6.883: FOUNDATIONS OF PROGRAM ANALYSIS
PROBLEM SET 1

JEAN YANG

PROBLEM 1

Please refer to Problem 2 for definition of equals, and.
fix := Af.(Az.f (x) Az.f (z x))
ifthenelse := Ae At.Af.et f
0:= Af.As.s
1:=AfAs.f s
2:=AfAs.f (f s)
add := Adm.AnAs.n f (m [s)
pred := An.Af.As.n (Ag.Ah.h (g f)) (A\z.s) (A\z.x)
sub := Am.An.Af.As.m pred (n f s)
fibf := Af.An.ifthenelse (equals n 0) 1 (ifthenelse (equals n 1) 1 (add (f (sub n 1)) (f (sub n 2)))

fib := fix fibf
PROBLEM 2
2a.
or := Ael.Ae2.\f.Ag.el f (e2 f g)
and := Ael.Ae2.\f.)\g.el (el f g) g

2b.

true := Af.\g.f

false := Af.\g.g

isZero := An.n (A\z.false) true
2c.
equals := Am.An.and (isZero (sub m n)) (isZero (sub n m))
PrOBLEM 3

3a.

{c,0) — a’ (e,0') — false

(trans ¢ check e,0) — o
(c,0) — ' (e,a’) — true
(trans ¢ check e, o) — o
3b.
oo(z) =1
(x+1,00) = 0+1 o1 =o00[z\2] o(z1) #2
(x:=x+1,00) — 01 (x =2,01) — false (x+1,00) =1 o2 =01[z\]]
(trans = := x + 1 check = 2)) — oo (x:=2x+1,00) — 02 o2(x) =0
oo = olz\0] (trans z :=x + 1 check x = 2); z:=x+ 1) — 02 (x =1,02) — true
(z:=0,0) — 09 trans (trans x := x4+ 1 check ¢ = 2); x:=x + 1 check z = 1,0) — 02

(x :=0; trans (trans z := z + 1 check x = 2); z:=x + 1 check z = 1,0) — o2

Date: Wednesday, September 30, 2009.
Collaborator: Joseph © Near.

2 JEAN YANG

PROBLEM 4

4a. We introduce the AST term trans’ in order to distinguish a fully unevaluated trans command from a partially
evaluated one.

(trans c check e, a,s) — (trans’ ¢ check e, 0,0.5)
(trans’ skip check true, o, s) — (v,0’, s)
(trans’ skip check false, o, s) — (v, 0, s)
4b. Here we use v as the convention for the result of evaluating a value.
H:=0|n+H|H+e|xz:=H
| if H then C1else C2| H; C

| trans H check e

| trans v check H

PROBLEM 5

Claim. With the constant evaluation rule
(N,0) — 2xn,

if the initial state of a program contains only even values the final state will contain only even values.

Proof. By induction on the derivation tree.
First we can show that evaluation of expressions always results in an even integer.

e Evaluation of numbers. We have the rule
(N,o) = 2xn,

so the result is always even.
e Evaluation of locations. The rule
(X,0) = o(X)
yields a value from the store. Since the state contains only even integer values, the result must be even.

e Evaluation of sums, subtractions, and products. We can show this by structural induction on terms. We have
the rules

(ap,0) = no (a1,0) > n1 n=ng+mn

(a0 + a1,0) —>n

(ap,0) = no (a1,0) > n1 n=ng—mn

(ap —a1,0) —>n

(ao,0) = no {a1,0) > n1 m=ngxny

(ag xa1,0) —n

When ap and a; are numbers or locations, the results no and n1 must be even for all three arithmetic rules. When
ap or aj is an arithmetic expression, we can break the expression down to a binary operation between integers, and
so we can show that it must evaluate to an integer.

Now we use well-founded induction on the < relationship between proper subderivations that the derivation of commands
only adds even integers to o.
The skip command does not change the state, so it preserves the desired property:

(skip, o) — 0.
Consider the assignment command:

(a,0) > m
(X :=a,0) — om\X].

Since we have shown m must be an even integer, assignment can only add even integers to o.

6.883 3

For command sequencing, let

{co,0) — " {c1,0")y — o

d= <CO;6170-> — o)
do = (co,0) — 0",

dy = (c1,0") = o’.

We have dy < d and di < d. Given that derivations dp and d; yield environments containing only even integers from
environments containing only even integers, we know o’ and ¢ contain only even integers. Then the ¢’ resulting from d
contains only even integers.

Now consider conditionals:

(b,0) — true {co,0) — o’

d = (if b then cp else ¢1,0) — o,

do = (co,0) — 0o’.

Evaluation of (b,o) does not affect 0. We have do < d, so the resulting environment ¢’ contains only even integers. The
argument is analogous for the false case.
The base case for while loops does not affect o:

(b, o) — false

(while b do ¢,0) — 0.

Now consider the loop case:

(b,o) — true {(c,0) — ¢” (while b do c¢,0”) — o’

d= (while b do ¢,0) — o’

do = (c,) — 0",

dy = (while b do ¢,0") — o’.

We have do < d and d1 < d, so 0" and o’ contain only even integers and we know d results in an environment ¢’ containing
only even integers.]
PROBLEM 6

Claim. For an arbitrary program P, let (P,01) — o1 and (P,02) — 05. Then
Vz.((o1(z) = nP <= o2(z) =nP) = (01 (x) = m? = o5(z) = mP)).

Proof. Because structure of the derivation rules are the same whether variables are public or private, the derivation trees for
(P,o1) and (P, 02) must have the same structure. Thus we can prove our claim using induction on the derivation tree for
<P , 01 > .

We can first show using structural induction that derivation of expressions preserves the property that oi(z) = n? <=
o2(xz) = nP for all z implies (e,01) — nP <= (e,02) — nP.

e This is trivially true for the rules with no premises:
(N,0) —n”
(z,0) = o(x)

e For binary relations on expressions e; and ez, if both e; and ez evaluate to public values, then all of their components
must be public and therefore agreed upon by o1 and o2, so (e,01) — n? = (e, 02) — nP.

(e1,0) = nl (e2,0) > nd ni+na=n

(e1 + €2,0) — nP

(e1,0) = nl (e2,0) = nh ni=n2=5b

<€1 = 62,0’) — bp

4 JEAN YANG

e For binary relations on expressions e; and ez, if e; or ez evaluate to private values, then there must be some
component of e; or eathat is secret. Then the result of the evaluation in both o1 and o2 will result in a secret value,
so we don’t care whether the results agree.

(e1,0) = n? (e2,0) = nd ni+n2=n (ni or ng secret)

(e1 + e2,0) — n®

(e1,0) = ni (ez,0) = nd ni=na=0>0 (ni or na secret)

(e1 = e2,0) = b°
We prove our property on commands using well-founded induction on the proper subderivation < between the executions
of commands. Consider when we have an assignment statement:

<67 Ul) — n?

(X :

e,01) = o1[X —nf],

<€, 01> —n®

(X :=e,01) = 01[X — n’].

When we have o1(z) = n? <= o2(z) = n®, we must have (e,0) — n? <= (e,0) — nP, so Vz.01(z) = oy(x).
Now consider conditionals. When the conditional expression evaluates to a secret value, we do not modify o, so our
desired property holds. Consider the case when the condition is public:

(e1,01) — true? (ct,01) — o

d = (if e1 then ¢ else cf,01) — o1,
do = (ct,01) — o1.
We have dy < d, so if dy preserves privacy, then d preserves privacy, since the resulting environment o} of d is the same as
the resulting environment ¢ of do. The argument is analogous for the false case.

The base case of the while loop and the case when the loop condition is secret do not change the environment. We have
left the loop case:

{e1,01) — true? (c,01) — of (while e; then ¢, of) — o

d= (while e then c,01) — o)

do = (c,01) — 07,

dy = (while e; then ¢, o) — of.

Since dg < d, we know Vz.07 (x) — m? = o3 (x) — mP. Since d1 < d, we get Vz.01(z) — mP = o5(z) — mP.

(c,o1) = of

d = {(c1;¢2,01) — 01
do = (c1,01) — o7,

di = (c2,07) — o1.

Since do < d, we know Vz.0f () — m? = o4 (x) — mP. Since di < d, we get Vz.01(z) — mP = o5(x) — mP. O

