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Abstract
Protecting sensitive data often requires implementing repeated secu-
rity checks and filters throughout a program. This task is especially
error-prone in web programs, where data flows between applica-
tions and databases. To reduce the opportunity for privacy leaks, we
present Jacqueline, a web framework that automatically enforces se-
curity policies that restrict where sensitive data may flow. In Jacque-
line, programmers specify information flow policies separately from
the rest of the program. In turn, the remainder of the program is
policy-agnostic: parametric with respect to the policies. The Jacque-
line runtime differentiates outputs based on the policies and viewer
by simulating simultaneous multiple executions. We demonstrate
that this approach provides strong theoretical guarantees and is also
practical. We formalize Jacqueline’s object-relational mapping and
prove end-to-end policy compliance. Our formalism uses standard
relational operations and thus allows us to implement Jacqueline
as an extension of the Django Python framework using an unmodi-
fied SQL database. We demonstrate the feasibility of the approach
through three application case studies: a course manager, a health
record system, and a conference management system that we have
deployed to run a workshop. We compare to code written with
hand-implemented policies, showing that not only does Jacqueline
reduce lines of policy code, but also that the Jacqueline runtime has
reasonable, and often negligible, overheads.

1. Introduction
From social networks to electronic health record systems, web
programs increasingly process sensitive information. A standard
way of managing sensitive data involves implementing repeated
checks and filters throughout the program. However, missing access
checks, incorrect computation of the viewer, and incorrect policy
propagation can all release sensitive data to unauthorized viewers.

Interactions with databases further complicate the task of protect-
ing sensitive data in web programs. In particular, the programmer
must now reason about how sensitive data flows through both appli-
cation code and database queries. Reasoning across the application-
database boundary has led to leaks in systems from the HotCRP
conference management system [4] to the social networking site
Facebook [44]. Indeed, the patch for the recent HotCRP bug involves
policy checks across application code and database queries.

We address the problem of protecting sensitive data in web
programs by reducing the opportunity for error. We propose a policy-
agnostic programming paradigm that allows the programmer to
specify information flow policies separately from the rest of the

applications. We present Jacqueline, a web framework that allows the
programmer to specify policies only once, alongside data schemas.
Jacqueline manages policy dependencies and guarantees end-to-
end policy compliance across the application and database. A key
advantage of Jacqueline is that it works with unmodified relational
databases, allowing the programmer to use the policy-agnostic
model without giving up the benefits of an optimized database.

1.1 Policy-Agnostic Programming
Jacqueline is based on the policy-agnostic programming model of
the Jeeves language [10, 45]. Jeeves programs express computations
independently of information flow policies. The runtime ensures
that program behavior complies with the policies. Policies may
depend on sensitive values: for example, who is allowed to learn
a secret value may depend on the value itself. Jeeves provides
strong guarantees, ensuring that policy enforcement does not itself
leak sensitive information. However, Jeeves is unsuited for building
realistic web applications for the following reasons:

• No guarantees when interoperating with databases. For perfor-
mance reasons, web applications rely heavily on interactions
with commodity databases. Unfortunately, a common problem
with language-based approaches is that guarantees apply only to
programs running entirely within the language. Indeed, Jeeves’s
policy enforcement guarantees fail when there is any interaction
with an external database.
• Expensive execution model. Jeeves may explore exponentially

many possible execution branches based on the possible viewers.
This can become prohibitively expensive when sensitive values
each have their own policies.

Jacqueline overcomes these limitations and enables policy-
agnostic programming for web programs of realistic scale. A key
insight is that rather than needing to modify existing databases
to include policy checks, we can create a policy-agnostic object-
relational mapping (ORM). With a standard ORM, the programmer
does not write database queries directly, but instead relies on the
framework to manipulate data between applications and databases.
With a policy-agnostic ORM, the programmer relies on the frame-
work to manipulate both data and policies. The challenge becomes,
then, to design an ORM that can track sensitive data and policies
through database queries when the database is not aware of sensitive
values or policies. We observe that an ORM can do this through ju-
dicious manipulaton of meta-data. Jacqueline improves upon Jeeves
in the following ways:

1 2015/7/11



Django

Django web server

App + DB code
with policy checks

Python SQL

Jacqueline

Jacqueline web server

Policy-agnostic
app + DB code

Jeeves SQL

TrustedUntrusted

Differs 
between 

applications

Hardware + OS Hardware + OS

Policy

Shared 
across 

applications

Figure 1: Application architecture in Django vs. Jacqueline.

• End-to-end guarantees for database-backed applications. We
formalize the Jacqueline ORM in terms of standard relational
operators to track sensitive values and policies through database
queries. We prove that this yields a policy compliance property
across the application and database.
• Correctness-preserving optimization approach. Jacqueline does

not need to assume the viewer is unknown until output because
it is common for web frameworks to track the viewing context.
As soon as the runtime knows the viewing context, it can prune
alternate execution branches. We formalize this optimization,
show that it preserves end-to-end policy compliance, show that
it allows Jacqueline to have reasonable overheads in practice,
and demonstrate it is necessary for non-trivial computations
involving sensitive values.

1.2 Advantages and Contributions
Several advantages of our approach make the programming model
especially appealing. The first is that the language runtime manages
the policies, thus removing the need to trust the remaining appli-
cation code of the web server—we need to trust only the policies.
The second is that rather than simply preventing forbidden outputs,
Jacqueline adapts program behavior to adhere to policies, simulat-
ing multiple executions of the program based on the possible ways
the policies will need to be enforced. An additional benefit is that
separating the policy specification and enforcement from the rest
of the code decreases the amount of policy code needed. In Jacque-
line, the programmer writes the policy associated with data once,
and the runtime automatically enforces the policy. By contrast, in
most other security-conscious web frameworks, the programmer
must implement policies by writing checks and filters throughout
the application and database code. In Figure 1 we compare the ar-
chitecture of a Jacqueline program to that of a program using the
popular Python web framework Django [2]. We show that in Jacque-
line, 1) application and database code do not need to be trusted, 2)
policies are localized, and 3) the size of policy code is smaller due
to automatic policy enforcement.

We make the following contributions:

• Policy-agnostic web programming paradigm. We propose a
paradigm for database-backed web applications that allows the
programmer to specify information flow policies once and rely
on the framework to customize program behavior. We implement
this paradigm in the Jacqueline web framework.
• Semantics and end-to-end guarantees. We formalize the

Jacqueline ORM using λJDB, an extension of Jeeves with rela-
tional operators, and prove end-to-end policy compliance. We
show how the semantics corresponds to an implementation
strategy using an unmodified relational database.

• Optimization approach for web programs. To avoid the ex-
ponential exploration of execution branches that may occur with
Jeeves, we formalize an “Early Pruning” optimization and prove
that it preserves policy compliance. We demonstrate that it de-
creases Jacqueline’s overheads and is necessary for non-trivial
computations involving sensitive values.
• Demonstration of practical feasibility. We implemented

Jacqueline using an unmodified Python interpreter and unmod-
ified SQL database. We demonstrate the expressiveness and
performance of Jacqueline through several case studies, includ-
ing a conference management system that we have deployed to
run an academic workshop. We compare Django code with hand-
implemented policies, showing that not only does Jacqueline
reduce lines of policy code, but also that the automatic policy
enforcement has reasonable overheads.

With Jacqueline, we demonstrate an approach for database-backed
web application development that both provides strong theoretical
guarantees and exhibits good performance in practice.

2. Introductory Example
Consider a social calendar application. Suppose Alice and Bob
want to plan a surprise party for Carol, 7pm next Tuesday at
Schloss Dagstuhl. They should be able to create an event such
that information is visible only to guests. Carol should be able to
see that she has an event 7pm next Tuesday, but not that it is a party.
Everyone else may be able to see that there is a private event at
Schloss Dagstuhl, but not the details of the event.

Enforcing policies in our calendar requires computations to be
policy-aware. For instance, it is increasingly common for calendar
systems to support queries such as “Who are my friends in Schloss
Dagstuhl at 7pm Tuesday?” It is also common for the results of such
a query to be broadcast to a set of users, each with their own per-
missions. Because a single fixed viewer may not be initially known
and because viewers may be computed from sensitive values, we
need information flow policies rather than access control policies.
Using popular programming paradigms, the programmer must im-
plement policies as repeated checks and filters across application and
database code. Using Jacqueline, the programmer needs to provide
only a single declarative specification of each security policy.

2.1 Policy-Agnostic Model-View-Controller Framework
Jacqueline is a model-view-controller (MVC) web framework where
the model describes the data, the view describes the page layouts, and
the controller describes computation over the data to produce views.
Standard ORM frameworks abstract over interactions with an under-
lying database, allowing the programmer to specify data schemas
for the model in the same language as the controller. Jacqueline
additionally abstracts over the implementation of information flow
policies. The Jacqueline runtime takes responsibility for tracking
sensitive values and policies between applications and databases.
Jacqueline produces outputs that adhere to the policies with end-to-
end guarantees of policy compliance.

Jacqueline supports policy-agnostic application code and database
queries. Once the programmer associates information flow policies
with data fields, the rest of the program looks like a Django program.
The programmer needs to be aware that policies may affect the val-
ues flowing through the program, e.g. defaults rather than sensitive
values, but does not need to know the specifics of the policies. In Fig-
ure 2 we show the API for individual JacquelineModel data records
and for sets of records JeevesQuerySet. The programmer may call
these APIs exactly as they would call the corresponding Django
APIs for Model and QuerySet. Note that both ORMs abstract over
implicit joins from foreign keys.
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1 c l a s s Jeeve sQuerySe t ( QuerySet ) :
2 a l l ( )
3 d e l e t e ( )
4 f i l t e r (∗∗ kwargs )
5 o r d e r b y (∗∗ kwargs )
6 get (∗∗ kwargs )
7

8 c l a s s J ac qu e l i n eM od e l ( Model ) :
9 c r e a t e (∗ args , ∗∗ kwargs )

10 d e l e t e ( )
11 save (∗ args , ∗∗ kwargs )

Figure 2: The Jacqueline ORM API. The argument ∗args denotes
an optional list of arguments. The argument ∗∗kwargs denotes
an optional dictionary of arguments. The filter method takes, for
instance, arguments for field equalities to filter on.

1 c l a s s Event ( Ja cq ue l i n e Mo de l ) :
2 name = C h a r F i e l d ( max_length =256)
3 l o c a t i o n = C h a r F i e l d ( max_length =512)
4 t ime = DateTimeFie ld ( )
5 d e s c r i p t i o n = C h a r F i e l d ( max_length =1024)
6

7 # P u b l i c v a l u e f o r name f i e l d .
8 @sta t i cmethod
9 def j a cque l i n e_ge t_pub l i c_name ( even t ) :

10 r e t u r n " P r i v a t e even t "
11

12 # P u b l i c v a l u e f o r l o c a t i o n f i e l d .
13 @sta t i cmethod
14 def j a c q u e l i n e _ g e t _ p u b l i c _ l o c a t i o n ( even t ) :
15 r e t u r n " U n d i s c l o s e d l o c a t i o n "
16

17 # P o l i c i e s f o r name and l o c a t i o n f i e l d s .
18 @sta t i cmethod
19 @ l a b e l _ f o r ( ’ name ’ , ’ l o c a t i o n ’ )
20 @ j a c q u e l i n e
21 def j a c q u e l i n e _ r e s t r i c t _ e v e n t ( event , c t x t ) :
22 r e t u r n ( EventGuest . o b j e c t s . ge t (
23 even t=s e l f , g u e s t=c t x t ) != None )
24

25 c l a s s EventGuest ( J ac qu e l i n eM od e l ) :
26 even t = Fore ignKey ( Event , n u l l=True )
27 g ue s t = Fore ignKey ( U s e r P r o f i l e , n u l l=True )

Figure 3: Jacqueline schema fragment for calendar events.

2.2 Schemas and Policies in Jacqueline
Continuing with our calendar example, we show a sample schema
for the Event and EventGuest data objects in Figure 3. A Django
schema is a Python class inheriting from Model with field names,
field types, and optional methods. A Jacqueline schema is a Python
class inheriting from JacquelineModel with field names, field types,
optional policies, and optional methods. We define the Event class
with fields name, location, description, and visibility, where visibility
is the user-specified setting corresponding to whether the event is
visible to everyone or only to guests. Up to line 5, this looks like a
standard Django schema definition. The definition for EventGuest
(line 25), with foreign keys to the Event and UserProfile (definition
not shown) tables, is exactly as it would be in Django.

2.2.1 Secret Values and Public Values
In Jacqueline, sensitive values encapsulate multiple views: a secret
view available only to viewers with sufficient permissions and a
public view available to all over views. The Jacqueline runtime

simulates simultaneous executions on both views. Jacqueline guar-
antees that if a viewer does not have access to the secret view, the
system will produce all outputs as if the secret view never existed. In
Jacqueline, if a data field has a policy, the actual value is the secret
view. Jacqueline requires the programmer to additionally define a
method computing the public view.

On line 9 we define the jacqueline_get_public_name method
computing the public view of the name field. If the information
flow policy prohibits a viewer from seeing the sensitive name field,
then the name field will behave as "Private event" throughout all
computations, including database queries. This function takes the
current row object (event) as an argument, so we could compute the
public value using the row fields as well. The Jacqueline ORM uses
naming conventions (e.g. the jacqueline_get_public prefix) to find
the appropriate methods to compute public views.

Jacqueline allows sensitive values to behave as either the secret
value or public value, depending on the viewing context (i.e. the
user viewing a page). Computation sinks such as print take an addi-
tional (implicit) argument corresponding to the viewer. Jacqueline
tracks the viewer, uses that along with the policies to determine
the value to display. For instance, print carolParty.name displays
"Carol’s surprise party" to some viewers and "Private event" to oth-
ers, depending on the policies. Note that the programmer does not
need to designate the viewer, as this is something that the framework
can track.

2.2.2 Specifying Policies
The programmer specifies information flow policies that determine
how sensitive values may flow through derived values. On line 21
we implement the information flow policy for the fields name and
location, as indicated by the label_for decorator. The policy is a
method that takes two arguments, the current row object (event)
and the viewer (ctxt). The framework tracks the viewing context
corresponding to the argument ctxt, for which the programmer
determines the type and value. Here, ctxt corresponds to the user
looking at the page.

Policies may contain arbitrary code: our policy queries the
database, looking up in the EventGuest table (line 25) whether
a given guest is associated with the event. Policies may depend
on sensitive values: the EventGuest.guest field may have its own
policies associated. Jacqueline enforces policies with respect to the
row values at the time a value is created and the state of the system
at the time of output. The jacqueline_restrict_event policy refers to
the contents of the EventGuest table when a user views a page.

2.3 Policy-Agnostic Application Code and Database Queries
Jacqueline uses faceted execution [10] to simulate simultaneous
multiple executions on the different facets of a sensitive value. The
programmer calls create in Jacqueline the same way as in Django:

c a r o l P a r t y = Event . o b j e c t s . c r e a t e (
name = " C a r o l ’ s s u r p r i s e p a r t y "

, l o c a t i o n = " S c h l o s s Dagstuh l " , . . . )

The Django ORM simply inserts the specified record into the
database. In contrast, for the name field, the Jacqueline ORM creates
the faceted value 〈k ? "Carol’s surprise party" : "Private event"〉,
where k is a fresh boolean label guarding the secret actual field value
and the public facet computed from the get_public_name method.
The Jacqueline runtime maps labels to policies. For computation
sinks such as print, the runtime assigns labels based on policies and
the viewing context.

Once the programmer associates policies with sensitive data
fields, the rest of the program may be policy-agnostic and look as
the equivalent policy-free Django program would. The Jacqueline
runtime evaluates faceted values by evaluating each of the facets. For
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instance, evaluating "Alice’s events: " + str(alice.events) yields the
resulting faceted value guarded by the same label k:

〈k ? " A l i c e ’ s e v e n t s : C a r o l ’ s s u r p r i s e p a r t y "
: " A l i c e ’ s e v e n t s : P r i v a t e even t "〉

Those with sufficient permissions, the guests of the event, will see
"Carol’s surprise party" as part of the list of Alice’s events, while
others will see only "Private event". Faceted execution propagates
labels through all derived values, conditionals, and variable assign-
ments, thus preventing implicit flows.

The Jacqueline ORM extends faceted execution to database
queries. For instance, consider the query:

Event . o b j e c t s . f i l t e r (
l o c a t i o n=" S c h l o s s Dagstuh l " )

While the Django ORM simply issues the corresponding database
query for matching Event rows, the Jacqueline ORM manipulates
faceted values to prevent leaks of sensitive information. Recall
that the location field of carolParty is 〈k ? "Schloss Dagstuhl" :
"Undisclosed location"〉. If carolParty is the only event in the
database, faceted execution of the filter query yields a faceted
list 〈m ? [carolParty] : []〉. Viewers who should not be able to see
the location field will not be able to see values derived from the
sensitive field.

Jacqueline also prevents implicit leaks through writes to the
database. For instance, consider the following code that replaces
the description field of Event rows with "Dagstuhl event!" when the
location field is "Schloss Dagstuhl":

f o r l o c i n Event . o b j e c t s . a l l ( ) :
i f l o c . l o c a t i o n == " S c h l o s s Dagstuh l " :

l o c . d e s c r i p t i o n = " Dagstuh l even t ! "
save ( l o c )

For carolParty the condition evaluates to 〈k ? True : False〉. The
runtime records the influence of k when evaluating the conditional
branch. The call to save writes 〈k ? carolPartyNew : carolParty〉,
where carolPartyNew is the updated value. If a viewer cannot see
the actual value of carolParty.location, the viewer will also not be
able to see the updated description field.

2.4 Computing Concrete Views
At computation sinks such as print, the runtime uses the viewing
context and policies to produce concrete, non-faceted outputs. The
runtime does this by producing a system of constraints on the labels.
Printing carolParty.name to alice produces the following constraint:

k ⇒
( EventGuest . o b j e c t s . ge t (

even t=s e l f , g u e s t=c t x t ) != None )

The runtime evaluates this constraint in terms of the guest list at the
time of output. Because policies are program functions, labels are
the only free variables in the fully evaluated constraints. There is
always a consistent assignment to the labels: since policies can only
force labels to be False, assigning all labels to False is always valid.

The policy enforcement mechanism handles dependencies be-
tween policies, including mutual dependencies between policies and
sensitive values. Suppose, for instance, that the policy on guest lists
depended on the list itself:

@ l a b e l _ f o r ( ’ g ue s t ’ )
def j a c q u e l i n e _ r e s t r i c t _ g u e s t ( even tgue s t , c t x t ) :

r e t u r n ( EventGuest . o b j e c t s . ge t (
even t=e v e n t g u e s t . e , g u e s t=c t x t ) != None )

This policy says that there must be an entry in the EventGuest table
where the guest field is the viewer ctxt. This creates a circular
dependency: the policy for the guest field depends on the value of

the guest field. There are two valid outcomes for a viewer who has
access: either the system shows the fields as empty or the system
shows the actual fields. To handle situations like this, Jacqueline has
a notion of maximal functionality and shows values unless policies
require otherwise.

Circular dependencies are increasingly common in real-world
applications. Consider, for instance, the following policies: a viewer
must be within some radius of a secret location to see the location;
a viewer must be a member of a secret list to see the list. To
handle these dependencies, a system must either 1) model these
dependencies across the application code and queries, as we do, or
2) allow policies to be executed in a trusted “omniscient” context.
Unfortunately, the latter is common practice.

3. Solution Overview
Austin et al.’s faceted semantics for Jeeves [10] provide strong guar-
antees, but they have the following problems for web applications.
First of all, the guarantees only hold for programs that run entirely
within a faceted Jeeves runtime, preventing Jeeves programs from
interoperating with commodity databases. In addition, the Jeeves
semantics may explore exponentially many possible execution paths.

We make policy-agnostic programming practical for web pro-
grams in the following ways:

• We extend Jeeves’s faceted semantics and guarantees to include
unmodified relational databases.
• We develop an optimization based on the observation that the

viewing context is often predictable.

In this section, we describe our ORM framework by example, as well
as the Early Pruning optimization. We formalize both in Section 4.

3.1 Executing Relational Queries with Facets
We designed the Jacqueline ORM to track sensitive values and
policies through database queries when the database is not aware
of sensitive values or policies. The ORM is able to do this by 1)
using meta-data to represent faceted values in the database and
2) marshalling values to and from the database representation
to the application-level faceted representation. Our representation
allows us to use the following SQL queries unmodified: CREATE,
UPDATE, SELECT ... WHERE ..., JOIN, and ORDER BY. Our
solution works with any non-SQL relational database as well.

To describe our mapping, we first introduce the concept of
a faceted row, a faceted value containing leaves that are non-
faceted SQL records. (Any record containing faceted values may
be rewritten to be of this form.) The Jacqueline ORM stores each
faceted row as multiple SQL rows We map each faceted row to
multiple SQL rows by augmenting records with meta-data columns
corresponding to 1) an identifier jac_id, chosen uniquely for each
faceted row, and 2) an identifier jac_vars describing which facet
the SQL row corresponds to, using a string-encoded description of
labels, for instance "k1=True,k2=True".

We provide examples of our mapping in Table 1, showing a ver-
sion without policies on the left-hand side and a version with policies
on the right-hand side. The faceted value 〈k ? "Carol’s surprise party" :
"Private event"〉 is stored as two rows in the Event table with the
same jac_id of 1. The secret facet has a jac_vars value of "k=True"
and the public facet has a jac_vars value of "k=False". For nested
facets, we store more labels in the jac_vars column. For instance, the
following faceted value gets encoded as three database rows where
the jac_vars strings are "k1=True,k2=True", "k1=True,k2=False",
and "k1=False":

〈k1 ? 〈k2 ? " C a r o l ’ s s u r p r i s e p a r t y " : " Par ty "〉
: " P r i v a t e even t "〉
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Django Jacqueline

CREATE TABLE Event COLUMNS (
i d INTEGER PRIMARY KEY,
name VARCHAR(128) ,
l o c a t i o n VARCHAR(128) ,

) ;

CREATE TABLE Event COLUMNS (
i d INTEGER PRIMARY KEY, # i g n o r e d
name VARCHAR(128) ,
l o c a t i o n VARCHAR(128) ,
j a c _ i d INTEGER ,
j a c _ v a r s VARCHAR(128) ,

) ;

id name location
1 "Carol’s ... party" "Schloss Dagstuhl"

id name location jac_id jac_vars
1 "Carol’s ... party" "Schloss Dagstuhl" 1 "x=True"
2 "Private event" "Undisclosed location" 1 "x=False"

Table 1. SQL code and example tables, with and without policies.

Django Query Jacqueline Query

EventGuest.objects.filter(guest__name="Alice")
SELECT EventGuest . event , EventGuest . gu e s t

FROM EventGuest
JOIN U s e r P r o f i l e

ON EventGuest . gue s t_ id = U s e r P r o f i l e . i d
WHERE U s e r P r o f i l e . name=’ A l i c e ’ ;

SELECT EventGuest . event , EventGuest . guest ,
EventGuest . j ac_ id , EventGuest . j a c_va r s ,
U s e r P r o f i l e . j a c _ v a r s

FROM EventGuest
JOIN U s e r P r o f i l e

ON EventGuest . gue s t_ id = U s e r P r o f i l e . j a c _ i d
WHERE U s e r P r o f i l e . name=’ A l i c e ’ ;

Table 2. Translated ORM queries in Django vs. Jacqueline.

3.1.1 Queries That Track Sensitive Values
Our representation of faceted rows allows the Jacqueline ORM to
issue standard SQL queries for selections, projections, joins, and
sorts. The ORM can simply rely on the correct marshalling of query
results into faceted rows for tracking sensitive values and policies
through queries. No modification of the database is necessary.

Our SQL representation of faceted values allows us to rely on
faceted execution to lift the projection operator. Consider the query
SELECT ∗ from Event WHERE location = "Schloss Dagstuhl"
on the rows from Figure 1. Issuing the SELECT...WHERE on
the augmented database will return only the rows that match:

. . . location jac_id jac_vars

. . . "Schloss Dagstuhl" 1 "k=True"
Reconstructing the facet structure yields the faceted value:

〈 k ?
[ { . . . , l o c a t i o n =" S c h l o s s Dagstuh l " , . . . } ]
: [ ] 〉

Since the initial location field is guarded by label k, the results are
also guarded by label k.

The Jacqueline tracks sensitive values and policies through joins
by manipulating the meta-data appropriately. Rows from joins that
occur based on sensitive values will be appropriately guarded by
the appropriate path conditions. To prevent the join from leaking
information, the ORM takes into account the jac_vars fields from
both tables.1 The ORM also ensures that foreign keys, references
into another table, reference faceted rows with jac_id rather than the
primary key. In Table 2, we show an example where the WHERE
clause filters on the results of a JOIN. In the ON clause, we use
the jac_id rather than id. In the SELECT clause, we include the
User.jac_vars as well as the EventGuest.jac_vars field.

1 The ORM maintains the invariant that all tables have the correct jac_vars
columns. We can migrate tables without these columns to comply.

The representation also allows us to take advantage of SQL’s
ORDER BY functionality for sorting. Suppose we had faceted
records, each with a single field f, with values 〈a ? "Charlie" : "∗∗∗"〉,
〈b ? "Bob" : "∗∗∗"〉, and 〈c ? "Alice" : "∗∗∗"〉. On the left we show
the database representation and on the right we show the records
ordered by the field f (where jid and jvars are abbreviations for
jac_id and jac_vars, respectively):
f jid jvars
"Charlie" 0 "a=True"
"∗∗∗" 0 "a=False"
"Bob" 1 "b=True"
"∗∗∗" 1 "b=False"
"Alice" 2 "c=True"
"∗∗∗" 2 "c=False"

f jid jvars
"∗∗∗" 0 "a=False"
"∗∗∗" 1 "b=False"
"∗∗∗" 2 "c=False"
"Alice" 2 "c=True"
"Bob" 1 "b=True"
"Charlie" 0 "a=True"

We can use the standard SQL ORDER BY procedure without
leaking information because the secret values are stored in different
rows from the public values. The ORM is responsible for enforcing
the policies so that, for instance, an output context with the permitted
labels {a,¬b,c} would see ["∗∗∗", "Alice", "Charlie"].

While the Jacqueline ORM can use SQL queries for selects, joins,
and sorts, there is no equivalent aggregate functions, for instance
COUNT or SUM. Using aggregate queries in the database could
leak information, as they combine values across facets. Jacqueline
performs these operations in memory using the Jeeves runtime.

3.1.2 Updating Data and Policies
Jacqueline’s representation of faceted rows ensures that any action
involving a row facet is visible only to those with the appropriate
permissions. The Jacqueline ORM implements save, updating meta-
data and potentially deleting rows, such that all corresponding rows
are updated appropriately. (The ORM computes default public
values based on the state at the time of the save, using the entire
row as the argument to the jacqueline_get_public function.) If the
program invokes save in branches that depend on faceted values,
Jacqueline creates facets that incorporate the path conditions.
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Storing labels as meta-data makes it straightforward to 1) add
policies to data that previously had no policies and 2) update policies
on sensitive values. To add policies, the programmer needs to
manipulate only the meta-data columns (jac_vars and jac_id). The
programmer can add policies to legacy data by writing a database
migration that adds the meta-data columns. To update policies using
existing labels, the programmer can simply update the policies in
the application code.

3.2 Early Pruning Optimization
With Jeeves, much of the overhead comes from executing with all
possible views until a computation sink, as faceted values may grow
exponentially in the number of labels. Whenever the viewer is not
known, executing with all possible paths is necessary. This happens,
for instance, when the program computes the viewer based on
sensitive information, for instance when sending mail to all invitees
of an event. Another case is when the program computes sensitive
values to be written to the database, as the system usually cannot
know the viewer of future database queries.

In many cases, however, a useful correctness-preserving opti-
mization is to prune facets as soon as the runtime knows the viewer.
As soon as the runtime knows the viewer, it can discard unnecessary
facets. Doing this optimization involves being able to determine 1)
the value of the viewing context and 2) that the state relevant to the
policies will not change until output. In general, determining when
we can perform this optimization requires non-trivial static analysis.

Two properties of web programs make this optimization feasible.
First of all, the framework often knows the viewing context ahead
of time, as it is often the session user. Secondly, computation sinks
are easy to identify in model-view-controller web frameworks. The
most common information-leaking computation sinks involving
writing to the database and rendering a page. Most controller
functions either read from the database or write to the database,
but not both. This allows us to implement functionality that, for
“get” requests, speculates on when the viewer is known, rolling
back to the beginning of the controller function to perform faceted
execution when the hypothesized viewer is incorrect. The Early
Pruning optimization is especially helpful in the common case
because many pages that require substantial computation do not
also involve writes to the database. We can also perform an Early
Pruning optimization for saves by adding extra code that limits the
visibility of a save operation to certain viewers, provided that the
programmer knows the viewers ahead of time.

4. Formal Semantics and Policy Compliance
In this section, we capture the key ideas underlying Jacqueline in an
idealized core language called λJDB. We prove that λJDB satisfies
the key security property of termination-insensitive non-interference
and policy compliance.When public values do not depend on secret
values, λJDB satisfies an end-to-end non-interference property.

4.1 Syntax and Formal Semantics
The language λJDB extends the language λjeeves [10] with support for
databases, which we model as relational tables. Figure 4 summarizes
the λJDB syntax, with the constructs from λjeeves marked in gray.
The λjeeves language, in turn, extends the standard imperative λ-
calculus with constructs for declaring new labels (label k in e),
for imperatively attaching policies to labels (restrict(k,e)), and for
creating faceted values (〈k ? eH : eL〉). This last expression behaves
like eH from the perspective of any principal authorized to see data
with label k. For all other principals, the faceted expression behaves
exactly like eL.

The language λJDB extends λjeeves with support for databases,
which we model as relational tables, where each table is a (possibly

e ::= Term
x variable
c constant
λx.e abstraction
e1 e2 application
ref e reference allocation
!e dereference
e1:=e2 assignment
〈k ? eH : eL〉 faceted expression
label k in e label declaration
restrict(k,e) policy specification
row e create a table
σi= j e select rows where fields are equal
πi e project columns
e1 ./ e2 join or cross-product of tables
e1∪ e2 union of tables
fold e f ep et table fold

S ::= Statement
let x = e in S let statement
print {ev} er print statement

c ::= Constant
f file handle
b boolean
i integer
s string

x,y,z Variable
k, l Label

Figure 4: λJDB syntax.

empty) sequence of rows and each row is a sequence of strings. We
require that all rows in a table have the same size. To manipulate
tables, λJDB includes the usual operators of the relational calculus:
selection (σi= j e), which selects the rows in a table where fields i and
j are identical, projection (πi e), which returns a new table containing
columns i from the table e, cross-product (e1 ./ e2), which returns all
possible combinations of rows from e1 and e2, and union (e1∪ e2),
which appends two tables. The construct row e creates a new single-
row table. The fold operation fold e f ep et supports iterating, or
folding, over tables. Fold has the “type” ∀A,B.(B→ A→ B)→
B→ table A→ B.

4.2 Formal Semantics
We formalize the big-step semantics as the relation Σ,e ⇓pc Σ′,V ,
denoting that expression e and store Σ evaluate to V , producing a
new store Σ′. The program counter pc is a set of branches. Each
branch is either a label k or a negated label ¬k. Association with k
means the computation is visible only to principals authorized to
see k. Association with ¬k means the computation is visible only to
principals not authorized to see k.

We could represent faceted tables as 〈k ? table T1 : table T2〉, but
this approach would incur significant space overhead, as it requires
storing two copies of possibly large database tables, possibly with
only small differences between the two tables. Instead, we use the
more efficient approach of faceted rows, where each row (B,s) in
the database includes a set of branches B describing who can see
that row. For example, the expression 〈k ? row "Alice" "Smith" :
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Runtime Syntax
e ∈ Expr ::= ... | a | table T
Σ ∈ Store = (Address→p Value) ∪ (Label→ Value)
R ∈ RawValue ::= c | a | (λx.e)
a ∈ Address
F ∈ FacetedValue ::= R | 〈k ? F1 : F2〉
T ∈ Table = (Branches×Stringn)∗

V ∈ Val ::= F | table T
b ∈ Branch ::= k | ¬k

pc,B ∈ Branches ::= b∗

Evaluation Contexts
E ::= 〈k ? E : e〉 | 〈k ? V : E〉

| • e | v • | ref • | ! • | • :=e | V := •
| row V . . . • e . . . | σi= j • | πi •
| • ./ e | V ./ • | • ∪ e | V ∪ •
| fold • e e | fold V • e | fold V V •

Strict Contexts
S ::= • e | ! • | • :=V | σi= j • | πi •

| • ./V | table T ./ • | • ∪V | table T ∪ •
| row V . . . • e . . . | fold V V •

Expression Evaluation Rules for λjeeves Subset Σ,e ⇓pc Σ′,V

Σ,V ⇓pc Σ,V
[F-VAL]

a 6∈ dom(Σ)
Σ′ = Σ[a := 〈〈 pc ? V : 0〉〉]

Σ, ref V ⇓pc Σ′,a
[F-REF]

a 6∈ dom(Σ)

Σ, !a ⇓pc Σ,0
[F-DEREF-NULL]

Σ, !a ⇓pc Σ,Σ(a)
[F-DEREF]

Σ′ = Σ[a := 〈〈 pc ? V : Σ(a)〉〉]
Σ,a :=V ⇓pc Σ′,V

[F-ASSIGN]

E 6= []∧ e not a value
Σ,e ⇓pc Σ′,V ′

Σ′,E[V ′] ⇓pc Σ′′,V ′′

Σ,E[e] ⇓pc Σ′′,V ′′
[F-CTXT]

Σ,e[x :=V ] ⇓pc Σ′,V ′

Σ,(λx.e) V ⇓pc Σ′,V ′
[F-APP]

k 6∈ pc and ¬k 6∈ pc
Σ,e1 ⇓pc∪{k} Σ1,V1

Σ1,e2 ⇓pc∪{¬k} Σ′,V2
V ′ = 〈〈k ? V1 : V2 〉〉

Σ,〈k ? e1 : e2〉 ⇓pc Σ′,V ′
[F-SPLIT]

k ∈ pc Σ,e1 ⇓pc Σ′,V
Σ,〈k ? e1 : e2〉 ⇓pc Σ′,V

[F-LEFT]

¬k ∈ pc Σ,e2 ⇓pc Σ′,V
Σ,〈k ? e1 : e2〉 ⇓pc Σ′,V

[F-RIGHT]

Σ,〈k ? S[VH ] : S[VL]〉 ⇓pc Σ′,V ′

Σ,S[〈k ? VH : VL〉] ⇓pc Σ′,V ′
[F-STRICT]

Evaluation with Relational Operations

Σ, row s ⇓pc Σ,(table (ε ,s))
[F-ROW]

T ′ = {(B,s1 . . .sn) ∈ T | si = s j}
Σ,σi= j (table T ) ⇓pc Σ,(table T ′)

[F-SELECT]

i = i1 . . . in
T ′ = {(B,si1 . . .sin) | (B,s1 . . .sm) ∈ T}

Σ,πi (table T ) ⇓pc Σ,(table T ′)
[F-PROJECT]

T3 = {(B1∪B2,s1 . . .sms′1 . . .s
′
n) | (B1,s1 . . .sm) ∈ T1,(B2,s′1 . . .s

′
n) ∈ T2}

Σ,(table T1) ./ (table T2) ⇓pc Σ,(table T3)
[F-JOIN]

Σ,(table T1)∪ (table T2) ⇓pc Σ,(table T1.T2)
[F-UNION]

Σ, fold V f Vp (table ε) ⇓pc Σ,Vp
[F-FOLD-EMPTY]

Σ, fold V f Vp (table T ) ⇓pc Σ′,V ′
B inconsistent with pc

Σ, fold V f Vp (table (B,s).T ) ⇓pc Σ′,V ′
[F-FOLD-INCONSISTENT]

Σ, fold V f Vp (table T ) ⇓pc Σ′,V ′
B consistent with pc

Σ′,V f s V ′ ⇓pc∪B Σ′′,V ′′

Σ, fold V f Vp (table (B,s).T ) ⇓pc Σ′′,〈〈B ? V ′′ : V ′ 〉〉 [F-FOLD-CONSISTENT]

Figure 5: Faceted evaluation of λJDB.7 2015/7/11



row "Bob" "Jones"〉 evaluates to the following table 2:

({k},("Alice","Smith"))
({¬k},("Bob","Jones"))

We do not model the facet identifier row jac_id. It is useful in the
implementation but not necessary for the formal semantics or proof.

To accommodate both faceted values and faceted tables, we
define the partial operation 〈〈 · ? · : · 〉〉 to create either a new faceted
value or a table with internal branches on rows:
〈〈 · ? · : · 〉〉 : Label×Val×Val→ Val

〈〈k ? FH : FL 〉〉
def
= 〈k ? FH : FL〉

〈〈k ? table TH : table TL 〉〉
def
= table T

where T = {(B∪{k},s) | (B,s) ∈ TH ,¬k 6∈ B}
∪{(B∪{¬k},s) | (B,s) ∈ TL,k 6∈ B}

Wrapping a facet with label k around non-table values FH and FL
simply creates a faceted value containing k, FH , and FL. Wrapping
a facet with label k around tables TH and TL creates a new table
T containing the rows from TH and TL, annotated with k and ¬k
respectively. We extend this operator to sets of branches:

〈〈 · ? · : · 〉〉 : Branches×Val×Val→ Val

〈〈 /0 ? VH : VL 〉〉
def
= VH

〈〈{k}∪B ? VH : VL 〉〉
def
= 〈〈k ? 〈〈B ? VH : VL 〉〉 : VL 〉〉

〈〈{¬k}∪B ? VH : VL 〉〉
def
= 〈〈k ? VL : 〈〈B ? VH : VL 〉〉〉〉

We show the faceted evaluation rules in Figure 5. The key
rule is [F-SPLIT], describing how evaluation of a faceted expression
〈k ? e1 : e2〉 involves evaluating the sub-expressions in sequence.
Evaluation adds k to the program counter to evaluate e1 and ¬k to
evaluate e2 and then joins the results in the operation 〈〈k ? V1 : V2 〉〉.
The rules [F-LEFT] and [F-RIGHT] show that only one expression is
evaluated if the program counter already contains either k or ¬k.

Our rules use contexts to describe faceted execution. The rule
[F-CTXT] for E[e] enables evaluation of a subexpression inside an
evaluation context. We use S to range over strict operator contexts:
that is, operations that require a non-faceted value. If an expression
in a strict context yields a faceted value 〈k ? VH : VL〉, then the rule
[F-STRICT] applies the strict operator to each of VH and VL. Thus, for
example, the evaluation of 1+ 〈k ? 2 : 3〉 reduces to the evaluation
of 〈k ? 1+2 : 1+3〉, where S in this case is 1+ • . The rules
[F-SELECT], [F-SELECT], [F-PROJ], [F-JOIN], and [F-UNION] formalize
the relational calculus operators on tables of faceted rows. These
rules are mostly straightforward.

The rules for folding over tables are more interesting. If a row
(B,s) is inconsistent (i.e., not visible to) the current program counter
label pc, then rule [F-FOLD-INCONSISTENT] ignores that row. If the
row is consistent, then rule [F-FOLD-CONSISTENT] applies the fold
operator V f to the row contents s and the accumulator V ′, producing
a new accumulator V ′′. The result of that fold step is 〈〈B ? V ′′ : V ′ 〉〉,
a faceted expression that appears like V ′′ to principals that can see
the B-labeled row and like V ′ to other principals.

The faceted execution semantics describe the propagation of
labels and facets for the purpose of complying with policies at
computation sinks. λJDB expressions do not perform I/O, while
λJDB statements include the effectful construct print {ev} er that
prints expression er under the policies and viewing context ev. The
λjeeves semantics describes how, for printing, the runtime assigns
labels based on the policies and viewers and projects a single facet
based on the label assignment. The λjeeves rules for declaring new
labels and attaching policies to labels are in Appendix A.

2 Note that this value representation does not support mixed expressions such
as 〈k ? 3 : row "Alice"〉, which mix integers and tables in the same faceted
values. Programs that try to cons unnaturally mixed values will get stuck.

4.3 End-to-End Policy Compliance
Austin et al. have proven policy compliance guarantees for
λjeeves [10], showing the faceted semantics have the properties
that 1) a single faceted execution is equivalent to multiple different
executions without faceted values and 2) the system cannot leak sen-
sitive information through the output or the choice of output channel.
We prove that this property extends to λJDB, yielding guarantees of
end-to-end policy compliance for database-backed applications.

The proof of policy compliance involves extending the projection
property of λjeeves. A key property of λjeeves is that a single execution
with faceted values projects to multiple different executions without
faceted values. If a viewer has access only to the public facet of an
expression, then faceted execution is output-equivalent to executing
with only the public facet in the first place.

To prove this property, we first define what it means to be be a
view and to be visible. A view L is a set of principals. B is visible to
view L (written B∼ L) if

∀k ∈ B.k ∈ L

∀¬k ∈ B.k 6∈ L

We extend views to values:

L : Val(with facets)→Val(without facets)
L(R) = R

L(〈k ? F1 : F2〉) =
{

L(F1) k ∈ L
L(F2) k 6∈ L

L(table T ) = {( /0,s) | (B,s) ∈ T,B visible to L}

We extend views to expressions:

L(〈k ? e1 : e2〉) =
{

L(e1) k ∈ L
L(e2) k 6∈ L

For all other expression types we recursively apply the view to
subexpressions.

We then prove the Projection Theorem. The full proof is in
Appendix E. Proofs of the key lemmas are in Appendices B and C.

Theorem 1 (Projection). Suppose Σ,e ⇓pc Σ′,V . Then for any view
L for which pc is visible,

L(Σ),L(e) ⇓ /0 L(Σ′),L(V )

The Projection Theorem allows us to extend λjeeves’s property
of termination-insensitive non-interference. To state the theorem
we first define two faceted values to be L-equivalent if they have
identical values for the view L. This notion of L-equivalence nat-
urally extends to stores (Σ1 ∼pc Σ2) and expressions (e1 ∼pc e2).
The theorem is as follows:

Theorem 2 (Termination-Insensitive Non-Interference).
Let L be any view. Suppose Σ1 ∼L Σ2 and e1 ∼L e2, and that:

Σ1,e1 ⇓ /0 Σ′1,V1 Σ2,e2 ⇓ /0 Σ′2,V2

then Σ′1 ∼L Σ′2 and V1 ∼L V2.

The Termination-Insensitive Non-Interference Theorem allows
us to extend the termination-insensitive policy compliance theorem
of λjeeves [10]: data is revealed to an external observer only if it is
allowed by the policy specified in the program.

4.4 Early Pruning
The Early Pruning optimization involves shrinking a table T by
keeping each row (B,s) only when B is consistent with the viewer
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constraint described by pc. We show the rule below:

Σ,e ⇓pc Σ′,(table T )
T ′ = {(B,s) ∈ T | B consistent with pc}

Σ,e ⇓pc Σ′,(table T ′)
[F-PRUNE]

We prove the Projection Theorem holds with this extension.

5. Implementation
We implemented Jeeves as an embedding in Python and Jacqueline
as an extension of the Django web framework [2]. Our code is
available at [link to repository removed for double-blind reviewing].

5.1 Python Embedding of the Jeeves Runtime
Our embedding allows programmers to write programs that run
according to Jeeves semantics simply by importing our library and
annotating classes and functions with the @jacqueline decorator. The
decorator indicates that the class or function is to execute according
to the faceted semantics. The library exports functions for creating
labels, creating sensitive values, attaching policies, and producing
non-faceted values based on policies. Our implementation supports
a subset of Python’s syntax that includes if-statements, for-loops,
and return statements.

5.1.1 Faceted Execution
To support faceted execution, the implementation defines a special
Facet data type to store information about faceted values. During
faceted execution, an object’s fields might be faceted values, either
faceted primitive values (e.g. int, bool) or faceted references to other
objects. A field may exist only in some execution paths, in which
case we use a special object Unassigned() for other paths.

To perform faceted execution, the implementation overloads
operators (except operator such as in and and that do not support
overloading) and performs a dynamic source transformation using
the macro library MacroPy [5]. The source transformation intercepts
the standard evaluation of conditionals, loops, assignments, and
function calls. The runtime also keeps track of path conditions
corresponding to label assumptions in the current branch. Since the
scope of a Python variable is determined by where it is assigned in
the source code, the implementation handles local assignment by
replacing a function’s local scope with a special Namespace object
that determines the scope of each local variable.

5.1.2 Evaluating Policies at Computation Sinks
The runtime keeps an environment that maps labels to policies for the
purpose of using policies to de-facet values. Effectful computations
take two arguments: the expression to show and an additional
argument corresponding to the output context. If there are no mutual
dependencies between policies and sensitive values, the runtime
simply evaluates policies to determine label values. Otherwise, the
runtime creates a system of constraints in order to find an assignment
for label values consistent with the policies. The implementation
produces an ordering over Boolean label assignments and uses
the SAT subset of the Z3 SMT solver [33] to find a satisfying
assignment.

5.2 Jacqueline ORM
We implemented Jacqueline’s ORM as an extension of Django’s
ORM. The Jacqueline ORM creates schemas with additional meta-
data columns for keeping track of facets. All queries through the
ORM manipulate the meta-data columns in addition to the actual
columns. The ORM reconstructs facets from the meta-data. The
ORM looks up policies from object schemas when reconstructing
facets and adds the policies to the Jeeves runtime environment. We

implement the Early Pruning optimization by reconstructing only
the relevant facets when the runtime knows the viewer.

6. Jacqueline in Practice
To evaluate the expressiveness and performance of Jacqueline we
built 1) a conference management system, 2) a health record man-
ager, and 3) a course management system. We evaluate Jacqueline
along the following dimensions:

• Expressiveness. We worked with two programmers who were
not involved in Jacqueline development to ensure that Jacqueline
provides a natural programming interface. One of the appli-
cations we built is a conference management system we have
deployed to run a real workshop [1].
• Code architecture. We compare the implementation of the

Jacqueline conference management system to an implementation
of the same system in Django, as well as the HotCRP conference
management system. We demonstrate that Jacqueline helps with
both centralizing policies and with size of policy code.
• Performance. We demonstrate that Jacqueline can handle data

from hundreds of simulated users in the database. We show that
for representative actions, Jacqueline has comparable perfor-
mance to the Django equivalent. For the stress tests, the Jacque-
line programs often have close to zero overhead and at most a
1.75x slowdown compared to vanilla Django. We also demon-
strate the effectiveness of and necessity of the Early Pruning
optimization.

6.1 Applications
We have developed the following applications using Jacqueline.

Conference management system. Our conference management
system supports user registration, update of profile information,
designation of roles (i.e. PC member), paper and review submission,
and assignment of reviews. Users may be authors, PC members,
or the PC chair; only the PC chair can designate users as PC
members. The administrator specifies the PC chair when configuring
the system. The PC chair has additional privileges: for instance,
assigning reviewers to papers. Permissions depend on the current
stage of the conference: submission, review, or decision.

Health record manager. We implemented a health record sys-
tem based on a representative fragment of the privacy standards
described in the Health Insurance Portability and Accountability
Act (HIPAA) [11, 36]. The HIPAA standards describe how individ-
uals and entities (such as hospitals and insurance companies) may
view a patient’s medical history depending on the information and
the viewer’s role. An example policy is that information about an
individual’s hospital visits is visible to the individual, the individ-
ual’s insurance company, and to the site administrator. Policies may
also depend on more stateful properties, for instance whether there
exists a waiver permitting information release.

Course manager. Our course management tool allows instruc-
tors and students to organize assignments and submissions. Relying
on Jacqueline to manage policies allows us to experiment with more
complex policies than are normally in a course manager: for in-
stance, stateful policies that depend on submission history or the
activity of other students in the course.

6.2 Code Comparisons
We compare our Jacqueline implementation of a conference man-
agement system against HotCRP and a Django implementation of
the same system. We demonstrate that 1) centralized policies in
Jacqueline reduces the trusted computing base and 2) separating
policies and other functionality decreases policy code size.
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Policy Code: Jacqueline vs. Django
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Figure 6: Distribution of policy code with Jacqueline and Django
conference management systems.

6.2.1 Django Conference Management System
We compare the lines of code in the Jacqueline and Django con-
ference management systems in Figure 6. Note Jacqueline code
requires additional imports and function decorators because we have
implemented Jacqueline by extending Python and Django. (With our
current implementation, each class and function executing according
to the faceted semantics requires the @jacqueline decorator. Policies
require additional decorators.)

Jacqueline demonstrates advantages in both the distribution and
size of policy code. In the Jacqueline implementation, policy code
is confined to the models.py file describing the data schemas, while
in the Django implementation, the programmer needs to implement
policies throughout the controller file views.py as well. These poli-
cies increase the overall code size. The Jacqueline implementation
has 106 total lines of policy code, whereas the Django implementa-
tion has 130 lines. These additional lines of policy code manifest as
repeated checks and filters across views.py. Thus, Django requires
auditing of all of models.py and views.py (~575 total lines of code)
to ensure policy compliance. In contrast, Jacqueline requires only
auditing models.py (~200 lines of code), reducing the size of the
application-specific trusted computing base by 65%.

6.2.2 HotCRP
Policies and functionality are intertwined across the HotCRP confer-
ence management system [6], written mostly using PHP and SQL.
There are 191 occurrences alone of checks for whether the viewer
is the PC chair or has the appropriate conflict status, as well as dy-
namically generated SQL queries based on analogous conditional
checks. The policy code is in at least 24 of the 82 files. A program-
mer needs to edit code across the system to add policies or fix bugs.
The HotCRP bug we mentioned in the introduction involved 40
additions and 25 deletions, including adding checks in dynamically
generated SQL, in multiple places across two files [4].

6.3 Performance
We evaluated the performance of our system on representative
actions and stress tests compared to an implementation written
using vanilla Django. We also evaluated the effectiveness of the
Early Pruning optimization, demonstrating its necessity for non-
trivial computations involving sensitive values.

We measured running times using an Amazon EC2 m3.2xlarge
instance running Ubuntu 14.04 with 30GB of memory, two 80GB
SSD drives, and eight virtual 64-bit Intel(R) Xeon(R) CPU E5-
2670 v2 2.50Ghz processors. We use the FunkLoad testing frame-
work [3] for functional and load testing to time HTTP requests
from another machine across the network. We ran all tests using the
−−simple−fetch option to exclude CSS and images. We averaged
running times over 10 rapid sequential requests. We show results
only from sequential requests because how well Jacqueline handles

CFM Representative Actions
View single paper

Papers Jacq. Django
8 0.160s 0.177s

16 0.165s 0.175s
32 0.160s 0.177s
64 0.159s 0.173s

128 0.160s 0.173s
256 0.159s 0.173s
512 0.159s 0.178s

1024 0.161s 0.173s

View single user
Users Jacq. Django

8 0.164s 0.158s
16 0.164s 0.159s
32 0.164s 0.159s
64 0.164s 0.159s

128 0.167s 0.158s
256 0.163s 0.159s
512 0.169s 0.162s

1024 0.163s 0.159s

Figure 7: Times to view profiles for a single paper and single user,
in Jacqueline and Django.

concurrent users compared to Django simply depends on the amount
of available memory.

6.3.1 Representative Actions
We measured the time it takes for our system to do view the profiles
for a paper and user as there is more data in the database. We
show these numbers, as well as comparisons to Django, in Figure 7.
The time it takes to load these profiles is under two milliseconds
and roughly equivalent to the time it takes to do the equivalent
action in the Django implementation. For viewing a single paper,
Jacqueline actually performs better than the Django implementation.
This is because in a few cases, the implementation needs iterate over
collections of data rows again in order to apply policy checks. In the
Jacqueline implementation, the programmer can simply rely on the
framework to attach the policies.

6.3.2 Stress Tests
In Figure 8 we show results for showing an increasing number of
papers and users for conference management systems implemented
in Jacqueline and Django. In these tests, the system is resolving
different policies for each paper and user field. The graphs demon-
strate that with both Jacqueline and Django, the time to load data
scales linearly with respect to the underlying algorithms. In these
results, Jacqueline has a 1.75x overhead for showing all papers. The
overhead comes from Jacqueline fetching both versions of data from
the database before resolving the policies. Integrating policies more
deeply with the database could reduce this overhead. Note that there
is no solver overhead, as there are no mutual dependencies between
sensitive values and policies.

Results for the other case studies show similar promise for
Jacqueline’s ability to scale. In Figure 9 we show stress test data from
our health record manager and course manager. Jacqueline resolves
policies for rendering hundreds of data records in seconds. Most
systems will not load over a thousand data rows at once, especially
when each row value has its own privacy policy involving calls to
the database. A more realistic website would load such a page in
fragments and consolidate policies.

6.3.3 Early Pruning Optimization
We found the Early Pruning optimization to be necessary when the
program performs nontrivial computations over sensitive values. In
the course manager stress test, the page that shows all courses also
looks up the instructors for each course, leading to blowup: before
the course is known, the system must look up all possible instructors.
We show in Figure 10 how for just 8 randomly generated courses and
instructors, the system begins to hit memory limits. Early Pruning
makes it possible to write such programs in Jacqueline. As long as
the computation to determine a viewer is simple, Early Pruning can
simplify other computations after the viewer is known.
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CFM Stress Tests
View all papers

Papers Jacq. Django
8 0.241s 0.201s

16 0.299s 0.241s
32 0.542s 0.388s
64 0.855s 0.554s

128 1.551s 0.931s
256 2.810s 1.633s
512 5.717s 3.265s

1024 10.729s 6.055s

View all users
Users Jacq. Django

8 0.172s 0.163s
16 0.249s 0.234s
32 0.279s 0.254s
64 0.358s 0.341s

128 0.510s 0.541s
256 0.769s 0.820s
512 1.352s 1.269s

1024 2.305s 1.538s
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Figure 8: Times to view list of summary information for all papers
and all users, in Jacqueline and Django.

Other Stress Tests
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Figure 9: Jacqueline stress tests for other case studies.

Showing All Courses, with and without Pruning
Courses Without pruning With pruning

4 0.377s 0.185s
8 64.024s 0.192s

16 – 0.248s
32 – 0.337s
64 – 0.522s

128 – 0.886s
256 – 1.630s
512 – 3.691s

1024 – 6.233s

Figure 10: The course manager stress test performs well with the
Early Pruning optimization and times out otherwise.

7. Related Work
There are many approaches that check programs, statically and
dynamically, to prevent information leaks. Using these approaches,
the programmer still needs to implement the policy checks and filters
correctly across the program. Policy-agnostic solutions mitigate
programmer burden by using the language runtime to customize
program executions to adhere to policies. Approaches for checking
information flow include the following:

• Integrated query languages. The SeLINQ system [38] builds
on Cheney et al.’s theory of language-integrated query [19] to
track information flow across the application and database in
an embedded query language [38]. Lourenço and Caires have
developed a type-based information flow analysis for tracking
across database-backed applications [30].
• Web frameworks. Passe [13] dynamically analyzes applica-

tions to enforce policies about what information may be leaked
from database queries. The Hails web framework [26] also sepa-
rates out information flow policies from the rest of the program
and enforces them using the LIO system for dynamic information
flow controls [41]. The SIF web framework [21] uses a label-
based approach and tracks all information-flow end-to-end to
verify the correctness of programs with respect to stated policies.
Ur/Web [20] uses static dependent types to check information
flow properties in web programs.
• Static, language-based checking. Language-based approaches

for verifying information flow security include Jif [34], Fab-
ric [9, 29], Fine [17], F∗ [42], flow locks [14, 15]. IFDB checks
information flow policies in databases [39].
• Dynamic, systems-based checking. Work on capabilities [12,

31] and dynamic, system-based informational flow control tech-
niques [46] insert checking routines into programs.
• Provenance-based checking. Jacqueline’s tracking of sensitive

values in the database is also related to work in data prove-
nance [7, 25, 37], especially recent work in provenance for secu-
rity [8, 18] that uses the history of how values were computed
for enforcing security properties.

Jacqueline differs from access control approaches in the same way:
for instance, the Rubicon verification based on bounded model
checking [35], the Margrave policy analyzer [24], and the Sunny
approach [32] for model-based, event-driven programming.

Related security approaches include symbolic execution [28]
and secure multi-execution [16, 22, 23], which executes a separate
process for high- and low-confidentiality values to guarantee non-
interference by construction. Faceted execution avoids overhead
when code does not depend on confidential data. In addition, the
policy-agnostic paradigm mitigates programmer burden by factoring
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out policies from the rest of the code and supporting policies that
may depend on sensitive values.

Sensitive values in Jeeves and Jacqueline are similar to varia-
tional data structures [43], values that encapsulate properties related
to program customization. Aspect-oriented programming [27, 40]
has similar goals of separating program concerns. Policy-agnostic
programming goes beyond these approaches in customizing pro-
gram behavior because the semantics allow properties of data to
determine control flow.

8. Conclusions
Policy-agnostic programming prevents information leaks by reduc-
ing opportunity for programmer error. The approach mitigates pro-
grammer burden by allowing the programmer to separate the imple-
mentation of information flow policies from the rest of the function-
ality. Previous work on the Jeeves programming language [10, 45]
defines a semantics for policy-agnostic programming. Unfortunately,
Jeeves is unsuited for the scale of realistic web programs because 1)
the guarantees do not extend when interoperating with commodity
databases and 2) Jeeves has an expensive execution model that may
explore exponentially many possible executions.

We present Jacqueline, a policy-agnostic web framework that
supports realistic web applications. With Jacqueline, we extend the
policy-agnostic model to work across applications and databases.
The main contribution is an object-relational mapping (ORM)
framework that enforces policies throughout application code as
well as database queries. We model the ORM by extending the
policy-agnostic semantics with relational operators and prove end-
to-end policy compliance. To address the performance issues with
Jeeves, we formalize an Early Pruning optimization approach. We
demonstrate that this optimization not only helps Jacqueline run with
reasonable–and often negligible–overheads, but is also necessary
for nontrivial computations involving sensitive data.

We demonstrate that a policy-agnostic web programming
paradigm reduces the amount of policy code and trusted com-
puting base without sacrificing expressiveness or performance. By
giving web frameworks more responsibility in managing sensitive
data, we can allow programmers to focus on the novel parts of their
applications, instead of implementing policies as repeated checks
and filters across the program.
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A. Rules from λjeeves

These rules from λjeeves [10] descrbe how to declare labels and
attach policies to labels. The rule [F-LABEL] dynamically allocates a
label (label k in e), adding a fresh label to the store with the default
policy of λx.true. Any occurrences of k in e are α-renamed to k′
and the expression is evaluated with the updated store. Policies may
be further refined (restrict(k,e)) by the rule [F-RESTRICT], which
evaluates e to a policy V that should be either a lambda or a faceted
value comprised of lambdas. The additional policy check is restricted
by pc, so that policy checks cannot themselves leak data. It is then
joined with the existing policy for k, ensuring that policies can only
become more restrictive.

k′ f resh
Σ[k′ := λx.true],e[k := k′] ⇓pc Σ′,V

Σ, label k in e ⇓pc Σ′,V ′
[F-LABEL]

Σ,e ⇓pc Σ1,V
Vp = 〈〈pc∪{k} ? V : λx.true〉〉

Σ′ = Σ1[k := Σ1(k)∧ f Vp]

Σ, restrict(k,e) ⇓pc Σ′,V
[F-RESTRICT]

B. Proof of Lemma 1
Lemma 1 (A).

L(〈〈k ? V1 : V2 〉〉) =
{

L(V1) if k ∈ L
L(V2) if k 6∈ L

L(〈〈k ? V1 : V2 〉〉) =
{

L(V1) if k ∈ L
L(V2) if k 6∈ L

Proof. By case analysis on the definition of 〈〈k ? V1 : V2 〉〉.
Let x = L(〈〈k ? V1 : V2 〉〉).
• If x = L(〈k ? F1 : F2〉) for some non-table values F1 and F2, then

this case holds since
x = L(F1) if k ∈ L.
x = L(F2) if k 6∈ L.

• If x = L(〈〈k ? table T1 : table T2 〉〉), then x = L(table T ) where
T = {(B∪{k},s) | (B,s) ∈ T1,¬k 6∈ B}
∪ {(B∪{¬k},s) | (B,s) ∈ T2,k 6∈ B}.

And so
x = {( /0,s) | (B,s) ∈ T1,¬k 6∈ B,B∪{k} ∼ L}
∪ {( /0,s) | (B,s) ∈ T2,k 6∈ B,B∪{¬k} ∼ L}.

If k ∈ L, then B∪{¬k} 6∼ L and
B∪{k} ∼ L => ¬k 6∈ B, and so
x = {( /0,s) | (B,s) ∈ T1,B∼ L}
= L(table T1), as required.

If k 6∈ L, then this case holds by a similar argument as the
previous case.

C. Proof of Lemma 2
Lemma 2 (B).

L(〈〈B ? V1 : V2 〉〉) =
{

L(V1) if B∼ L
L(V2) if ¬(B∼ L)
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Proof. The proof is by induction and case analysis on the derivation
of L(〈〈B ? V1 : V2 〉〉). Let x = L(〈〈B ? V1 : V2 〉〉).

• If B = /0, then B∼ L, so x = L(V1) as required.
• Otherwise, B = B′∪{k}.

If B∼ L, then
x = L(〈〈k ? 〈〈B′ ? V1 : V2 〉〉 : V2 〉〉)
= L(〈〈B′ ? V1 : V2 〉〉) by Lemma 1, since k ∈ L
= L(V1) by induction, as B′ ∼ L.

Otherwise, B 6∼ L, then
− if k 6∈ L, then x = L(V2) by Lemma 1.
− otherwise k ∈ L, so B′ 6∼ L.

Therefore, x = L(〈〈B′ ? V1 : V2 〉〉) = L(V2), as required.

D. Lemma 3
If a set of branches is compatible with view L, then we can execute
only using that view. We prove an additional lemma that if pc is
not visible, then execution should not affect the environment under
projections of L.

Lemma 3 (C). If pc is not visible to L and

Σ,e ⇓pc Σ
′,V

then L(Σ) = L(Σ′). If pc is not visible to L and

Σ,e ⇓pc Σ
′,V

then L(Σ) = L(Σ′).

This lemma is also useful in the proof of the Projection Theorem.

E. Proof of Theorem 1 (Projection)
For convenience, we restate Theorem 1.
Suppose Σ,e ⇓pc Σ′,V . Then for any view L for which pc is visible,

L(Σ),L(e) ⇓ /0 L(Σ′),L(V )

For our proof, we extend L to project evaluation contexts, but
they may project away the hole, and so map evaluation contexts to
expressions, in which case filling the result is a no-op.

We also note that if a branch B is inconsistent with the program
counter pc, at most one of B and pc may be visible to any given view
L. This property is captured in the following lemma.

Lemma 4. If B is inconsistent with pc and pc∼ L, then B 6∼ L.

With these properties established, we now prove projection.

Proof. By induction on the derivation of L(Σ),L(e) ⇓ /0 L(Σ′),L(V )
and by case analysis on the final rule used in that derivation.

• Cases [F-VAL], [F-DEREF], [F-DEREF-NULL], [F-ROW], [F-PROJECT],
and [F-UNION] hold trivially.
• For case [F-SELECT], e = σi= j (table T ), so

Σ,σi= j (table T ) ⇓pc Σ,(table T ′)

where T ′ = {(B,s) | si = s j}.
Therefore, this case holds since L(table T ) = {( /0,s) | (B,s) ∈
T,B∼ L},
and L(table T ′) = {( /0,s) | (B,s) ∈ T,B∼ L,si = s j},

• For case [F-JOIN], e = (table T1) ./ (table T2), so

Σ,(table T1) ./ (table T2) ⇓pc Σ,(table T )

where T = {B.B′,s.s′) | (B,s) ∈ T1,(B′,s′) ∈ T2}.
L(T ) = {(B.B′,s.s′) | (B,s)∈ T1,(B′,s′)∈ T2,B.B′ ∼ L}, so this
case holds.
• For case [F-CTXT], e = E[e′]. By the antecedents of this rule

E 6= []
e′ not a value
Σ,e′ ⇓pc Σ1,V ′
Σ1,E[V ′] ⇓pc Σ′,V

Note that L(E[V ′]) = L(E)[L(V ′)], etc., so by induction

L(Σ),L(e′) ⇓ /0 L(Σ1),L(V ′)
L(Σ1),L(E)[L(V ′)] ⇓ /0 L(Σ′),L(V )

Therefore, L(Σ),L(E[e]) ⇓ /0 L(Σ′),L(V ), as required.
• For case [F-STRICT], e = S[〈k ? V1 : V2〉]. By the antecedents of

this rule
Σ,〈k ? S[V1] : S[V2]〉 ⇓pc Σ

′,V ′

We now consider each possible case for the next step in the
derivation.

For subcase [F-LEFT], we know that k ∈ pc,k ∈ L and

Σ,S[V1] ⇓ /0 Σ
′,V

By induction, L(Σ),L(〈k ? S[V1] : S[V2]〉) ⇓ /0 L(Σ′),L(V ′).

Subcase [F-RIGHT] holds by a similar argument.
For subcase [F-SPLIT], k 6∈ pc,¬k 6∈ pc and

Σ,S[V1] ⇓pc∪{k} Σ′′,V ′′

Σ′′,S[V2] ⇓pc∪{¬k} Σ′,V ′′′

V = 〈〈k ? V ′′ : V ′′′ 〉〉

− If k∈L, then by induction L(Σ),L(S[V1])⇓ /0 L(Σ′′),L(V ′′).
L(Σ′′) = L(Σ′) by Lemma 3, and L(V ) = L(V ′′).
Therefore, L(Σ),L(S[V1]) ⇓ /0 L(Σ′),L(V ′), as required.

− If k 6∈ L, then this case holds by a similar argument.
• For case [F-FOLD-EMPTY], we have

Σ, fold V f Vb (table ε) ⇓pc Σ,Vb

Clearly, L(Σ), fold L(V f ) L(Vb) L(table ε) ⇓ /0 L(Σ),L(Vb).

• For case [F-FOLD-INCONSISTENT], e= fold V f Vp (table (B,s).T ).
By the antecedents of this rule, we have

Σ, fold V f Vb (table T ) ⇓pc Σ′,V
B is inconsistent with pc

By Lemma 4, B 6∼ L.
Therefore, L(table (B,s).T ) = L(table T ).
By the [F-FOLD-EMPTY] rule,

L(Σ), fold L(V f ) L(Vb) L(table (B,s).T ) ⇓ /0 L(Σ′),L(V )

By induction, L(Σ),L(fold V f Vb (table T )) ⇓ /0 L(Σ′),L(V ), as
required.
• For case [F-FOLD-CONSISTENT], e = fold V f Vb (table T ).

By the antecedents of this rule, we have

Σ, fold V f Vb (table T ) ⇓pc Σ1,V1
B is consistent with pc
Σ1,V f s V1 ⇓pc∪B Σ′,V2

V = 〈〈B ? V2 : V1 〉〉
If B∼ L, then pc∪B∼ L.
By induction,

L(Σ),L(fold V f Vb (table T )) ⇓ /0 L(Σ1),L(V1)
L(Σ1),L(V f s V1) ⇓ /0 L(Σ′),L(V2)

By Lemma 2, L(V ) = L(〈〈B ? V2 : V1 〉〉), as required.
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Otherwise, B 6∼ L, and therefore pc∪B 6∼ L. By Lemma 3,
L(Σ1) = L(Σ′).
By induction, L(Σ),L(fold V f Vb (table T ))⇓ /0 L(Σ1),L(V1).
L(table (B,s).T ) = L(table T ).
By Lemma 2, L(V ) = L(〈〈B ? V2 : V1 〉〉), as required.

• For case [F-LEFT], e = 〈k ? e1 : e2〉.
By the antecedents of this rule, we have

k ∈ pc
Σ,e1 ⇓pc Σ′,V

Since k ∈ pc, L(e) = L(e1).
By induction, L(Σ),L(e1) ⇓ /0 L(Σ′),L(V ).

• Case [F-RIGHT] holds by a similar argument.
• For case [F-SPLIT], e = 〈k ? e1 : e2〉.

By the antecedents of this rule, we have

k 6∈ pc ¬k 6∈ pc
Σ,e1 ⇓pc∪{k} Σ1,V1

Σ1,e2 ⇓pc∪{¬k} Σ′,V2
V = 〈〈k ? V1 : V2 〉〉

If k ∈ L, then by induction L(Σ),L(e1) ⇓ /0 L(Σ1),L(V1).
L(Σ1) = L(Σ′) by Lemma 3, and by Lemma 1
L(V ) = L(〈〈k ? V1 : V2 〉〉) = L(V1), as required.
Otherwise ¬k ∈ L, so L(Σ) = L(Σ1) by Lemma 3.
By induction, L(Σ1),L(e2) ⇓ /0 L(Σ′),L(V2),
and by Lemma 1 L(V ) = L(〈〈k ? V1 : V2 〉〉) = L(V2), as
required.

• For case [F-APP], e = (λx.e′ V ′). By the antecedents of this rule,

Σ,e′[x :=V ′] ⇓pc Σ
′,V

We know that L(e) = L(λx.e′ V ′) = L(e′[x :=V ′]).
By induction, L(Σ),L(e′[x :=V ′]) ⇓ /0 L(Σ′),L(V ), as required.
• For case [F-REF], e = ref V ′. By the antecedents of this rule

a 6∈ dom(Σ)
Σ′ = Σ[a := 〈〈pc ? V ′ : 0〉〉]

Without loss of generality, we assume that both evaluations
allocate the same address a. Since a 6∈ dom(Σ),a 6∈ dom(L(Σ)).
Also, we know that ∀a′ ∈ dom(Σ),Σ(a′) = Σ′(a′), and therefore
L(Σ(a′)) = L(Σ′(a′)).
Since pc∼ L, L(Σ′(a))= L(〈〈pc ? V ′ : 0〉〉)= L(V ′) by Lemma 2.
Since L(〈〈 /0 ? V ′ : 0〉〉) = L(V ′) = L(V ), this case holds.
• For case [F-ASSIGN], e = (a:=V ). By the antecedent of this rule,

Σ′ = Σ[a := 〈〈pc ? V : Σ(a)〉〉]. We know ∀a′ ∈ dom(Σ),Σ(a′) =
Σ′(a′), and therefore L(Σ(a′)) = L(Σ′(a′)).
Since L ∼ pc, L(Σ′(a)) = L(〈〈pc ? V : Σ(a)〉〉) = L(V ) by
Lemma 2. And since L(〈〈 /0 ? V : Σ(a)〉〉) = L(V ), this case
holds.
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