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Abstract
We present an approach for dynamic information flow control
across the application and database. Our approach reduces
the amount of policy code required, yields formal guarantees
across the application and database, works with existing rela-
tional database implementations, and scales for realistic appli-
cations. In this paper, we present a programming model that
factors out information flow policies from application code
and database queries, a dynamic semantics for the underlying
λJDB core language, and proofs of termination-insensitive
non-interference and policy compliance for the semantics.
We implement these ideas in Jacqueline, a Python web frame-
work, and demonstrate feasibility through three application
case studies: a course manager, a health record system, and
a conference management system used to run an academic
workshop. We show that in comparison to traditional applica-
tions with hand-coded policy checks, Jacqueline applications
have 1) a smaller trusted computing base, 2) fewer lines of
policy code, and 2) reasonable, often negligible, additional
overheads.

1. Introduction
From social networks to electronic health record systems,
programs increasingly process sensitive data. As information
leaks often arise from programmer error, a promising way to
reduce leaks is to reduce opportunities for programmer error.

A major challenge in securing web applications involves
reasoning about the flow of sensitive data across the appli-
cation and database. According to the OWASP report [42],
errors frequently occur at component boundaries. Indeed,
the difficulty of reasoning about how sensitive data flows
through both application code and database queries has led
to leaks in systems from the HotCRP conference manage-
ment system [5] to the social networking site Facebook [46].
The patch for the recent HotCRP bug involves policy checks
across application code and database queries.

Information flow control is important to securing the
application-database boundary [16, 19, 30, 42]. This is be-
cause leaks often involve the results of computations on
sensitive values, rather than sensitive values themselves. To
reduce the opportunity for inadvertent leaks, we present a
policy-agnostic approach [8, 47]. Using this approach, the
programmer factors out the implementation of information
flow policies from application code and database queries. The
system manages the policies, removing the need to trust the
remaining code. The program thus specifies each policy once,
rather than as repeated intertwined checks across the program.
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Figure 1. Application architecture in a standard web server
compared to a policy-agnostic web server.

Because of this, policy-agnostic programs require less policy
code. We illustrate these differences in Figure 1.

Supporting policy-agnostic programming for web appli-
cations requires the framework to enforce information flow
policies across the application and database. As we also show
in Figure 1, a standard web program runs using an application
runtime and a database. An object-relational mapping (ORM)
to mediate interactions between the two. Our web framework
uses a policy-agnostic application runtime and a specialized
ORM that mediates interactions between policy-agnostic ap-
plication code and policy-agnostic database queries.

There are three main parts to our solution: 1) supporting
policy-agnostic database queries, 2) providing formal guaran-
tees across the application and database, and 3) addressing
issues of practical feasibility. We extend prior work on the
Jeeves programming language [8, 47] that defines a policy-
agnostic semantics for a simple imperative language. As is
common with language-based approaches, Jeeves’s guaran-
tees extend only within the Jeeves runtime. Interoperation
with external databases is important as web applications rely
on commodity databases for performance reasons. The chal-
lenge is, then, to support policy-agnostic programming for
database queries in a way that leverages existing dadtabase
implementations while providing strong guarantees.

We present faceted databases for supporting policy-
agnostic database queries. The Jeeves runtime performs
different computations based on the permissions of the user
viewing the output. Because the viewer may not be known
in advance, the runtime uses faceted execution to simulate
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simultaneous executions. A faceted value is the runtime
representation of a value that may differ across executions.
Semantically, a faceted database stores faceted values and
performs faceted query execution. We show how to use a
faceted object-relational mapping (FORM) to embed faceted
values using relational databases and, surprisingly, to support
faceted query execution simply by manipulating meta-data.
The FORM manages complex dependencies, allowing a pol-
icy to query the data it protects.

Next we show that interoperation with faceted databases
yields strong guarantees. We extend Jeeves’s core language
with relational operators to create the λJDB core language.
We present a dynamic faceted execution semantics for λJDB

and prove termination-insensitive non-interference and pol-
icy compliance. The formalization corresponds closely to an
implementation strategy using existing database implementa-
tions while yielding concise proofs.

Towards supporting realistic applications, we formulate
an “Early Pruning” optimization. While simulating multiple
executions is desirable for reasoning, exploring multiple
executions can be expensive in practice. The Early Pruning
optimization allows the program to use program assumptions
to safely explore fewer executions. This optimization is
particularly useful for web applications, where it is often
possible to use the session user to predict the viewer. With
Early Pruning, performance may even be better than with
hand-coded checks, as the runtime may now check policies
once rather than repeatedly throughout execution.

Finally, we demonstrate practically feasibility. We present
Jacqueline, a web framework based on Python’s Django [3]
framework. We use Jacqueline to build several application
case studies, including a conference management system that
we have deployed to run an academic workshop. The case
studies show that using Jacqueline, policies are localized and
the size of the policy code is smaller. Consequently, security
audits can focus on the localized policy specifications rather
than having to review the entire code base. We also demon-
strate that Jacqueline has reasonable, often negligible, over-
heads. For one case, the Jacqueline implementation performs
better than an implementation with hand-coded policies.

In summary, we make the following contributions:

• Policy-agnostic web programming. We present an ap-
proach that allows programmers to factor out information
flow policies from the rest of web programs and rely on a
web framework to dynamically enforce the policies.
• Faceted databases. We present faceted databases to

support policy-agnostic relational database queries. We
present a faceted object-relational mapping (FORM) strat-
egy for implementing faceted databases using existing
relational database implementations.
• Faceted execution for database-backed applications.

We show interoperation of faceted databases with faceted
application runtimes by presenting a dynamic seman-

tics for the λJDB core language and proving termination-
insensitive non-interference and policy compliance.
• Early Pruning optimization. We address performance

issues with exploring multiple executions by formalizing
the Early Pruning optimization, proving that it preserves
policy compliance, and demonstrating that it significantly
decreases overheads.
• Demonstration of practical feasibility. We present the

Jacqueline web framework and demonstrate expressive-
ness and performance through several application case
studies. We compare against hand-implemented policies,
showing that not only does Jacqueline reduce lines of pol-
icy code, but also that policy enforcement has reasonable,
often negligible, overheads.

Our approach decreases the opportunity for programmer error,
provides strong formal guarantees, and is practically feasible.

2. Introductory Example
Consider a social calendar application. Suppose Alice and
Bob want to plan a surprise party for Carol, 7pm next Tuesday
at Schloss Dagstuhl. They should be able to create an event
such that information is visible only to guests. Carol should
see that she has an event 7pm next Tuesday, but not that it is
a party. Everyone else may see that there is a private event at
Schloss Dagstuhl, but not event details.

We demonstrate how to implement this example using
Jacqueline, our new web framework based on Django [3], a
model-view-controller framework. In a standard MVC frame-
work, the model describes the data, the view describes fron-
tend page rendering, and the controller implements other func-
tionality. An object-relational mapping (ORM) supports a uni-
form object representation. In Jacqueline, the model addition-
ally specifies information flow policies. The faceted object-
relational mapping (FORM) additionally supports a uniform
representation of sensitive values and policies. Jacqueline is
policy-agnostic: other than the policies, a Jacqueline program
looks like a policy-free Django program.

The division of labor between the programmer and the
framework is as follows. The programmer associates infor-
mation flow policies with fields in the data schema, codes
within the subset of Python supported by our Jeeves library,
and accesses the database only through the Jacqueline API.
The framework tracks sensitive values and policies between
the application and database to produce outputs that adhere
to the policies. In our attack model, the user is untrusted and
we assume the programmer is not malicious.

We intend for this example to explain the semantics of
policy-agnostic web programming. We discuss issues of
implementation and optimization issues in later sections.

2.1 Schemas and Policies in Jacqueline
In Jacqueline, programmers specify each information flow
policy once, associated with the data schema in the model.
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1 c l a s s Event ( JModel ) :
2 name = C h a r F i e l d ( max_length =256)
3 l o c a t i o n = C h a r F i e l d ( max_length =512)
4 t ime = DateTimeFie ld ( )
5 d e s c r i p t i o n = C h a r F i e l d ( max_length =1024)
6

7 # P u b l i c v a l u e f o r name f i e l d .
8 @sta t i cmethod
9 def j a cque l i n e_ge t_pub l i c_name ( even t ) :

10 r e t u r n " P r i v a t e even t "
11

12 # P u b l i c v a l u e f o r l o c a t i o n f i e l d .
13 @sta t i cmethod
14 def j a c q u e l i n e _ g e t _ p u b l i c _ l o c a t i o n ( even t ) :
15 r e t u r n " U n d i s c l o s e d l o c a t i o n "
16

17 # P o l i c i e s f o r name and l o c a t i o n f i e l d s .
18 @sta t i cmethod
19 @ l a b e l _ f o r ( ’ name ’ , ’ l o c a t i o n ’ )
20 @ j a c q u e l i n e
21 def j a c q u e l i n e _ r e s t r i c t _ e v e n t ( event , c t x t ) :
22 r e t u r n ( EventGuest . o b j e c t s . ge t (
23 even t=s e l f , g u e s t=c t x t ) != None )
24

25 c l a s s EventGuest ( JModel ) :
26 even t = Fore ignKey ( Event )
27 g ue s t = Fore ignKey ( U s e r P r o f i l e )

Figure 2. Jacqueline schema fragment for calendar events.

We show a sample schema for the Event and EventGuest data
objects in Figure 2. A Jacqueline schema defines field names,
field types, and optional policies. We define the Event class
with fields name, location, description, and visibility, where
visibility is a user-specified setting corresponding to whether
the event is visible to everyone or only to guests. Up to line 5,
this looks like a standard Django schema definition.

2.1.1 Secret Values and Public Values
A sensitive value in Jacqueline encapsulates a secret (high-
confidentiality) view available only to viewers with sufficient
permissions and a public (low-confidentiality) view available
to other viewers. Jacqueline allows sensitive values to behave
as either the secret value or public value, depending on
viewing context (i.e. the user viewing a page).

The actual field value is the secret view and the program-
mer must additionally define a method computing the public
view. On line 9 we define the jacqueline_get_public_name
method computing the public view of the name field. If the
permissions prohibit a viewer from seeing the sensitive name
field, then the name field will behave as "Private event"
throughout all computations, including database queries. This
function takes the current row object (event) as an argu-
ment, allowing public values to be computed using row
fields. The Jacqueline ORM uses naming conventions (i.e. the
jacqueline_get_public prefix) to find the appropriate meth-
ods to compute public views.

2.1.2 Specifying Policies
Information flow policies guard the flow of sensitive values.
On line 21 we implement the policy for the fields name
and location, as indicated by the label_for decorator. The
policy is a method that takes two arguments, the current row
object (event) and the viewer (ctxt) corresponding to the user
looking at a page. Our policy queries the EventGuest table
(line 25) to determine whether the viewer is associated with
the event. Jacqueline enforces this policy with respect to the
value of event at the time a value is created and the state of
the system at the time of output.

2.2 Faceted Execution
Once the programmer associates policies with sensitive data
fields, the rest of the program may be policy-agnostic. We
call create in Jacqueline the same way as in Django:
c a r o l P a r t y = Event . o b j e c t s . c r e a t e (

name = " C a r o l ’ s s u r p r i s e p a r t y "
, l o c a t i o n = " S c h l o s s Dagstuh l " , . . . )

To manage the policies, the Jacqueline FORM creates faceted
values for the sensitive fields. For the name fields, the frame-
work creates the faceted value 〈k ? "Carol’s surprise party" :
"Private event"〉, where k is a fresh Boolean label guarding
the secret actual field value and the public facet computed
from the get_public_name method. The runtime eventually
assigns label values based on policies and the viewer. We
describe in Section 3 how the FORM stores faceted values in
a relational database.

The runtime evaluates faceted values by evaluating each of
the facets. Evaluating "Alice’s events: " + str(alice.events)
yields the resulting faceted value guarded by the same label:
〈k ? " A l i c e ’ s e v e n t s : C a r o l ’ s s u r p r i s e p a r t y "

: " A l i c e ’ s e v e n t s : P r i v a t e even t "〉

Guests of the event will see "Carol’s surprise party" as part
of the list of Alice’s events, while others will see only
"Private event". Faceted execution propagates labels through
all derived values, conditionals, and variable assignments to
prevent indirect and implicit flows.

Jacqueline performs faceted execution for database queries,
preventing indirect flows through queries like the following:
Event . o b j e c t s . f i l t e r (

l o c a t i o n=" S c h l o s s Dagstuh l " )

If carolParty is the only event in the database, faceted execu-
tion of the filter query yields a faceted list 〈m ? [carolParty] :
[]〉. Viewers who should not be able to see the location field
will not be able to see values derived from the sensitive field.

Jacqueline also prevents implicit leaks through writes to
the database. For instance, consider this code that replaces
the description field of Event rows with "Dagstuhl event!"
when the location field is "Schloss Dagstuhl":
f o r l o c i n Event . o b j e c t s . a l l ( ) :

i f l o c . l o c a t i o n == " S c h l o s s Dagstuh l " :
l o c . d e s c r i p t i o n = " Dagstuh l even t ! "
save ( l o c )
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For carolParty the condition evaluates to 〈k ? True : False〉.
The runtime records the influence of k when evaluating the
conditional so that the call to save writes 〈k ? carolPartyNew :
carolParty〉, where carolPartyNew is the updated value.

2.3 Computing Concrete Views
Computation sinks such as print take an additional ar-
gument corresponding to the viewer and resolves poli-
cies according to the viewer and policies. For instance,
print carolParty.name displays "Carol’s surprise party" to
some viewers and "Private event" to others. The program-
mer does not need to designate the viewer: it can be an
implicit parameter set from authorization information.

The policies and viewer define a system of constraints for
determining label values. Printing carolParty.name to alice
corresponding to the following constraint:

k ⇒
( EventGuest . o b j e c t s . ge t (

even t=s e l f , g u e s t=c t x t ) != None )

To account for dependencies on mutable state, the runtime
evaluates this constraint in terms of the guest list at the time of
output. Labels are the only free variables in the fully evaluated
constraints. There is always a consistent assignment to the
labels: assigning all labels to False is always valid.

The constraint semantics allows Jacqueline to handle
mutual dependencies between policies and sensitive values.
Suppose that the guest list policy depended on the list itself:

@ l a b e l _ f o r ( ’ g ue s t ’ )
def j a c q u e l i n e _ r e s t r i c t _ g u e s t ( even tgue s t , c t x t ) :

r e t u r n ( EventGuest . o b j e c t s . ge t (
even t=e v e n t g u e s t . e , g u e s t=c t x t ) != None )

The policy requires that there must be an entry in the
EventGuest table where the guest field is the viewer ctxt, so
the policy for the guest field depends on the value of the field
itself. There are two valid outcomes for a viewer who has
access: either the system shows empty fields or the system
shows the actual fields. Jacqueline always attempts to show
values unless policies require otherwise. Note that unless
there are mutual dependencies, Jacqueline may determine
label values by evaluating policies directly.

Such circular dependencies are increasingly common in
real-world applications. Consider, for instance, the following
policies: a viewer must be within some radius of a secret
location to see the location; a viewer must be a member of a
secret list to see the list. Unfortunately, it is common practice
to execute such policies in a trusted “omniscient” context that
risks leaking information.

3. The Faceted Object-Relational Mapping
Our faceted object-relational mapping (FORM) 1) uses meta-
data to represent faceted values and 2) manages queries by
manipulating meta-data and marshalling to and from the
database representation. Surprisingly, our solution allows
us to use existing relational database implementations for

creating, updating, selecting, joining, and sorting records.
In this section, we introduce the faceted object-relational
mapping (FORM) using SQL syntax and present the Early
Pruning optimization.

3.1 Executing Relational Queries with Facets
A faceted row is a faceted value containing leaves that
are non-faceted relational records. Any record containing
faceted values may be rewritten to be of this form. We map
each faceted row to multiple database rows by augmenting
records with meta-data columns corresponding to 1) a unique
identifier jid and 2) an identifier jvars describing which facet
the row corresponds to, for instance "k1=True,k2=True".

The FORM is responsible for marshalling between the
database and runtime representations of faceted values. The
FORM stores the faceted value 〈k ? "Carol’s surprise party" :
"Private event"〉 as two rows in the Event table with the
same jid of 1. The secret facet has a jvars value of "k=True"
and the public facet has a jvars value of "k=False". For nested
facets, we store more labels in the jvars column, for instance
"k1=True,k2=True". In Table 1 we show how this faceted
value would look in an augmented table.

3.1.1 Queries That Track Sensitive Values
A key advantage of our representation is that the FORM
can issue standard relational queries not only for selections
and projections, but also joins and sorts. Storing each facet
in a different row allows the FORM to rely on the correct
marshalling of query results for preventing indirect flows
through queries. Note that the FORM would not be able to
issue relational queries in such a straightforward way, for
instance, if it stored each faceted value in the same row, or if
it stored different facets in different databases.

Consider the query SELECT ∗ from Event WHERE
location = "Schloss Dagstuhl" on the rows from Table 1.
Issuing the query directly on the augmented database will
return the one matching row with jid=1 and jvars="k=True".
Reconstructing the facet structure yields a faceted value
guarded by label k with a collection containing the record
in the secret facet and an empty collection in the other facet.
Relying on unmarshalling is sufficient for faceted execution.

Surprisingly, rows from joins that occur based on sensitive
values will also be appropriately guarded by the appropri-
ate path conditions. The only additional considerations the
FORM needs to make for joins are to 1) take into account the
jvars fields from both tables and 2) ensure that foreign keys
(references into another table) use jid rather than the primary
key. In Table 2, we show an example where the WHERE
clause filters on the results of a JOIN. In the ON clause, we
use the jid rather than id. In the SELECT clause, we include
the User.jvars as well as the EventGuest.jvars field.

A particularly nice consequence of storing each facet
in different rows is that the FORM can take advantage of
SQL’s ORDER BY functionality for sorting. Suppose we
had faceted records, each with a single field f, with values
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id name location jid jvars
1 "Carol’s ... party" "Schloss Dagstuhl" 1 "x=True"
2 "Private event" "Undisclosed location" 1 "x=False"

Table 1. Example table.

Django Query Jacqueline Query

EventGuest.objects.filter(guest__name="Alice")
SELECT EventGuest . event , EventGuest . gu e s t

FROM EventGuest
JOIN U s e r P r o f i l e

ON EventGuest . gue s t_ id = U s e r P r o f i l e . i d
WHERE U s e r P r o f i l e . name=’ A l i c e ’ ;

SELECT EventGuest . event , EventGuest . guest ,
EventGuest . j i d , EventGuest . j v a r s ,
U s e r P r o f i l e . j v a r s

FROM EventGuest
JOIN U s e r P r o f i l e

ON EventGuest . gue s t_ id = U s e r P r o f i l e . j i d
WHERE U s e r P r o f i l e . name=’ A l i c e ’ ;

Table 2. Translated ORM queries in Django vs. Jacqueline.

〈a ? "Charlie" : "∗∗∗"〉, 〈b ? "Bob" : "∗∗∗"〉, and 〈c ? "Alice" :
"∗∗∗"〉. The FORM can use the standard sorting procedure
without leaking information because the secret values are
stored in different rows from the public values. Correct
unmarshalling will enforce the policies so that, for instance,
an output context with the permitted labels {a,¬b,c} would
see ["∗∗∗", "Alice", "Charlie"].

A limitation is that the FORM cannot use existing rela-
tional implementations for aggregation, for instance counting
or summing. Using aggregate queries directly could leak in-
formation because without looking at the path conditions,
these aggregates would combine values across facets. This
does not suggest a fundamental limitation. Applications often
prematerialize aggregates, making it reasonable to use the
faceted runtime to precompute aggregates. Otherwise, sup-
porting faceted aggregation at scale is a matter of optimizing
the procedures, perhaps as database user-defined functions.

3.1.2 Creating and Updating Data and Policies
The FORM creates tables and rows with the appropriate
metadata to keep track of facets. The FORM prevents implicit
leaks through updates by updating meta-data appropriately
and potentially deleting rows. Invoking save in branches
that depend on faceted values creates facets that incorporate
the path conditions. To add policies, the programmer needs
to manipulate only the meta-data columns (jvars and jid).
Adding policies to legacy data involves adding meta-data
columns. Updating policies using existing labels simply
involves updating policy code.

3.2 Early Pruning Optimization
An important correctness-preserving optimization is to prune
facets once the runtime knows the viewer. This involves being
able to determine 1) the viewing context and 2) that policy-
relevant state relevant will not change before output. Two
properties of web programs make this analysis simple. First,
the session user is often the viewing context. Second, com-

putation sinks are easy to identify in model-view-controller
frameworks: most functions either read from the database or
write to the database, but not both. This makes it advanta-
geous for the framework to speculate on the viewer for “get”
requests. We formalize Early Pruning in Section 4.4.

3.3 Data Representation Considerations
It is also important to discuss whether storing faceted val-
ues in the database may be prohibitively expensive. There
are many ways to avoid storing too much data in practice.
Work on multi-level databases [22, 31] suggests it is both
useful and practically feasible to store multiple versions of
data corresponding to different access levels. The question
becomes, then, how to avoid storing too much data due to too
many possible path conditions. An important optimization
involves combining values that are the same to a single view.
In Section 4, we define an optimization to allow sharing rows
that different facets have in common.

4. Formal Semantics and Policy Compliance
We model the faceted object relational mapping with the
idealized core language called λJDB. We prove that λJDB

satisfies termination-insensitive non-interference and policy
compliance across the application and database.

4.1 Syntax and Formal Semantics
The language λJDB extends the language λjeeves [8] with
support for databases, which we model as relational tables.
Figure 3 summarizes the λJDB syntax, with the constructs
from λjeeves marked in gray. The λjeeves language, in turn,
extends the standard imperative λ-calculus with constructs for
declaring new labels (label k in e), for imperatively attaching
policies to labels (restrict(k,e)), and for creating faceted
values (〈k ? eH : eL〉). This last expression behaves like eH
from the perspective of any principal authorized to see data
with label k and eL for all other principals.
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e ::= Term
x variable
c constant
λx.e abstraction
e1 e2 application
ref e reference allocation
!e dereference
e1:=e2 assignment
〈k ? eH : eL〉 faceted expression
label k in e label declaration
restrict(k,e) policy specification
row e create a table
σi= j e select rows where i = j
πi e project columns
e1 ./ e2 join or cross-product of tables
e1∪ e2 union of tables
fold e f ep et table fold

S ::= Statement
let x = e in S let statement
print {ev} er print statement

c ::= Constant
f file handle
b boolean
i integer
s string

x,y,z Variable
k, l Label

Figure 3. λJDB syntax.

The language λJDB extends λjeeves with support for
databases, where each table is a (possibly empty) sequence
of rows and each row is a sequence of strings. We require
that all rows in a table have the same size. To manipulate
tables, λJDB includes the usual operators of the relational
calculus: selection (σi= j e), which selects the rows in a
table where fields i and j are identical, projection (πi e),
which returns a new table containing columns i from the
table e, cross-product (e1 ./ e2), which returns all possible
combinations of rows from e1 and e2, and union (e1 ∪ e2),
which appends two tables. The construct row e creates a
new single-row table. The fold operation fold e f ep et sup-
ports iterating, or folding, over tables. Fold has the “type”
∀A,B.(B→ A→ B)→ B→ table A→ B.

4.2 Formal Semantics
We formalize the big-step semantics as the relation Σ,e ⇓pc
Σ′,V , denoting that expression e and store Σ evaluate to V ,
producing a new store Σ′. The program counter pc is a set
of branches. Each branch is either a label k or a negated

label ¬k. Association with k means the computation is visible
only to principals authorized to see k and association with ¬k
visibility only to principals not authorized to see k.

We chose our representation of faceted databases to be
faithful to realistic implementation strategies. We could rep-
resent faceted tables as 〈k ? table T1 : table T2〉, but this ap-
proach would incur significant space overhead, as it requires
storing two copies of possibly large database tables, possibly
with only small differences between the two tables. Instead,
we use the more efficient approach of faceted rows, where
each row (B,s) in the database includes a set of branches B
describing who can see that row. For example, the expression
〈k ? row "Alice" "Smith" : row "Bob" "Jones"〉 evaluates to
the following table 1:

({k},("Alice","Smith"))
({¬k},("Bob","Jones"))

Note that we do not model the facet identifier row jid, as it is
not necessary for the formal semantics or proof.

To accommodate both faceted values and faceted tables,
we define the partial operation 〈〈 · ? · : · 〉〉 to create either a
new faceted value or a table with internal branches on rows:

〈〈 · ? · : · 〉〉 : Label×Val×Val→ Val

〈〈k ? FH : FL 〉〉
def
= 〈k ? FH : FL〉

〈〈k ? table TH : table TL 〉〉
def
= table T

where T = {(B,s) | (B,s) ∈ TH ∩TL}∪
{(B∪{k},s) | (B,s) ∈ TH \TL,¬k 6∈ B}∪
{(B∪{¬k},s)|(B,s) ∈ TL \TH ,k 6∈ B}

Wrapping a facet with label k around non-table values FH
and FL simply creates a faceted value containing k, FH , and
FL. Wrapping a facet with label k around tables TH and TL
creates a new table T containing the rows from TH and TL,
annotated with k and ¬k respectively, with an optimization
to share the rows that TH and TL have in common. We extend
this operator to sets of branches:

〈〈 · ? · : · 〉〉 : Branches×Val×Val→ Val

〈〈 /0 ? VH : VL 〉〉
def
= VH

〈〈{k}∪B ? VH : VL 〉〉
def
= 〈〈k ? 〈〈B ? VH : VL 〉〉 : VL 〉〉

〈〈{¬k}∪B ? VH : VL 〉〉
def
= 〈〈k ? VL : 〈〈B ? VH : VL 〉〉〉〉

We show the faceted evaluation rules in Figures 4 and 5.
The key rule is [F-SPLIT], describing how evaluation of a
faceted expression 〈k ? e1 : e2〉 involves evaluating the sub-
expressions in sequence. Evaluation adds k to the program
counter to evaluate e1 and ¬k to evaluate e2 and then joins
the results in the operation 〈〈k ? V1 : V2 〉〉. The rules [F-LEFT]
and [F-RIGHT] show that only one expression is evaluated if
the program counter already contains either k or ¬k.

1 Note that this value representation does not support mixed expressions such
as 〈k ? 3 : row "Alice"〉, which mix integers and tables in the same faceted
values. Programs that try to unnaturally mix values will get stuck.
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Figure 4. Faceted evaluation of λJDB without relational operators.

Runtime Syntax
e ∈ Expr ::= ... | a | table T
Σ ∈ Store = (Addr→p Val) ∪ (Label→ Val)
R ∈ RawValue ::= c | a | (λx.e)
a ∈ Address
F ∈ FacetedValue ::= R | 〈k ? F1 : F2〉
T ∈ Table = (Branches×Stringn)∗

V ∈ Val ::= F | table T
b ∈ Branch ::= k | ¬k

pc,B ∈ Branches ::= b∗

Evaluation Contexts
E ::= 〈k ? E : e〉 | 〈k ? V : E〉

| • e | v • | ref • | ! • | • :=e
| V := • | row V . . . • e . . . | σi= j • | πi •
| • ./ e | V ./ • | • ∪ e | V ∪ •
| fold • e e | fold V • e | fold V V •

Strict Contexts
S ::= • e | ! • | • :=V | σi= j • | πi •

| • ./V | table T ./ • | • ∪V
| table T ∪ • | row V . . . • e . . .
| fold V V •

Expression Evaluation Rules for λjeeves Subset Σ,e ⇓pc Σ′,V

Σ,V ⇓pc Σ,V
[F-VAL]

a 6∈ dom(Σ) Σ′ = Σ[a := 〈〈 pc ? V : 0〉〉]
Σ, ref V ⇓pc Σ′,a

[F-REF]

a 6∈ dom(Σ)

Σ, !a ⇓pc Σ,0
[F-DEREF-NULL]

Σ, !a ⇓pc Σ,Σ(a)
[F-DEREF]

Σ′ = Σ[a := 〈〈 pc ? V : Σ(a)〉〉]
Σ,a :=V ⇓pc Σ′,V

[F-ASSIGN]

E 6= [] e not a value
Σ,e ⇓pc Σ′,V ′ Σ′,E[V ′] ⇓pc Σ′′,V ′′

Σ,E[e] ⇓pc Σ′′,V ′′
[F-CTXT]

Σ,e[x :=V ] ⇓pc Σ′,V ′

Σ,(λx.e) V ⇓pc Σ′,V ′
[F-APP]

k 6∈ pc ¬k 6∈ pc
Σ,e1 ⇓pc∪{k} Σ1,V1

Σ1,e2 ⇓pc∪{¬k} Σ′,V2
V ′ = 〈〈k ? V1 : V2 〉〉

Σ,〈k ? e1 : e2〉 ⇓pc Σ′,V ′
[F-SPLIT]

k ∈ pc Σ,e1 ⇓pc Σ′,V
Σ,〈k ? e1 : e2〉 ⇓pc Σ′,V

[F-LEFT]

¬k ∈ pc Σ,e2 ⇓pc Σ′,V
Σ,〈k ? e1 : e2〉 ⇓pc Σ′,V

[F-RIGHT]

Σ,〈k ? S[VH ] : S[VL]〉 ⇓pc Σ′,V ′

Σ,S[〈k ? VH : VL〉] ⇓pc Σ′,V ′
[F-STRICT]

Our rules use contexts to describe faceted execution. The
rule [F-CTXT] for E[e] enables evaluation of a subexpression
inside an evaluation context. We use S to range over strict
operator contexts, operations that require a non-faceted value.
If an expression in a strict context yields a faceted value
〈k ? VH : VL〉, then the rule [F-STRICT] applies the strict
operator to each of VH and VL. For example, the evaluation
of 〈k ? f : g〉(4) reduces to the evaluation of 〈k ? f (4) :
g(4)〉, where S in this case is • (4). The rules [F-SELECT],
[F-SELECT], [F-PROJ], [F-JOIN], and [F-UNION] formalize the
relational calculus operators on tables of faceted rows.

The rules for folding are more interesting. If a row (B,s) is
inconsistent (i.e., not visible to) the current program counter
label pc, then rule [F-FOLD-INCONSISTENT] ignores that row.
If the row is consistent, then rule [F-FOLD-CONSISTENT] ap-

plies the fold operator Vf to the row contents s and the ac-
cumulator V ′, producing a new accumulator V ′′. The result
of that fold step is 〈〈B ? V ′′ : V ′ 〉〉, a faceted expression that
appears like V ′′ to principals that can see the B-labeled row
and like V ′ to other principals.

The faceted execution semantics describe the propagation
of labels and facets for the purpose of complying with poli-
cies at computation sinks. λJDB expressions do not perform
I/O, while λJDB statements include the effectful construct
print {ev} er that prints expression er under the policies and
viewing context ev. In the supplementary material we provide
the λjeeves rules for declaring labels, attaching policies, and
assigning labels for printing.
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Figure 5. Faceted evaluation with relational operators.

Σ, row s ⇓pc Σ,(table (ε ,s))
[F-ROW]

T ′ = {(B,s1 . . .sn) ∈ T | si = s j}
Σ,σi= j (table T ) ⇓pc Σ,(table T ′)

[F-SELECT]

Σ,(table T1)∪ (table T2) ⇓pc Σ,(table T1.T2)
[F-UNION]

i = i1 . . . in T ′ = {(B,si1 . . .sin) | (B,s1 . . .sm) ∈ T}
Σ,πi (table T ) ⇓pc Σ,(table T ′)

[F-PROJECT]

T3 = {(B1∪B2,s1 . . .sms′1 . . .s
′
n) | (B1,s1 . . .sm) ∈ T1,(B2,s′1 . . .s

′
n) ∈ T2}

Σ,(table T1) ./ (table T2) ⇓pc Σ,(table T3)
[F-JOIN]

Σ, fold Vf Vp (table ε) ⇓pc Σ,Vp
[F-FOLD-EMPTY]

Σ, fold Vf Vp (table T ) ⇓pc Σ′,V ′ B inconsistent with pc
Σ, fold Vf Vp (table (B,s).T ) ⇓pc Σ′,V ′

[F-FOLD-INCONSISTENT]

Σ, fold Vf Vp (table T ) ⇓pc Σ′,V ′ B consistent with pc Σ′,Vf s V ′ ⇓pc∪B Σ′′,V ′′

Σ, fold Vf Vp (table (B,s).T ) ⇓pc Σ′′,〈〈B ? V ′′ : V ′ 〉〉
[F-FOLD-CONSISTENT]

4.3 Application-Database Policy Compliance
λjeeves [8] has the properties that 1) a single faceted execution
is equivalent to multiple different executions without faceted
values and 2) the system cannot leak sensitive information
through the output or the choice of output channel. We prove
that the properties extend to λJDB.

The proof involves extending the projection property of
λjeeves: a single execution with faceted values projects to
multiple different executions without faceted values. To prove
this property, we first define what it means to be a view and
to be visible. A view L is a set of principals. B is visible to
view L (written B ∼ L) if ∀k ∈ B.k ∈ L and ∀¬k ∈ B.k 6∈ L.
We extend views to values:

L : Val(with facets)→Val(without facets)

L(R) = R

L(〈k ? F1 : F2〉) =
{

L(F1) k ∈ L
L(F2) k 6∈ L

L(table T ) = {( /0,s) | (B,s) ∈ T,B visible to L}

We extend views to expressions:

L(〈k ? e1 : e2〉) =
{

L(e1) k ∈ L
L(e2) k 6∈ L

For all other expression types we recursively apply the view
to subexpressions.

We then prove the Projection Theorem. The full proof is
in the supplementary material.

Theorem 1 (Projection). Suppose Σ,e ⇓pc Σ′,V . Then for
any view L for which pc is visible,

L(Σ),L(e) ⇓ /0 L(Σ′),L(V )

The Projection Theorem allows us to extend λjeeves’s prop-
erty of termination-insensitive non-interference. To state the
theorem we first define two faceted values to be L-equivalent
if they have identical values for the view L. This notion of
L-equivalence naturally extends to stores (Σ1 ∼pc Σ2) and
expressions (e1 ∼pc e2). The theorem is as follows:

Theorem 2 (Termination-Insensitive Non-Interference).
Let L be any view. Suppose Σ1 ∼L Σ2 and e1 ∼L e2, and that:

Σ1,e1 ⇓ /0 Σ′1,V1 Σ2,e2 ⇓ /0 Σ′2,V2

then Σ′1 ∼L Σ′2 and V1 ∼L V2.

The Termination-Insensitive Non-Interference Theorem al-
lows us to extend the termination-insensitive policy compli-
ance theorem of λjeeves [8]: data is revealed to an external
observer only if it is allowed by the policies specified.

4.4 Early Pruning
The Early Pruning optimization involves shrinking a table T
by keeping each row (B,s) only when B is consistent with the
viewer constraint described by pc. We show the rule below:

Σ,e ⇓pc Σ′,(table T )
T ′ = {(B,s) ∈ T | B consistent with pc}

Σ,e ⇓pc Σ′,(table T ′)
[F-PRUNE]

We prove the Projection Theorem holds with this extension.
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5. Implementation
While previous implementations of Jeeves [8, 47] use Scala,
we implement Jacqueline in Python, as an extension of
Django [3], because of the popularity of both for web pro-
gramming. Our code is available at [link to repository re-
moved for double-blind reviewing].

5.1 Python Embedding of the Jeeves Runtime
We implemented Jeeves as a library that dynamically rewrites
code to behave according to the λjeeves semantics. The library
exports functions for creating labels, creating sensitive values,
attaching policies, and using policies to show values. Our
implementation supports a subset of Python’s syntax that
includes if-statements, for-loops, and return statements.

5.1.1 Faceted Execution
To support faceted execution, the implementation defines
a Facet data type for primitives and objects where the
facets may themselves be faceted. A value may exist only in
some execution paths, in which case we use a special object
Unassigned() for other paths. To perform faceted execution,
the implemention uses operator overloading and dynamic
source transformation via the macro library MacroPy [6]. The
source transformation intercepts evaluation of conditionals,
loops, assignments, and function calls. The implementation
handles local assignment by replacing a function’s local scope
with a Namespace object determining scope. To prevent im-
plicit flows, the runtime keeps track of path conditions to
index state updates, database writes, and policy declarations.

5.1.2 Evaluating Policies at Computation Sinks
The runtime maps labels to policies. If there are no mutual de-
pendencies between policies and sensitive values, the runtime
evaluates policies to determine label values. Otherwise, the
runtime produces an ordering over Boolean label assignments
and uses the SAT subset of the Z3 SMT solver [33] to find a
satisfying assignment.

5.2 Jacqueline Implementation
We extend Django’s functionality by “monkey-patching,” in-
heriting from Django’s classes and overloading the meth-
ods of the FORM. The FORM is responsible for 1) mar-
shalling between faceted representations in the application
and database and 2) managing the meta-data to track facets
in the database. To represent faceted values, the FORM cre-
ates schemas with additional meta-data columns. The FORM
reconstructs facets from the meta-data by looking up poli-
cies from object schemas and adding them to the runtime
environment. We implement the Early Pruning optimization
by reconstructing only the relevant facets when the runtime
knows the viewer. FORM queries manipulate the meta-data
columns in addition to the actual columns. Programmers may
access the database only through the supported API.

6. Jacqueline in Practice
We built 1) a conference management system, 2) a health
record manager, and 3) a course management system to
evaluate Jacqueline along the following dimensions:

• Code architecture. We compare the implementation of
the Jacqueline conference management system to an
implementation with hand-coded policies in Django. We
demonstrate that Jacqueline helps with both centralizing
policies and with size of policy code.
• Performance. We show that for representative actions,

Jacqueline has comparable—and, in one case, better—
performance compared to Django. For the stress tests,
the Jacqueline programs often have close to zero overhead
and at most a 1.75x slowdown compared to vanilla Django.
We also demonstrate the effectiveness of and necessity of
the Early Pruning optimization.

We deployed our conference management system to run an
academic workshop [1].

6.1 Case Study Applications
Conference management system. We support user registra-
tion, update of profile information, designation of roles (i.e.
PC member), paper and review submission, and assignment
of reviews. Permissions depend on the current stage of the
conference: submission, review, or decision.
Health record manager. We implemented a simple health
record system based on a representative fragment of the pri-
vacy standards described in the Health Insurance Portability
and Accountability Act (HIPAA) [9, 36]. HIPAA describes
how individuals, hospitals, and insurance companies may
view a medical history depending on roles and stateful infor-
mation such as whether there exists a permission waiver.
Course manager. Our tool allows instructors and students to
organize assignments and submissions.

6.2 Code Comparisons
We compare our Jacqueline implementation of a conference
management system against a Django implementation of the
same system. We demonstrate that 1) Jacqueline reduces the
trusted computing base and 2) separating policies and other
functionality decreases policy code size.

6.2.1 Django Conference Management System
We compare the lines of code in the Jacqueline and Django
conference management systems in Figure 6. (Note that
Jacqueline counts are bloated from the additional imports
and function decorators required.) Jacqueline demonstrates
advantages in both the distribution and size of policy code.
In the Jacqueline implementation, policy code is confined to
the models.py file describing the data schemas, while in the
Django implementation, there are also policies throughout
the controller file views.py. The Jacqueline implementation
has 106 total lines of policy code, whereas the Django imple-
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Policy Code: Jacqueline vs. Django
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Figure 6. Distribution of policy code with Jacqueline and
Django conference management systems.

CFM Representative Actions
View single paper

Papers Jacq. Django
8 0.160s 0.177s

16 0.165s 0.175s
32 0.160s 0.177s
64 0.159s 0.173s

128 0.160s 0.173s
256 0.159s 0.173s
512 0.159s 0.178s

1024 0.161s 0.173s

View single user
Users Jacq. Django

8 0.164s 0.158s
16 0.164s 0.159s
32 0.164s 0.159s
64 0.164s 0.159s

128 0.167s 0.158s
256 0.163s 0.159s
512 0.169s 0.162s

1024 0.163s 0.159s

Figure 7. Times to view profiles for a single paper and single
user, in Jacqueline and Django.

mentation has 130 lines manifesting as repeated checks and
filters across views.py. While the Django code requires audit-
ing the 575 lines of models.py and views.py, the Jacqueline
code requires auditing only the 200 lines of models.py (~200
lines of code), reducing the size of the application-specific
trusted code base by 65%.

6.3 Performance Measurements
We measured times using an Amazon EC2 m3.2xlarge in-
stance running Ubuntu 14.04 with 30GB of memory, two
80GB SSD drives, and eight virtual 64-bit Intel(R) Xeon(R)
CPU E5-2670 v2 2.50Ghz processors. We use the FunkLoad
testing framework [4] for HTTP requests across the network,
excluding CSS and images. We average over 10 rapid se-
quential requests. We test with sequential users because how
well Jacqueline handles concurrent users compared to Django
simply depends on the amount of available memory.

We show 1) policy enforcement in Jacqueline has reason-
able overheads, especially compared to Django and 2) Early
Pruning is effective and often necessary.

6.3.1 Representative Actions
We increased the number of relevant database entries and mea-
sured the time it takes to view the profiles for single papers
and users. We show these numbers, as well as comparisons
to Django, in Figure 7. The time it takes to load these pro-
files is under 2ms and roughly equivalent to the time it takes

CFM Stress Tests
View all papers

# P Jacq. Django
8 0.241s 0.201s

16 0.299s 0.241s
32 0.542s 0.388s
64 0.855s 0.554s

128 1.551s 0.931s
256 2.810s 1.633s
512 5.717s 3.265s

1024 10.729s 6.055s

View all users
# U Jacq. Django

8 0.172s 0.163s
16 0.249s 0.234s
32 0.279s 0.254s
64 0.358s 0.341s

128 0.510s 0.541s
256 0.769s 0.820s
512 1.352s 1.269s

1024 2.305s 1.538s
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Figure 8. Times to view list of summary information for all
papers and all users, in Jacqueline and Django.

to do the equivalent action in Django. For viewing a single
paper, Jacqueline actually performs better than the Django
implementation. This is because in the Django code, the im-
plementation needs iterate over collections of data rows again
in order to apply policy checks. In the Jacqueline implemen-
tation, the framework applies the policies and resolves each
one once. Times for submitting a single paper scale similarly.

6.3.2 Stress Tests
In Figure 8 we show results for displaying an increasing
number of papers and users in both implementations. In these
tests, the system resolves different policies for each paper and
user field. The graphs demonstrate that with both Jacqueline
and Django, the time to load data scales linearly with respect
to the underlying algorithms and Jacqueline has a 1.75x
overhead for showing all papers. The overhead comes from
fetching both versions of data before resolving the policies.
Integrating policies more deeply with the database could
reduce this overhead. There is no solver overhead, as there
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Other Stress Tests
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Figure 9. Jacqueline stress tests for other case studies.

Courses Without pruning With pruning
4 0.377s 0.185s
8 64.024s 0.192s

16 – 0.248s
32 – 0.337s
64 – 0.522s

128 – 0.886s
256 – 1.630s
512 – 3.691s

1024 – 6.233s

Figure 10. Showing all courses, with and without Early
Pruning.

are no mutual dependencies between sensitive values and
policies.

In Figure 9 we show the stress tests from our health record
manager and course manager demonstrate similar scaling.
These are truly stress tests: most systems will not load a
thousand data rows at once, especially when each value has
its own policy involving database queries.

6.3.3 Early Pruning Optimization
We found the Early Pruning optimization to be necessary for
nontrivial computations over sensitive values. In the course
manager stress test, the page that shows all courses also looks
up the instructors for each course, leading to blowup. We
show in Figure 10 how for just eight courses and instructors,
the system begins to hit memory limits. Because Early
Pruning can simplify other computations after the viewer
is known, these computations are only problematic when
they are used to compute the viewer. We do not expect such
computations to be common.

7. Related Work
Our approach builds on a long history of work in informa-
tion flow control [7, 12, 14, 18, 21, 28, 29, 34, 37, 44, 48].
The policy-agnostic approach differs from prior work in the
following key way. Using prior approaches, the program-

mer needs to implement the policy checks and filters cor-
rectly across the program. Our solution mitigates program-
mer burden by leveraging the language runtime to produce
outputs adhering to policies. This is similar in philosophy to
angelic nondeterminism [11], program repair [40, 41], and
acceptability-oriented computing [38, 39].

Prior work on information flow across the application-
database boundary focuses on rejecting queries that leak
information, rather than on modifying queries to enforce
policies. SeLINQ [42], the work of Lourenço and Caires [30],
and Ur/Web use static types. DBTaint [19], Passe [10], and
Hails [25] perform dynamic analysis. SIF [17] combines
static labels and dynamic checks. There are also approaches
based on symbolic execution [27], secure multi-execution [13,
20, 23], and analysis of data provenance [2, 15] focused on
rejecting programs that violate desired properties.

Policy-agnostic programming differs from other ap-
proaches in how data may affect control flow. Variational
data structures [45] encapsulate properties related to pro-
gram customization, but data does not affect control flow.
Aspect-oriented programming [26, 43] has similar goals to
policy-agnostic programming of separating program con-
cerns, but aspects must be implemented at specific control
flow points and cannot alter control flow.

Our approach addresses information flow as opposed
to access control [24, 32, 35]. Access control focuses on
preventing leaks at application endpoints and does not address
leaks through indirect flows or implicit flows. Similarly, work
on multi-level databases [22, 31] focuses on the storage and
access control issues surrounding data at different levels of
access in the database.

8. Conclusions
We demonstrate that it is practically feasible to achieve pol-
icy compliance by construction in database-backed appli-
cations. We present a technique for precise, dynamic infor-
mation flow control that tracks sensitive values and policies
through database queries and updates as well as application
code. The technique supports a policy-agnostic programming
model that allows the program to specify each information
flow policy once, instead of as repeated intertwined checks
across the program. The web framework performs different
computations depending on the viewer, according to the poli-
cies. The shift of responsibility to the framework reduces the
opportunity for programmer error to cause information leaks.

Our solution works with existing implementation of rela-
tional databases and yields formal guarantees across the appli-
cation and database. We implement these ideas in Jacqueline,
a Python web framework, and demonstrate that, compared
to traditional applications with hand-coded policies, applica-
tions written using Jacqueline have less policy code and run
with reasonable, often negligible, overheads. This work rep-
resents a promising step towards securing database-backed
web applications.
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