ultimately: synthesize robustness for full-blown programs.

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

Introduction Computational model Synthesis strategy Conclusions and future directions

Questions? Comments?

Jean Yang jeanyang@csail.mit.edu
Armando Solar-Lezama asolar@csail.mit.edu
Saman Amarasinghe saman@csail.mit.edu

Jean Yang, Armando Solar-Lezama, and Saman Amarasinghe Synthesizing Robustness in Log Processing

	Introduction
	Computational model
	Synthesis strategy
	Conclusions and future directions

