
A Language for Automatically Enforcing Privacy Policies

Abstract
It is becoming increasingly important for applications to not leak
sensitive data. With current techniques, the programmer bears the
burden of ensuring that the application’s behavior adheres to policies
about information flow. Unfortunately, privacy policies are difficult
to manage because their global nature requires coordinated reason-
ing and enforcement.

To address this problem, we describe a programming model
that makes the system responsible for ensuring adherence to pri-
vacy policies. The programming model has two components: core
programs describing functionality independent of privacy concerns
and declarative, decentralized policies controlling how sensitive val-
ues are disclosed depending on the context. Each sensitive value
encapsulates multiple views; policies describe which views are al-
lowed based on the output context. The system is responsible for
automatically ensuring outputs are consistent with the policies.

We have implemented this programming model in a new func-
tional constraint language named Jeeves. In Jeeves, sensitive values
are introduced as symbolic variables and policies correspond to con-
straints that are resolved at output channels. We have implemented
Jeeves as a Scala library using an SMT solver as a model finder. In
this paper we describe the dynamic and static semantics of Jeeves
and the properties about policy enforcement that the semantics guar-
antees. We also describe our experience implementing a conference
management system and a social network.

1. Introduction
As users share more personal data online, it becomes increasingly
important for applications to protect its confidentiality. This places
the burden on programmers to ensure compliance with privacy
policies when both the application and the policies themselves may
evolve rapidly.

Ensuring compliance with privacy policies is difficult because
of the need to reason globally about both the flow of information
and the interaction of different policies affecting this information.
A number of tools have been developed to check code against
privacy policies either statically [4, 17] or dynamically [26]. Such
checking tools can help avoid data leaks, but the programmer is
still responsible for implementing applications that display enough
information to satisfy the user’s needs without violating any privacy
policies. This opens an opportunity for a new class of programming
technologies that go beyond checking and actually simplify the
process of writing code that preserves confidentiality.
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The main contribution of this paper is a new programming model
that makes the system responsible for automatically producing pro-
gram outputs consistent with programmer-provided confidentiality
policies. The programming model has two components: a core pro-
gram representing program functionality that is policy-agnostic and
privacy policies controlling how sensitive values are disclosed. This
separation of policies from core functionality allows the program-
mer to explicitly associate policies with sensitive data rather than
expressing them implicitly across the code base. The declarative na-
ture of policies allows the system to ensure compliance with privacy
policies even when these policies interact in non-trivial ways.

We have implemented this programming model in a new func-
tional constraint language named Jeeves. There are three main
concepts in Jeeves: sensitive values, policies, and contexts. Sen-
sitive values are introduced as pairs xvK|vJy`, where vK is the
low-confidentiality value, vJ is the high-confidentiality value, and `
is the guard variable that can take on the values { K, J } and deter-
mines which view of the value should be shown. Policies correspond
to constraints on the values of guard variables. A policy may refer
to the context, which characterizes the output channel and contains
information identifying the viewer of the data as well as other rele-
vant information. For example, a social network we implemented as
a case study allows users to share location data with others in their
vicinity; in that case, the context must contain information about
the location of the viewer in addition to her identity. The execu-
tion model propagates policies and lazily evaluates computations
involving sensitive values. At output channels, which correspond to
effectful computations such as print , the programmer must provide
the context parameter so that a concrete value can be produced.

We formally define Jeeves in terms of λJ, a constraint functional
language we have defined to describe the propagation and enforce-
ment of policies in Jeeves. λJ is different from existing constraint
functional language in 1) the restrictions it places on the logical
model and 2) its use of default logic to help the programmer reason
about nondeterminism. There is a straightforward translation from
Jeeves to λJ: Jeeves guard variables for sensitive values are logic
variables, policies are assertions, and all values depending on logic
variables are evaluated symbolically. The symbolic evaluation and
constraint propagation in λJ allows Jeeves to automatically enforce
policies about information flow.

We have implemented Jeeves as a domain-specific language em-
bedded in Scala [18] using the Z3 SMT solver [15] to resolve con-
straints. The language of policies is a decidable logic of quantifier-
free arithmetic and boolean constraints and also equality constraints
over records and record fields. To evaluate the expressiveness of
Jeeves, we have used our Scala embedding to implement a con-
ference management system and a social network. On both case
studies, Jeeves allowed the separate implementation of functionality
and policies. For example, the conference management system sep-
arates the implementation of the core functionality for displaying
and searching over papers from the policies determining who, and
at what point in the conference process, can see information such as
paper titles, paper authors, and reviewer information. The result is
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that all users, including the general public, can use the same code
to search over the same database for information about conference
papers without compromising confidentiality.

In summary, we make the following contributions in this paper.

• We present a programming model that allows programmers to
separate privacy concerns from core program functionality.
• We formalize the dynamic and static semantics of a novel pro-

gramming language Jeeves as a set of constraint-based exten-
sions to the λ-calculus. We prove that Jeeves executions satisfy
a non-interference property between low and high components
of sensitive values.
• We describe the implementation of Jeeves as a Scala library

using the Z3 SMT solver.
• We describe our experience using Jeeves to preserve confiden-

tiality in a conference management system and a social network.

2. Delegating Privacy to Jeeves
Jeeves allows the programmer to specify policies explicitly and
upon data creation rather than implicitly across the code base. We
describe in the context of a simple conference management example
how to use the main features of Jeeves: sensitive values, policies,
and contexts. We show how to introduce sensitive values, how to
write policies with varying levels of complexity and interaction, how
these policies are enforced, and how to write concise core programs
that are agnostic to the policies.

To concisely convey the main ideas of Jeeves, we present an
ML-like concrete syntax for Jeeves, inventing our own syntax for
sensitive values, level variables, policies, and contextual enforcement
of policies.

2.1 Introduction to Jeeves
We first describe how to introduce sensitive values, use them to
compute result values, and display these results in different output
context. Below we show how language features are used in creating
a sensitive value representing an author’s name:

let name = <"Anonymous" | "Alice">(context = alice)
let msg = "Author is " + name
print { alice } msg
print { bob } msg

The sensitive value name should be seen as "Alice" by users with a
high confidentiality level and as "Anonymous" by anybody else. The
policy defines the privacy level as a function of the program state
and of the context, which represents a viewer for the data. The policy
context = alice is shorthand for saying that if the output context is
not user alice , the confidentiality level is low. Thus only user alice
can see her name appearing as the author in the string msg. When
the program prints output to user bob, the system will display the
string "Author is Anonymous".

The Jeeves programmer defines sensitive values by introducing
a tuple xvK|vJy` where vK is the low-confidentiality, vJ is the high
confidentiality value, and ` corresponds to a set of policies on the
sensitive value. Each sensitive value defines a low-confidentiality
and high-confidentiality view for a value. An expression containing
n sensitive values will evaluate to a result value containing up to 2n

views. We can encode more than two privacy level as well, but for
the sake of simplicity we present two in this paper.

Which view is displayed for each sensitive value depends on the
value of its level variable. In the above example, the level variable is
introduced implicitly together with the policy. We show below what
the right-hand side of the name would look like with explicit level
and policy expressions:

level a in

policy a: ! (context = alice ) then K in
<"Anonymous" | "Alice">(a)

In a sensitive value xvK|vJy` variable ` is a level variable where
` � K corresponds to low-confidentiality and ` � J corresponds
to high-confidentiality. Level variables provide the means of ab-
straction to specify policies incrementally and independently of the
sensitive value declaration. Level variables can be constrained di-
rectly (by explicitly passing around a level variable) or indirectly
(by constraining another level variable when there is a dependency)
by subsequent evaluation.

Policies, which are introduced through policy expressions, in-
troduce declarative rules describing when to set a level variable to
J or K. These rules may mention variables in scope and also the
depending the context parameter, an implicit parameter supplied
at the output channel that represents information about the viewer.
The context construct relieves the programmer of the burden of
structuring the code to propagate values from the output context. By
default, level variables take value J.

Statements that release information such as print require a
context parameter to produce outputs according to the policies.
The Jeeves runtime system propagates policies associated with
sensitive values in order to display the appropriate results at output
channels. Throughout this example we use print as the canonical
way of displaying output; other output channels include sending
e-mail and writing to file. Because the policies are declarative,
Jeeves automatically handles dependencies between policies. Jeeves
provides the guarantee that the system will not output a value
computed from the high-confidentiality view of a sensitive value
(such as name) if policies prohibit it from being shown.

2.2 Declarative and Decentralized Policies
We now describe how to write policies in Jeeves. To move along our
conference management example, we define a paper record:

type paper { title : string
; author: user
; reviews : review list
; accepted: bool option; ... }

Let us first consider the title field of paper records. There is a
simple policy: the title of a paper should be visible to the authors
of the paper, to reviewers and PC members, and also to the general
public after the public announcement if the paper has been accepted.
We write a function that, given variable p : paper, takes a title and
adds the policy that the viewer sees title only if permitted:

let addTitlePolicy (p: paper, title : string ) =
level a in
policy a: ! (context.viewer = p.author
|| context.viewer . role = Reviewer
|| context.viewer . role = PC
|| (context.stage = Public && isAccepted p)) then K in

<"" | title >(a)

In the function we introduce a new sensitive value for the title. We
declare a policy that sets the level to K unless the viewer has access
to see the paper title. Once this policy is attached to the paper title,
any output produced that includes the title string, will show the
empty string if the output viewer does not have access. We apply
this function to the title before storing the paper record to ensure
that policies are attached.

The condition for the policy in function addTitlePolicy mentions
the viewer and stage fields of the context variable. As previously
mentioned, Jeeves policies can use the context keyword to access
values provided at the output channel. For this example we define
the following context and confstage types:

type confView { viewer : user ; stage : confstage }
type confstage = Submission | Review | Decision | Public
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The programmer must define this context type in order to write
policies that reference it. A sensitive value produced by the
addTitlePolicy function is evaluated lazily in the context of the
output channel, where a value of type confView is provided.

2.2.1 Policy Interactions
One difficulty of reasoning about security policies is in making
sure one policy does not leak information from another policy. For
instance, the policy for paper titles could leak information about the
accept tag: for instance, if the policy were weakened to drop the
context.stage = Public, then anyone can see the title as soon as the
accept tag is set to true. Being able to attach policies to sensitive
values helps prevent the programmer from inadvertently leaking
information in this way. We show how to set up Jeeves policies to
prevent this information leak.

In the addTitlePolicy function, we define the predicate isAccepted
p depends on the accepted field of the paper p, which is going to
be some accepted if a decision has been made (and the decision is
known) or none otherwise. We can associate this field with its own
policy to prevent the situation where a change in the policy for paper
titles can accidentally leak information about the accepted field. For
instance, we could write the following function for adding a policy:

let addAcceptedPolicy(accepted: bool) =
level a in
policy a: ! (context.viewer . role = Reviewer
|| context.viewer . role = PC
|| context.stage = Public) then K in

<none | some accepted>(a)

This policy allows reviewers and program committee members to
always see whether a paper has been accepted, but for others to see
this field only during the Public stage. If the accepted tag has this
policy associated, then the title field cannot leak information about
the accepted tag.

2.2.2 Gradually Strengthened Policies
Level variables allow us to strengthen policies gradually. For exam-
ple, we can guard reviews field with a level reviewsLevel and allow
subsequent evaluations to strengthen the policy on reviewsLevel
to further restrict access. Declaring a conflict should exclude the
viewer from seeing the reviews. We can implement that in Jeeves as
follows:

let addConflict ( reviewsLevel : level , conflict : user) =
policy reviewsLevel : context.viewer = conflict then K

This function strengthens the policy on the reviewsLevel level
variable to exclude the new conflicted user.

2.2.3 Policy Dependencies
The Jeeves system can also automatically resolve dependencies.
Consider the following function that associates a policy with the
authors of a paper:

let addAuthorPolicy (author: user) : user =
level n in
policy n: context.user = author then J in
policy n: ! (context.stage = Review && context.user = x)

then K in
<anonAuthor | author>(n)

Now consider functionality that sends messages to authors of papers:

let sendMsg (author: user) =
let msg = "Dear " + author.name + ... in
sendmail { user = author; stage = Review } msg

The policy for level variable n depends on context.user, which in
this case is itself a sensitive value. This circular dependency makes

the solution underconstrained: either sending mail to the empty user
or sending mail to the author is correct under the policy. The desired
behavior is the latter, as it is permitted by the policies and ensures
that user a can communicate with user b without knowing private
information about user b.

Jeeves sets level variables to J by default to define program
behavior when these dependencies arise. Unless there are explicit
policies requiring a level value to be K, its value is J. The default
value of J for level variables causes the system to send the e-mail
with the actual name to the actual author. Such circular dependencies
may arise whenever the context is made up of values that may be
sensitive.

Even with circular dependencies, the system guarantees that
values will only be shown to users if the policies allow it. A level
variable ` can only become underconstrained if there are no policies
requiring ` to be K. In this case, it is always correct with respect to
the policies to allow ` to be J.

2.3 Core Functionality
Being able to separately specify the policies allows the core func-
tionality to be quite simple. In fact, the program could simply allow
all viewers to operate over the list of papers directly and rely on the
Jeeves system to display the appropriately anonymized information:

papers: paper list

As we describe in the conference management case study in Sec-
tion 6, the functions implementing the core program are quite con-
cise because they do not contain policy code.

3. The λJ Language and Semantics
To describe Jeeves execution we present λJ, a simple constraint func-
tional language based on the λ-calculus. There is a straightforward
translation from Jeeves to λJ. λJ differs from existing constraint
functional languages [8, 9, 13, 24] in two key ways: 1) λJ restricts its
constraint language to quantifier-free constraints involving boolean
and arithmetic expressions over primitive values and records and 2)
λJ supports default values for logic variables to facilitate reasoning
about nondeterminism. λJ’s restrictions on the constraint language
allows execution to rely on an off-the-shelf SMT solver.

In this section, we introduce the λJ language, the dynamic seman-
tics, the static semantics, and the translation from Jeeves. The λJ lan-
guage extends the λ-calculus with the defer, assert, and construct
for introducing, constraining, and producing concrete values from
logic variables. The dynamic semantics describe the lazy evaluation
of expressions involving logic variables and the interaction with
the constraint environment. The static semantics describe how the
system guarantees evaluation progress and enforces programmer
restrictions on concrete function arguments. The translation from
Jeeves to λJ illustrates how Jeeves uses the lazy evaluation and
constraint propagation, combined with Jeeves restrictions on how
logic variables are used, to provide privacy guarantees.

3.1 The λJ Language
We show the abstract syntax of λJ in Figure 1: values (υ) and expres-
sions (e). Expressions include the standard λ expressions extended
with the defer construct for introducing logic variables, the assert
construct for introducing constraints, and the concretize construct
for producing concrete values consistent with the constraints. A
novel feature of λJ is that logic variables are also associated with a
default value that serves as a default assumption; this provides some
determinism when logic variables are underconstrained.
λJ evaluation produces either values, which are either concrete

values c or symbolic value σ. Concrete values include records,
which have value fields. Symbolic values are irreducible arithmetic,
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c ::� n | b | λx : τ.e | record ~x : υ
| error | () concrete primitives

σ ::� x | context τ symbolic values
| c1 (op) σ2 | σ1 (op) c2
| if σ then υt else υf

υ ::� c | σ values
e ::� υ | e1 popq e2 expressions

| if e1 then et else ef | e1 e2
| defer x : τ teu default υd
| assert e
| concretize ewith υc

Figure 1: λJ abstract syntax.

boolean expressions, conditional expressions involving primitive
values, or the error value. Evaluation treats symbolic values as
fully evaluated expressions and handles them by creating symbolic
expressions.
λJ includes the context construct to allow constraints to refer

to the value supplied at the output context. The context variable
behaves like an implicit parameter provided in the concretize
expression. This implicit parameter. In the semantics we model
the behavior of the context variable as a symbolic value that is
constrained during evaluation of concretize.

We describe in more detail in Section 3.4 the translation from
Jeeves to λJ, which places restrictions on how logic variables are
introduced and constrained. Sensitive values and level variables in
Jeeves correspond to logic variables, level policies correspond to
assertions, and contextual enforcement corresponds to producing
concrete values consistent with the logical environment. Default
values provide determinism in handling policy dependencies.

3.2 Dynamic Semantics
In Figure 2 we show the small-step dynamic λJ semantics. λJ exe-
cution involves keeping track of the set of constraints assumed to be
true (hard constraints) and the set of constraints we use for guidance
if consistent with our hard constraints (default assumptions). To cor-
rectly evaluate conditionals with symbolic conditions, we also need
to keep track of the (possibly symbolic) guard condition. Evaluation
happens in the context of a logical environment in three parts:

• an environment Σ � H | tσu | ΣY Σ1 storing the current set
of constraints,
• an environment ∆ � H | tσu | ∆ Y ∆1 storing the set of

constraints on default values for logic variables, and
• a path condition G.

Evaluation rules take the form

G,Σ,∆ $ eÑ xΣ1,∆1, e1y.

Evaluation produces a tuple xΣ1,∆1, e1y of resulting constraint and
default environments and an expression e1.

The semantics require all logic variables must have unique
names; we can ensure this by generating new names for each logic
variable and α-renaming within the constraint. The λJ evaluation
rules extend λ-calculus evaluation with constraint propagation
and symbolic evaluation of expressions involving logic variables,
including evaluation of symbolic conditionals.

3.2.1 Evaluation with Logic Variables
λJ has the expected semantics for function applications and
arithmetic and boolean operations. The E-APP1, E-APP2, and
E-APPLAMBDA rules describe a call-by-value semantics. The
E-OP1 and E-OP2 rules for operations show that the arguments are
evaluated to irreducible expressions and then, if both arguments be-

come concrete, the E-OP rule can be applied to produce a concrete
result.

Conditionals with symbolic conditions are evaluated by creat-
ing an if -then-else symbolic value created from evaluating both
branches. The E-COND, E-CONDTRUE, and E-CONDFALSE rules
describe the evaluation of different parts of a conditional expres-
sion. The E-CONDSYMT and E-CONDSYMF rules describe the
evaluation of each conditional branch if the condition is a symbolic
expression.

Evaluation of a conditional with a recursive function application
in a branch will not terminate if the condition is symbolic. To help
the programmer avoid applications of recursive functions guarded by
symbolic conditions, we allow the programmer to annotate function
arguments required to be concrete. The programmer can rely on the
type system to enforce these requirements in order to make sure
recursive calls are not made under symbolic conditions 3.3.

3.2.2 Introduction and Elimination of Logic Variables
In λJ, logic variables are introduced through the defer keyword.

let x: int = defer int x’ { x’ > 0 } with default 42

As we show in the E-DEFER evaluation rule, the right-hand side
of the assignment would evaluate to an α-renamed version of the
logic variable x’ . Evaluation adds the constraint G ñ x’ > 0 to
the constraint environment and the constraint G ñ x’ = 42 to the
default constraint environment. The constraint G ñ x’ = 0 is a hard
constraint that must hold for all derived outputs, while G ñ x’ = 42
is a constraint that is only used if it is consistent with the resulting
logical environment. The E-DEFERCONSTRAINT rule describes the
evaluation of the constraint expression to a symbolic value.

The program introduces constraints on logic variables through
assert expressions. The E-ASSERT rule describes how the con-
straint is added to the constraint environment, taking into account
the path condition G. For instance, consider the following code:

if (x > 0) then assert (x = 42) else assert (x = �42)

Evaluation adds the constraints x > 0 ñ x �� 42 and  (x > 0)
ñ x �� �42 to the constraint environment.

Symbolic expressions can be made concrete through the
concretize construct. Evaluation of concretize expressions either
produces a concrete value or an error. A concretize expression
includes the expression to concretize and a default expression:

let result : int = concretize x with 42

As we describe in the E-CONCRETIZESAT rule, concretization
would add the constraint context = 42 to the constraint environ-
ment and find an assignment for x consistent with the constraint
and default environments. The MODEL function takes the constraint
and default environments, computes a satisfiable assignment to free
variables, and produces a substitution M : υ Ñ c that is used to
produce a concrete value. When concretization produces a value,
evaluation adds constraint guarded by the path condition G and the
context value to the constraint environment to ensure that subsequent
concretizations are consistent.

The CONCRETIZE-UNSAT describes what happens if there is no
satisfiable expression consistent with the constraint environment.
In this case, evaluation of the concretize expression produces the
error value. The guard constraint is added to the environment to
reflect the fact that this is an infeasible computation path.

3.2.3 Interaction with the Constraint Environment
Valid constraint expressions correspond to λJ expressions that do
not contain λ-expressions. This constraint language corresponds
to constraints that can be solved by off-the-shelf SMT solvers.
The MODEL procedure we show in the E-CONCRETIZE rules is
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G,Σ,∆ $ eÑ xΣ1,∆1, e1y

G,Σ,∆ $ e1 Ñ xΣ1,∆1, e11y

G,Σ,∆ $ e1 e2 Ñ xΣ1,∆1, e11 e2y
E-APP1

G,Σ,∆ $ e2 Ñ xΣ1,∆1, e12y

G,Σ,∆ $ υ e2 Ñ xΣ1,∆1, υ e12y
E-APP2

G,Σ,∆ $ λx.e υ Ñ xΣ1,∆1, erx ÞÑ υsy
E-APPLAMBDA

G,Σ,∆ $ e1 Ñ xΣ1,∆1, e11y

G,Σ,∆ $ e1 (op) e2 Ñ xΣ1,∆1, e11 (op) e2y
E-OP1

G,Σ,∆ $ e2 Ñ xΣ1,∆1, e12y

G,Σ,∆ $ υ (op) e2 Ñ xΣ1,∆1, υ (op) e12y
E-OP2

c1 � c1 (op) c2
G,Σ,∆ $ c1 (op) c2 Ñ xΣ,∆, c1y

E-OP

G,Σ,∆ $ ec Ñ xΣ1,∆1, e1cy

G,Σ,∆ $ if ec then et else ef Ñ xΣ1,∆1, if e1c then et else ef y
E-COND

G,Σ,∆ $ et Ñ xΣ1,∆1, e1ty

G,Σ,∆ $ if true then et else ef Ñ xΣ1,∆1, e1ty
E-CONDTRUE

G,Σ,∆ $ ef Ñ xΣ1,∆1, e1f y

G,Σ,∆ $ if false then et else ef Ñ xΣ1,∆1, e1f y
E-CONDFALSE

σ ^ G,Σ,∆ $ et Ñ xΣ1,∆1, e1ty

G,Σ,∆ $ if σ then et else ef Ñ xΣ1,∆1, if σ then e1t else ef y
E-CONDSYMT

 σ ^ G,Σ,∆ $ ef Ñ xΣ1,∆1, e1f y

G,Σ,∆ $ if σ then υt else ef Ñ xΣ1,∆1, if σ then υt else e1f y
E-CONDSYMF

G,Σ,∆ $ eÑ xΣ1,∆1, e1y

G,Σ,∆ $ defer x : τ teu default υd Ñ xΣ1,∆1, defer x : τ te1u default υdy
E-DEFERCONSTRAINT

G,Σ,∆ $ defer x : τ tυcu default υd Ñ xΣ1 Y tG ñ υcu,∆1 Y tx � υdu, xy
E-DEFER

G,Σ,∆ $ eÑ xΣ1,∆1, e1y

G,Σ,∆ $ assert eÑ xΣ1,∆1, assert e1y E-ASSERTCONSTRAINT
G,Σ,∆ $ assert υ Ñ xΣY tG ñ υu,∆, ()y E-ASSERT

G,Σ,∆ $ eÑ xΣ1,∆1, e1y

G,Σ,∆ $ concretize ewith υc Ñ xΣ1,∆1, concretize e1 with υcy
E-CONCRETIZEEXP

MODELp∆,ΣY tG ^ context � υcuq �M c �Mvυvw
G,Σ,∆ $ concretize υv with υc Ñ xΣ,∆, cy

E-CONCRETIZESAT

MODELp∆,ΣY tG ^ context � υcuq � UNSAT

G,Σ,∆ $ concretize υv with υc Ñ xΣY tpG ^ pcontext � υcqq ñ falseu,∆, errory E-CONCRETIZEUNSAT

Figure 2: Dynamic semantics for Jeeves.

the model finding procedure for default logic [1]. The default
environment ∆ and constraint environment Σ specify a supernormal
default theory p∆,Σq where each default judgement σ P ∆ has the
form:

true : σ
σ

MODEL procedure produces either a model M for the theory if it is
consistent, or UNSAT. We use a fixed-point algorithm for MODEL
that uses classical SMT model-generating decision procedures and
iteratively saturates the logical context with default judgements in a
non-deterministic order.

3.3 λJ Static Semantics
We have defined typing rules for λJ that perform the following
three functions: 1) evaluation of well-typed expressions does not get
stuck, 2) enforcing that applications of functions requiring concrete
arguments are given concrete values, and 3) ensuring that contexts
of the appropriate type are provided in concretize expressions. This

δ ::� concrete | sym determinism tag
β ::� int | bool | string | unit | exn base type

| record ~x : τ
τ ::� b | τ1 Ñ τ2 | βδ type

Figure 3: λJ types.

guarantees that a program either produces a value or halts in an
error. There are two sources of errors: programmer-introduced error
values and inconsistent logical states when evaluating concretize.
The type system does not describe the consistency of the logical
state. λJ types only matter statically and make no difference to the
dynamic semantics.

We show the λJ types in Figure 3. The λJ type system extends
the standard λ-calculus types: base types and the function type
τ1 Ñ τ2. λJ also has δ annotations to help the programmer enforce
and program with static restrictions on nondeterminism. Function
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arguments that are a base type are required to be annotated with
a type βδ where δ = { concrete, sym } describing whether the
argument is expected to be symbolic. Expressions of function type
are not permitted to be symbolic.

3.3.1 Restricting Symbolic Expressions
We show the rules in Figure 4. The typing judgment is

Γ $ e : xτ, δy

and says that in the type environment Γ, the expression e has surface
type τ with determinism tag δ. Γ is defined Γ ::� � | x : τ | Γ,Γ1

We define the operations _ and ^ on δ-tags with sym_ δ � sym,
sym ^ δ � sym, and concrete ^ concrete � concrete. We have
simplified the rules for the case when all logic variables have integer
type; to support logic variables of different types we would need to
carry an additional environment for those types. The static semantics
propagate δ tags to infer whether an expression must be concrete or
may be symbolic.

Information about whether an expression may be symbolic comes
from the leaf expressions: concrete constants, logic variables, and
concretizations of expressions. The T-DEFER rule shows that del-
egated variables must be symbolic. The T-INT, T-BOOL, T-UNIT,
and T-EXN rules shows that primitive values and program constants
are concrete. The T-CONCRETIZE rule shows that a concretized
value is concrete.

The propagation of the δ tag is different for functions and func-
tion application. The T-LAMBDA rule uses the δ tag to propagate
whether the result of a function is concrete. We can use the δ tag for
this purpose because the δ tag is checked only for conditions, which
must have type bool and so cannot be a function.

One reason the static semantic rules propagate the δ tag is
to restrict symbolic values to non-functions. This restriction is
enforced with the T-DEFER and T-CONDS rules. The T-DEFER
rule restricts delegated expressions to simple base types (e.g. int ,
bool). The T-CONDS rule restricts branches of conditionals to have
non-function types if the condition may be nondeterministic.

The other reason the rules propagate the δ tag is to enforce that
functions with type τconcrete Ñ τ 1 are given concrete arguments.
We show in the T-APPC rule how concrete arguments are checked
at function applications.

3.3.2 Contexts
The λJ static semantics also ensure that contexts of the appropriate
type are provided in concretize expressions. In the T-CONCRETIZE
rule, we also refer to a context typing judgment to enforce that
the context type supplied is the context type expected. We have
also defined a set of typing judgments (not shown) of the form
Γ $C x : τc, where τc is the context type of an expression. The
rules propagate the context type, enforce that matching contexts
are provided when there is an expressions involving multiple sub-
expressions, and enforce that the correct context type is supplied at
concretization.

To allow flexibility in the context type allowed, we define a
lattice on context types to define when two types requiring different
context types may be combined. The bottom of the lattice is K and
for all types τ , we have the relationship K  :c τ . An expression for
which the context type does not matter (context type K) can be used
whenever a context of type τ is supplied. We also have the more
useful subtyping relationship on record types:

record ~m  :c record ~n,@ni.pDmi|mi � niq.

A record with fields ~m can be used as a context whenever a record
with field ~n expected as long as the labelled fields of mi are a
superset of the labelled fields of ~n.

Level ::� K | J levels
Exp ::� υ | Exp1 popq Exp2 expressions

| if Exp1 then Expt else Expf
| Exp1 Exp2
| xExp1 | Exp2y(`)
| level ` in Exp
| policy ` : Expp then Level in Exp

Stmt ::� let x : τ � Exp
| print tExpcu Exp

Figure 5: Jeeves syntax.

3.4 Translation from Jeeves
We now describe the translation from Jeeves to λJ. As a refresher,
we show the Jeeves syntax in Figure 5. Sensitive values and
level variables in Jeeves correspond to λJ logic variables, level
policies correspond to λJ assertions, and contextual enforcement
corresponds to producing concrete values consistent with the logical
environment. Default values provide determinism in handling policy
dependencies.

We show the translation of levels and sensitive values from
Jeeves to λJ in Figure 6. To convey Jeeves expressionExp translates
to λJ expression e, we write Exp ãÑ e. The translation has the
following properties:

• Level variables are the only logic variables introduced by a
Jeeves programs.
• Sensitive values are symbolic values defined in terms of level

variables, and thus all expressions containing sensitive values
produce symbolic results.
• Only level policies in Jeeves programs introduce assertions.
• The concretize construct can only appear at the outermost level

of an expression and is associated with an effectful computation.

3.4.1 Sensitive Values
A Jeeves sensitive value <v1 | v2>(a) is translated to a symbolic
value equal to either v1 or v2 depending on the value of level
variable a. Because this sensitive values is symbolic, all expressions
computed from the sensitive value are subject to policies affecting
the value of level variable a.

3.4.2 Level variables
Jeeves level variables are translated to λJ expression binding a new
logic variable of level type equal to either K or J. The default value
of level variables is J, meaning that the constraint solving oracle
first resolves the constraint environment with the assumption that
each level is J and only adjusts this belief if the level variable must
be equal to K. This provides the programmer with some guarantees
about program behavior when level variables are underconstrained.
The default is J to require the programmer to be explicit about what
restrictions on what users may not see. This way, underconstraint
should only arise when there are circular dependencies.

Besides being useful in handling circular dependencies, having
the default value of level variables as J prevents the programmer
from leaking a value as a result of an underspecified value. If a level
variable is underconstrained, policies on a subsequent variable can
affect the value it can take:

1 let x = level a in <0 | 1>(a)
2 let y = level b in
3 policy b: true then J in
4 policy b: x = 1 then K in
5 <0 | 1>(b)
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Γ; γ $ x : xτ, δy

x P Γ

Γ $ x : Γpxq
T-VARBOUND

x R Γ

Γ $ x : x int , symy T-VARLOGIC
Γ $ n : x int, concretey T-INT

Γ $ b : xbool, concretey T-BOOL

Γ $ () : xunit, concretey T-UNIT
Γ $ error : xexn, concretey T-EXN

Γ $ context τ : xτ, concretey T-CONTEXT
Γ $ e1 : xτ, δ1y Γ $ e2 : xτ, δ2y

Γ $ e1 (op) e2 : x int , δ1 ^ δ2y
T-OP

Γ $ e : xbool, concretey Γ $ et : xτ, δty Γ $ ef : xτ, δf y

Γ $ if e then et else ef : xτ, δt ^ δf y
T-CONDC

Γ $ e : xbool, symy Γ $ et : xτ, βy Γ $ ef : xτ, βy

Γ $ if e then et else ef : xτ, symy T-CONDS

Γ, x : xτd, δy $ e : xτ 1, δxy

Γ $ pλx : τd.eq : xτd Ñ τ 1, δxy
T-LAMBDA

Γ $ e1 : xpτconcrete Ñ τ 1q, δ1y Γ $ e2 : xτ, concretey
Γ $ pe1 e2q : xτ 1, δ1y

T-APPC
Γ $ e1 : xpτsym Ñ τ 1q, δ1y Γ $ e2 : xτ, δ2y

Γ $ pe1 e2q : xτ 1, δ1y
T-APPS

Γ, x : x int , symy $ ec : xbool, δy Γ $ υ : x int , δey
Γ $ pdefer x : int{ ec} default υq : x int , symy T-DEFER

Γ $ ec : xbool, δy
Γ $ passert ecq : xunit, concretey T-ASSERT

Γ $ e1 : x int , δy Γ $c e1 : βc Γ $ υ : xβc, δcy

Γ $ pconcretize e1 with υq : x int , concretey T-CONCRETIZE

Figure 4: Static semantics for Jeeves describing simple type-checking and enforcing restrictions on scope of nondeterminism and recursion.

Expl ãÑ el Exph ãÑ eh

xExpl | Exphyp`q ãÑ if ` then eh else el
TR-SVALUE

K ãÑ false J ãÑ true
Exp ãÑ e

level ` in Exp ãÑ let ` � defer `1 : bool default true in e
TR-LEVEL

Expp ãÑ ep Exp ãÑ e Lvl ãÑ b

policy ` : Expp then Lvl in Exp ãÑ assert pep ñ p` � bqq in e TR-POLICY

Expc ãÑ ec Exp ãÑ e

print tExpcu Exp ãÑ print pconcretize e with ecq
TR-PRINT

.
Figure 6: Translation from Jeeves to λJ

If the value of x were fixed, this would yield a contradiction, but
instead these policies indirectly fix the value of x and a:

true
6 p1q b � J (line 3) 6 p2q x � 1 (line 4)

6 p3q x � 0 (line 1) 6 p4q a � K (line 1)

Making underconstrained level variables J by default forces pro-
grammers to explicitly introduce policies setting level variables to
K. This way, errors from underspecification will only cause level
variables to be set to K instead of J rather than the other way around.

3.4.3 Specifying Declarative Constraint Policies
As we show in Table 6, level policies are translated to λJ assert
expressions. Level policies can be introduced on any logic variables
in scope and are added to the environment based on possible path
assumptions made up to that point. The policy that a Jeeves expres-
sion Exp enforces consists of the constraint environment produced
when evaluating Exp as a λJ expression. More specifically, we are
talking about Σ1,∆1 where Exp ãÑ e and $ e Ñ� xΣ1,∆1, υy.

This policy contains constraints constraining whether level variables
can be K or J.

3.4.4 Contextual Enforcement at Output Channels
Effectful computations such as print in Jeeves are statements
that require contexts corresponding to the viewer to whom the
result is displayed. As we show in the TR-PRINT rule, concretize
is inserted in the translation. Because sensitive values can only
produce concrete values consistent with the policies, this ensures
enforcement of policies at output channels. The only concretize
expressions coming from Jeeves programs are at the outermost level
of resulting λJ expressions and are only associated with outputs.

4. Properties
We describe more formally the guarantees that Jeeves provides.
Jeeves has the following two main properties:

• Enforcement Correctness. If we have a λJ logic variable x in-
troduced through a defer expression, any expression containing
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e will have x as a sub-expression and can only be made concrete
in the context of all constraints that may affect the value of x.
• Privacy Non-interference. We can show that if a Jeeves expres-

sion Exp contains a sensitive value xExpl | Exphyp`q, if at an
output channel ` is resolved to have level K, then we should
output the same value if we had executed with Expl.

Like static information flow systems like Jif [17] or Pottier et al.’s
information flow system for ML [19], Jeeves guarantees that high-
confidentiality values do not flow to low-confidentiality output con-
texts. Unlike these systems, Jeeves policies are defined dynamically
with respect to the dynamic constraint environment.

In this section, we show Enforcement Correctness property by
proving progress and preservation and showing that the symbolic
evaluation and constraint propagation happens correctly. We show
the Privacy Non-interference property by showing properties about
the determinism of evaluating expressions without concretize sub-
expressions and arguing about the equivalence of the lazy symbolic
evaluation to eager evaluation under the model found when evaluat-
ing concretize.

4.1 Progress and Preservation
To show the correctness of enforcement, we first need to show
show the correctness of evaluation. We can prove progress and
preservation properties for λJ: evaluation of an expression e always
results in a value υ and preserves the type of e, including the internal
nondeterminism tag δ.

There are two interesting parts to the proof: showing that
all function applications can be reduced and the second involves
showing that all defer and assert expressions can be evaluated to
produce appropriate constraint expressions. We can first show that
the λJ type system guarantees that all functions are concrete.

Lemma 1 (Concrete Functions). If υ is a value of type τ1 Ñ τ2,
then υ � λx : τ1.e, where e has type τ2.

Theorem 4.1 (Progress). Suppose e is a closed, well-typed ex-
pression. Then e is either a value υ or there is some e1 such that
$ eÑ xΣ1,∆1, e1y.

Proof. The proof mostly involves induction on the typing deriva-
tions. One interesting case is ensuring that MODEL will either re-
turn a valid model M or UNSAT for the E-CONCRETIZESAT and
E-CONCRETIZEUNSAT rules. Since the λJ type system rules out
symbolic functions, only well-formed constraints can be added. The
other interesting case is function applications e � e1 e2, where e1
and e2 are well-typed with types τ1 Ñ τ2 and τ1. We can rule out
the cases when e1 and e2 are not values by applying the induction
hypothesis. For the case when e1 and e2 are both values, we can
apply the Concrete Functions Lemma to deduce that e1 must have
the form λx : τ1 : e, where e : τ1. In this case, we can apply the
E-APPABS rule.

We can also prove a preservation theorem that evaluation does
not change the type of a λJ expression.

Theorem 4.2 (Preservation). If Γ $ e : xτ, δy and e Ñ e1, then
Γ $ e1 : xτ, δy.

Proof. We can show the preservation of both τ and δ by induction
on the typing derivation. The δ value for all evaluation rules except
for the E-CONCRETIZE rules is the same for both sides.

4.2 Level Variables Enforce Confidentiality
Theorem 4.3 (View Non-interference). Consider a sensitive value
V � xEl|Ehy` in Jeeves expression E. Assume:

E ãÑ e $ eÑ� xΣ,∆, σy

ErV Ñ Els ãÑ e1 $ e1 Ñ� xΣ1,∆1, σ1y

If ` � J is inconsistent with theory p∆,Σq, then

1. Σ1 � Σ and ∆1 � ∆.
2. For any context v:

tc | Σ,∆ $ concretize σ with v Ñ xΣ0,∆0, cyu �

tc | Σ1,∆1 $ concretize σ1 with v Ñ xΣ1

0,∆
1

0, cyu

Proof. If σ is output, then the concretization of σ must have pro-
duced a model assigning values to levels consistent with the logical
environment.

The high view of the sensitive value is selected only if the level
variable is set to J.

4.3 Privacy Non-Interference
We can now show Jeeves executions satisfy a non-interference prop-
erty. If a policy determines that a sensitive value is low-confidence,
the value output is the same as if the high-confidence value was
not involved in evaluation at all, and vice versa for high-confidence
values.

Theorem 4.4 (Privacy Non-Interference). Consider a sensitive
value v � xExplow|Exphighy`. Let Exp be an expression con-
taining v, Exp ãÑ e, Explow ãÑ el, $ e Ñ� xΣ1,∆1, υy, and
Σ1,∆1 $ concretize υ Ñ xΣ2,∆2, cy If ` � K is consistent with
Σ2, then $ concretize erv ÞÑ els Ñ

� xΣ1,∆1, cy.

Proof. We can show by induction on the evaluation rules that eval-
uation of any λJ expression e with no concretize sub-expressions
is deterministic, producing a unique value υ and logic environment
Σ, ∆. We can then show that if we have $ e Ñ� xΣ,∆, σy
and evaluating concretize σ produces model M, applying these
substitutions when the logic variables are created in e equivalent
to applying these substitution to σ. Then for each sensitive value
v � xExplow|Exphighy`, the result is equivalent to that if M were
applied to determine the value of ` and thus the value of v.

5. Scala Embedding
We have implemented Jeeves as an embedded domain-specific
language in Scala programming language [18]. Scala’s overloading
capabilities offer us the necessary flexibility in designing a domain
specific language for λJ with the benefit of interoperability with
existing Java technology.

In this section we discuss our Scala embedding of λJ and our
implementation of the Jeeves library on top of that. We describe how
we used features of Scala language to interpret λJ’s lazy evaluation
of symbolic expressions, how we collect constraints, and how we
interact with the Z3 SMT solver. On top of the functional model we
have presented, we also handle objects and mutation.

The code is publicly available at:
http://code.google.com/p/scalasmt/.

5.1 ScalaSMT: Scala Embedding of λJ

We defined the λJ abstract syntax in Scala to support the evaluation
of symbolic expressions. For every kind of symbolic expression of
λJ, we have declared a corresponding Scala case class, for instance
IntExpr corresponding to symbolic integer expressions. Arithmetic
and boolean operators are defined as methods constructing new
expressions. We use implicit type conversions to lift concrete Scala
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values to symbolic constants. Scala’s type inference resolves x+1 to
x.+(Constant(1)) which in turn evaluates to Plus(x, Constant(1)),
where x is a symbolic integer variable. Implicit type conversion
allows us to use concrete expressions in place of symbolic but
require type annotations where a symbolic expression is expected
to be used as an argument to a function. In the case of integer
expressions, the type Int is used for integers that must be concrete
and the type IntExpr is used otherwise.

The three core language extensions defer, assert, and concretize
are implemented as library calls. The library is represented as
a trait in Scala that maintains the logical and default constraint
environments as lists of symbolic boolean expressions. Calls to
concretize invoke an off-the-shelf SMT solver [15] for the satis-
fiability query MODEL. We translate λJ constraints to QF_LIA
logic of SMT-LIB2 [2] and use incremental scripting to implement
the default logic decision procedure. Concretization in ScalaSMT
differs from λJ in two ways. First, concretize accepts an arbitrary
boolean expression rather than a context equality predicate. Second,
concretize is not allowed to be a part of a symbolic expression in
ScalaSMT. Since concretization generally happens as part of print
routine, this restriction does not affect our case studies.

In addition to boolean and linear integer constraints, Scala
embedding has symbolic expressions for objects with equality
theory corresponding to records in λJ. Objects are modeled as a
finite algebraic datatype in Z3 [15]. The set of available objects
is maintained by ScalaSMT using registration of instances of a
special trait Atom. Fields of objects are modeled as total functions
interpreted at the time of concretization. Fields are (sort-)typed.
Field values are arbitrary ScalaSMT expressions and constants.
ScalaSMT does not check types of symbolic object expressions as
we rely on Scala’s dynamic invocaton to resolve field dereferences.
Whenever a field is undefined for an object, we use special zero
values (null , 0, or false ) for the corresponding function value in
SMT.

ScalaSMT does not have symbolic collections of expressions.
Instead, we use implicits to extend standard Scala collection li-
brary with filter and has methods that take symbolic arguments.
The argument to filter is a function f from an element to a sym-
bolic boolean. It maps every element o to conditional expression
IF (f(o)) o ELSE NULL. Method has takes a symbolic object o
and produces a disjunction of equalities between elements of the
collection and o.

5.2 Jeeves as a Library in Scala
We have implemented Jeeves as a library on top of ScalaSMT. Our
library has function calls corresponding to Jeeves’s sensitive values,
level construct, policy construct, and contextual output functions
(see Figure 7.)

Levels are introduced using mkLevel method that returns a logical
level variable which can be eitherJ orK. Sensitive values are created
with mkSensitive methods that take a level variable together with
high and low values. Context is a logical object variable CONTEXT.
To introduce a level policy, the programmer calls policy method and
supplies a level variable, the desired level, and a boolean condition.
Boolean condition is passed by name to delay its evaluation till
concretization. This way policies that refer to mutable parts of the
heap will produce correct constraints for the snapshot of the system
at the concretization time.

The Jeeves library supports mutation in variables and ob-
ject fields by treating the mutable state as part of the context in
concretize call to ScalaSMT. Mutable fields are interpreted at
the time of concretize. Policies that depend on mutable state are
evaluated to boolean conditions during concretization. The set of
allocated JeevesRecords is supplied at concretization. These con-

trait JeevesLib extends ScalaSMT {
trait JeevesRecord extends Atom {register( this )}
val CONTEXT: Symbolic // Context variable.

// Level variables and policies .
def mkLevel(): LevelVar
def policy ( lvar : LevelVar, f : ñ Formula, l: Level)

// Creating sensitive values .
def mkSensitiveInt ( lvar : LevelVar,
high: IntExpr , low: IntExpr) : IntExpr

def mkSensitive( lvar : LevelVar,
high: Symbolic, low: Symbolic): Symbolic

// Concretizing for output.
def concretize [T](ctx : Symbolic, e: Expr[T]): T

}

Figure 7: Jeeves library in Scala

ditions together with the equality predicate CONTEXT = ctx are
used to concretize expressions in ScalaSMT.

6. Experience
To evaluate the expressiveness of Jeeves and the feasibility of
the execution model we have implemented case studies. We have
implemented a conference management system and a social netowrk.
Our case studies demonstrate the following:

• Jeeves allows the programmer to separate the “core,” non-
privacy-related functionality from the privacy policies. This
allows each portion of the code to be concise and allows the
programmer to separately test policies and functionality.
• Jeeves policies are sufficiently expressive to capture the policies

for a conference management system and social network.
• [Jeeves programs can run without too much solver overhead.]

6.1 Conference Management System
Conference management systems have information flow policies that
are simple, yet important and also difficult to implement given the
interaction of features the systems support. We have implemented
a conference management system, JConf, to demonstrate how a
well-known system with privacy concerns looks in Jeeves. Our
implementation demonstrates that Jeeves allows us to implement all
JConf functionality, including search and display over final paper
versions, with a simple core functionality. Jeeves facilitates the
implementation of common policies for a conference management
system without requiring changes to code implementing the core
functionality.

JConf supports the following subset of the functionality men-
tioned on the website for the HotCRP conference management sys-
tem [11]:

• Smart paper search (by ID, by reviewer, etc.).
• Paper tagging (for instance, “Accepted” and “Reviewed by: . . . ”)

and search by tags.
• Assigning reviews, collecting responses to reviews, and display-

ing review content.
• Management of final paper versions.

JConf does not implement functionality for which confidentiality is
less key: for instance, the process of bidding for papers.

All JConf core functionality adheres to the privacy policies.
JConf implements the following information flow policies:
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File Total LOC Policy LOC
ConfUser.scala 11 0
PaperRecord.scala 103 37
PaperReview.scala 21 6
ConfContext.scala 6 0
JConfBackend.scala 56 0
Total 195 42

Table 1. Breakdown of lines of code across the JConf source.

class PaperReview(id: Int , reviewerV: ConfUser, var body:
String , var score : Int ) extends JeevesRecord {

val reviewer = {
val level = mkLevel();
val vrole = CONTEXT.viewer.role;
val isInternal = (vrole �� ReviewerStatus) ||
( vrole �� PCStatus)

policy ( level , isInternal , J);
policy ( level , ! isInternal , K);
mkSensitive[ConfUser]( level , reviewerV, NULL)

}
}

Figure 8:

• Paper titles are visible to the authors of the paper, reviewers,
and PC members during all stages. Paper titles are visible to
everyone during the public stage.
• Author names are visible to the authors on the paper during

all stages, to reviewers and PC members during and after the
rebuttal stage, and to everyone during the public stage if the
paper has been accepted.
• Reviewer identities are revealed only to PC members.
• Reviews and scores are revealed to authors of the paper, review-

ers, and PC members after the review phase. During the review
phase, reviewers must have submitted a review for a paper before
they are allowed to see other reviews for the paper.

Our JConf implementation allows us to separate the declaration
of policies and code. In Table 1 we show the breakdown of code
and policies across the source. The policies are concentrated in the
data classes PaperRecord.scala and PaperReview.scala, which are
class definitions describing the attributes and policies associated
with maintaining data associated with paper records and paper
reviews. The ConfContext file contains the definition for the output
context. The other files, including the implementation of the core
functionality in JConfBackend.scala, do not contain policies. This
allows the core functionality to be concise: the implementation of
our back-end functionality as specified above is only 56 lines.

The implementation of the core functionality of JConf is agnostic
to the policies. The JConf back end stores a list of PaperRecord
objects and supports adding papers, updating components of papers,
and searching over papers by ID, name, and tags. We show the
function to search papers by tag below:

def searchByTag(tag: PaperTag) =
papers. filter (_.getTags().has(tag))

This function produces a list of symbolic PaperRecord objects which
are equal to objects containing paper data if the paper tag tag
is present and null otherwise. The core program can be concise
because it does not have to be concerned with policies.

We use Jeeves policies to implement the policies specified above
in terms of program variables such as a paper’s list of tags and
values from the output context. To provide an example of a data

class definition, we show the definition of the PaperReview class in
Figure 8. A PaperReview object has the fields reviewer , body, and
score . The PaperReview class defines a policy that the identity of
the reviewer as stored in the reviewer field is visible only to other
reviewers and PC members. The code introduces a new level variable
level , adds a policy that the context viewer must be a reviewer or
PC member to see the object. The policies on allowed contexts for
seeing the entire PaperReview object are defined in the PaperRecord
class representing data associated with papers.

Localizing the policies with respect to data facilitates updating
policies. To change at what stage of the conference when reviewers
are allowed to see names of authors, we can simply change the few
lines of code corresponding to the author list policy. Because the
programmer is not responsible for handling policy enforcement, the
programmer does not have to make coordinated changes across the
code base to update policies.

6.2 Social Network
Being able to rapidly develop code that implements information flow
policies is important for social networking websites. Privacy issues
have put the social network website Facebook under the scrutiny of
the American Federal Trade Commission [25], making it important
that they do not continue to leak sensitive data. On the other hand,
one of Facebook’s key values is to “move fast,” rapidly developing
innovative features to keep users engaged [27]. The separation of
policies and core program in Jeeves can help developers achieve
this rapid development of features that may process sensitive data.

We show how to use Jeeves to make it easier for the programmer
to automatically enforce user-defined settings about information
flow. We have implemented Jeeves Social Net, a social network that
demonstrates how we can add policies to control confidentiality of
user-shared data with few changes to the query code. As with the
conference management system, Jeeves allows for a separation of
core policies from code.

Jeeves Social Net core functionality involves storing and allow-
ing queries over the following data:

• user attributes such as names, e-mails, and networks,
• a friendship relation between users, and
• dynamically changing properties such as user location.

Jeeves Social Net allows a user u to define policies about who can
see attributes such as name, e-mail, and current location based on
the relationship of the viewer to the u. The system allows the user to
define different versions of their information to be shown to viewers
given which level they satisfy. These policies can be stateful: for
instance, a policy on the visibility of user u’s location can refer to
the location of u and the location of output viewer v.

Jeeves allows the programmer to develop policies and core func-
tionality separately. In our source, all policies reside in UserRecord
class representing a user, while the query code in SocialNetBackend
is left intact. This facilitates rapid development of core functional-
ity, as the programmer can extend the SocialNetBackend arbitrarily
and rely on the Jeeves system to enforce information policies. The
programmer can also easily change the policies enforced across the
entire program by changing the policy code in UserRecord.

In the rest of this section, we walk through how we implement
interesting policies in Jeeves Social Net: support for user-defined
policies that may depend on the friendship relation, stateful location-
data policies, and policies that have mutual dependencies as a result
of a symbolic context.

Defining Viewer Levels. Each sensitive field in a UserRecord
object is defined in terms of the level of the output viewer. We
use Jeeves level variables to define three levels: Anyone is most
permissive and allows public access, Friends allows access only to
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friends, and Self is most restrictive and disallows access to everyone
except the user herself. The following function creates level variables
associated with user-defined viewer levels (Anyone, Self , or Friends)
using mkLevel and policy :

def level (ul : UserLevel) = {
val a = mkLevel();
val me = CONTEXT �� this;
ul match {
case Anyone ñ
case Self ñ policy(l , ! me, K)
case Friends ñ

policy ( l , ! (me || friends .has(CONTEXT)), K);
};

a
}

The CONTEXT refers to the user at the other end of the output
channel. The set of friends, which is mutable, is encapsulated in a
private field friends of UserRecord.

We can use this level variable to create sensitive values for user
fields based on user-specified viewer levels. The constructor for the
UserRecord class takes parameters nameL: UserLevel and friendL :
UserLevel to specify who can see the name and friends fields. To
create a sensitive property for the name of a user, passed to the
constructor as nameV: string, we declare an observer field:

val name = mkSensitive(level(nameL), nameV, NULL)

We can create a friends list that is visible based on the friends level
friendsL as follows:

def getFriends () = {
val l = level ( friendsL ) ;
friends .map(mkSensitive(l, _))

}

When these fields are accessed, the results will only be displayed to
viewers who have an appropriate level of access.

Policies become implicitly combined when different sensitive
values interact. For example, to get names of friends of a user, we
simply call:

user . getFriends () .map(_.name)

Although the code looks the same as if without Jeeves, the context
user here must simultaneously be able to access the list of friends
and the name property to see the name of a friend.

Location Policy. More than ever, users are socially sharing data
about their current locations online. The location mash-up website
PleaseRobMe [3] demonstrates that if disclosure of this information
is not carefully managed, people can easily use this information for
harm, for instance in determining candidates for apartment robberies.
Jeeves allows programmers to easily express policies protecting
location data based on not just “friend” relationships, but also on
policies involving dynamically-changing user locations.

In Jeeves Social Net, a user may choose to share her location
with friends, with users nearby, or only to friends who are nearby.
To write the policy that only a nearby user can see the location, we
create sensitive values for coordinates in the setter method guarded
by DISTANCE policy:

1 var X: IntExpr = 1000
2 var Y: IntExpr = 1000
3

4 def setLocation(x: BigInt , y: BigInt) {
5 val l = mkLevel();
6 policy ( l , DISTANCE(CONTEXT, this) ¥ 10, K);
7 this .X = mkSensitiveInt(l , x, 1000);
8 this .Y = mkSensitiveInt(l , y, 1000);
9 }

10

11 def DISTANCE(a: Symbolic, b: Symbolic) =
12 ABS(a.X � b.X) + ABS(a.Y � b.Y)

The policy uses sensitive values for X and Y to guard the values
themselves. We can do this because whenever there are such circular
dependencies, the Jeeves runtime will choose a safe but locally-
maximal assignment to levels. For example, if all users in the net-
work are nearby, it is safe to return low values for everyone. How-
ever, Jeeves would output the actual values, since that maximizes
the number of J levels without sacrificing safety.

Since policies and query code are separated, to change the
location policy, we only need to modify the setter. A stronger policy
that permits only friends nearby to see the location requires one
change to line 5 to replace mkLevel() with level (Friends).

Symbolic Context. Jeeves also allows the context to contain sensi-
tive values. As an example, consider the following function, which
sends a user’s name to her friends:

def announceName(u: UserRecord) =
for (f Ð u.getFriends())
yield email( f , u.name)

The email function sends to f a concretizated version of u.name with
CONTEXT = f. Since the friends list is symbolic, f is symbolic as
well. This means that f will take high value only if the corresponding
friend of u is allowed to see the list of friends of u. The name of
u is revealed only if its policies permit f to see. Because Jeeves
handles circular dependencies by finding a safe but locally-maximal
assignment, the Jeeves runtime system will send the name to each
friend if the friend is permitted to see the name. Such reasoning
about symbolic contexts is hard to simulate in runtime systems such
as Resin [26] that do not use symbolic constraints.

6.3 Jeeves Limitations
At present, Jeeves does not provide support for determining whether
policies are consistent or total. The programer can, however, easily
discover bugs with underspecification or inconsistency through
testing: underspecified level variables default to J and inconsistent
policies will cause the system never to output a value. We anticipate
that both underspecification and inconsistency are issues for which
we can provide more support using enhanced static analysis.

7. Related work
Jeeves privacy policies yield comparable expressiveness to state-
of-the-art languages for verifying system security such as Jif [17],
Fine [4], and Ur/Web [5]. Rather than providing support for verifying
properties, however, the Jeeves execution model handles policy
enforcement, guaranteeing that all programs adhere to the desired
properties.

The Jeeves runtime is similar to the system-level data flow
framework Resin [26], which allows the programmer to insert
checking code to be executed at output channels. Jeeves’s declarative
policies allows the programmer to specify policies at a higher level
and capture dependencies between policies that can be automatically
resolved.

Jeeves can also be compared to aspect-oriented programming
(AOP) [10]. Existing frameworks for AOP provide hooks for explicit
annotations at join points. Jeeves differs from AOP because Jeeves’s
constraint-based execution model supports more a more powerful
interaction with the core program. The most similar work in AOP
is Smith’s logical invariants [23] and method for generating aspect
code for behavior such as error logging automatically [22]. Smith’s
method is static and involves reconstructing values such as the
runtime call stack in order to insert the correct code at fixed control
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flow points. Jeeves’s symbolic evaluation allows privacy policies to
affect control flow decisions.

The way Jeeves handles privacy is inspired by angelic nondeter-
minism [7]. The mechanism for angelic nondeterminism in Jeeves
borrows from CFLP-L, a constraint functional programming calcu-
lus presented by Mück et al. [16]; similar functional logic models
have also been implemented in languages such as Mercury [24],
Escher [13], and Curry [8, 9]. Our system differs from these systems
in terms of the restrictions we place on nondeterminism and the
execution model. λJ leaves functions and the theory of lists out of
the logical model, which circumvents the need to have a backtrack-
ing and/or unification-based execution model. λJ execution also
supports default logic [1] to facilitate reasoning when programming
with constraints.

Our work is also related to work in executing specifications and
dynamic synthesis. Jeeves differs from existing work in executing
specifications [14, 20] because our goal is to propagate nondeter-
minism alongside the core program rather than to execute isolated
nondeterministic sub-procedures. Program repair approaches such
as Demsky’s data structure repair [6], the Plan B [21] system for dy-
namic contract checking, and Kuncak et al.’s synthesis approach [12]
also target local program expressions.
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