
Preventing Information Leaks with Policy-Agnostic
Programming

by

Jean Yang
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

c©Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 28, 2015

Certified by .
Armando Solar-Lezama

Associate Professor without Tenure
Department of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering
Chair, Department Committee on Graduate Students

Preventing Information Leaks with Policy-Agnostic Programming

by

Jean Yang

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
As a solution to the problem of information leaks, I propose a policy-agnostic pro-
gramming paradigm that enforces security and privacy policies by construction. I
present the implementation of this paradigm in a new language, Jeeves, that auto-
matically enforces information flow policies describing how sensitive values may flow
through computations. In Jeeves, the programmer specifies expressive information
flow policies separately from other functionality and relies on the language runtime
to customize program behavior based on the policies. Jeeves allows programmers to
implement information flow policies once instead of as repeated checks and filters
across the program. To provide strong guarantees about Jeeves programs, I present a
formalization of the dynamic semantics of Jeeves, define non-interference and policy
compliance properties, and provide proofs that Jeeves enforces these properties.

To demonstrate the practical feasibility of policy-agnostic programming, I present
Jacqueline, a web framework built on Jeeves that enforces policies in database-backed
web applications. I provide a formalization of Jacqueline as an extension of Jeeves
to include relational operators and proofs that this preserves the policy compliance
guarantees. Jacqueline enforces information flow policies end-to-end and runs using
an unmodified Python interpreter and SQL database. I show, through several case
studies, that Jacqueline reduces the amount of policy code required while incurring
limited overheads.

Thesis Supervisor: Armando Solar-Lezama
Title: Associate Professor without Tenure

2

Acknowledgments

When my advisor and I first met, I was a first-year Ph.D. student recovering frommy

first conference paper submission and he had arrived on campus fresh after his Ph.D.

Over the years, there was probably a nontrivial amount of mutual skepticism and

fear of the uncertain future over 3 a.m. post-deadline cakes and unfavorable paper

reviews at various times of day. No matter what, he supported me in what I wanted

to do and believed in the work. I am fortunate to have found such an open-minded,

sharp, and caring advisor in Armando Solar-Lezama. I am impressed with how

much he made himself available to workshop my ideas, research and otherwise. Not

every professor has the insight to recognize that “everyone likes Ryan Gosling.”

Hearing others’ complaints about thesis committees being too involved or too

apathetic made me appreciate my own thesis committee even more. Discussions

with my committee members Martin Rinard and Nickolai Zeldovich have improved

not only the presentation of my thesis work, but also my views on research. Martin

remindsme that research should be shocking andNickolai reminds me that research

should be useful.

My collaborations with other students have made me appreciate what a special

placeMIT is in terms of both scientific curiosity and technical competence. One of the

turning points in the development of my Jeeves programming language was when

my groupmate Kuat Yessenov convinced me to switch from implementing it as a

standalone interpreter in OCaml to embedding it in Scala by implementing an initial

Scala embedding in one week. Another turning point in my thesis work was when I

began collaborating with my Masters of Engineering student Travis Hance. I had

agreed supervise Travis Hance’s thesis work both because of his impressive résumé

and because he said the research I described sounded “fun.” It turned out that

technical competence and fun were the two traits I came to appreciate most about

him. Travis finished his proposed task of switching our implementation strategy to

Python in less than a semester, giving us a full second semester to collaborate closely

on both the initial design and implementation of the Jacqueline web framework

3

and the Haskell Ryan Gosling meme. Finally, the willingness of my undergraduate

and high school research assistants—Lena Abdalla, Amadu Durham, Jesse Klimov,

Pat Long, Ariel Jacobs, and Benjamin Shaibu—to build applications in an evolving,

often poorly-documented research language case was immensely helpful towards

evaluating the design and implementation of Jeeves.

My outside collaborations have improved both my thesis work and my under-

standing about how to present and position the work. At the POPL conference in

2012, I presented the initial semantics for policy-agnostic programming with Jeeves

and Tom Austin, then a Ph.D. student at UC Santa Cruz, presented a semantics for

faceted execution, a complementary execution approach. I had the good fortune

of being scheduled to give my talk in an earlier session. During Tom’s talk, Philip

Wadler, a senior member of our field, stood up and asked, “But how is this different

from Jean’s work?” This led to a discussion that led to a several-year collaboration

with Tom and his Ph.D. advisor, Cormac Flanagan. Out of this collaboration came

the faceted semantics for policy-agnostic programming. Steve Chong joined us in

building on this to develop a formalization of the Jacqueline web framework.

DuringmyPh.D.,my two internships atMicrosoft Research gaveme newperspec-

tives on both research directions and ways to conduct research. My mentors Nikhil

Swamy and Juan Chen introduced me to dependent type systems and language-

based security. Chris Hawblitzel changed the way I think about system design and

provable correctness.

One of the aspects of MIT I loved most was the community it fosters. I have

enjoyed interacting with the other members of the Programming Languages and

Software Engineering Group, especially as the group has grown and solidified over

the course of my Ph.D. Saman Amarasinghe, Rob Miller, and Daniel Jackson have

given excellent advice as I explored how I want to be as a researcher. Graduate

school would not have been nearly as enjoyable or intellectually growthful without

the company of my extended cohort: Eunsuk Kang, Aleksandar Milicevic, Sasa

Misailovic, Joe Near, and my groupmate Rishabh Singh. The other members of

the Computer-Aided Programming group—Alvin Cheung, Sicun Gao, Shachar

4

http://haskellryangosling.tumblr.com

Itzhaky, Jimmy Koppel, Nadia Polikarpova, Evan Pu, Xiaokang Qiu, Rohit Singh,

Zenna Tavares, Zhilei Xu, andKuat Yessenov—have also provided excellent feedback,

conversation, and commiseration.

My experience working on backend privacy at Facebook shaped my perspective

on the relative importance of different problems. Dwayne Reeves identified the op-

portunity to apply formal methods to checking privacy policies and patiently fielded

all of my questions about Facebook’s internal infrastructure for three months as my

deskmate and internship mentor. Venkat Venkataramani provided the managerial

support to pursue this problem. Yiding Jia’s code reviews made me a better Haskell

programmer. Pieter Hooimeijer took on-demand walks with me whenever I wanted

to talk through technical problems. Harry Li helped me navigate my internship and

the logistics of my follow-up work.

My undergraduate professors Greg Morrisett and Norman Ramsey first piqued

my interest in the applications of logic to program correctness. I would have proba-

bly left Computer Science for a less male-dominated field had it not been for the

encouragement of my other professors, Margo Seltzer and Radhika Nagpal.

My work has been supported by the National Science Foundation Graduate

Research Fellowship, the Facebook Fellowship, and the Levine Fellowship.

My work would not be nearly as meaningful without my family and friends. I

would like to thank my parents and sister for their unwavering support and for not

always encouraging me. In fact, that they discouraged me from so many things is

how I ended up becoming a researcher in Computer Science. I would also like to

thank my friends for the pep talks, for the meals cooked, and for the adventures.

Finally, I would like to thank Eunsuk Kang for agreeing to file my thesis while

I attended the New Faculty Retreat at Carnegie Mellon University and Chinmay

Kulkarni for his collaboration on this Acknowledgments section at the retreat. Pe-

ter Bailis, Michael Keller, Sara Watson, and Cliff Chang also helped improve the

readability of this document.

5

Contents

1 Introduction 13

1.1 The Policy-Agnostic Approach . 14

1.2 Jeeves, a Language for Automatically Enforcing Information Flow

Policies . 15

1.3 Jacqueline, a Policy-Agnostic Web Framework 16

1.4 Advantages of the Policy-Agnostic Approach 18

1.5 Contributions of the Thesis . 20

1.5.1 Key Technical Challenges . 21

1.5.2 Thesis Overview . 22

2 Background and Related Work 23

2.1 The Problem of Constructing Secure Systems 23

2.1.1 When Encryption and Access Control Are Not Enough 23

2.1.2 The Leaky Enforcement Problem 25

2.1.3 Programmer Burden with Information Flow Checking 26

2.1.4 Limitations of Multi-Execution 28

2.1.5 Limitations of Existing Web Frameworks 29

2.1.6 How Policy-Agnostic Programming Fills the Gaps 30

2.2 Comparing to Other Language-Based Techniques 31

2.2.1 Restrictions of Aspect-Oriented Programming 31

2.2.2 Limitations of Prior Work in Executing Specifications 32

2.2.3 Relationship to Variational Data Structures 33

2.2.4 Relationship to Acceptability-Oriented Programming 33

6

2.2.5 Relationship to Declarative Domain-Specific Languages . . . 34

I Policy-Agnostic Programming for Information Flow 35

3 Policy-Agnostic Programming in the Jacqueline Web Framework 36

3.1 Schemas and Policies in Jacqueline . 37

3.1.1 Secret Values and Public Values 38

3.1.2 Specifying Policies . 39

3.2 Policy-Agnostic Controller Code . 40

3.3 Computing Concrete Views . 42

4 Jeeves, a Language forAutomatically Enforcing Information FlowPolicies 44

4.1 Sensitive Values and Policies . 44

4.2 Policy-Agnostic Programs . 47

4.3 Producing Concrete Values . 47

4.4 Handling Dependencies Between Sensitive Values and Policies 48

4.5 Policy Language Limitations . 50

II Reasoning about Policy-Agnostic Programs 52

5 Semantics and Guarantees for Faceted Execution of Jeeves 53

5.1 Core Semantics . 53

5.2 Properties . 62

5.2.1 Projection Theorem . 62

5.2.2 Termination-Insensitive Non-Interference 64

5.2.3 Termination-Insensitive Policy Compliance 65

6 Faceted Execution for Database-Backed Applications 68

6.1 Solution Overview . 69

6.1.1 Executing Relational Queries with Facets 71

6.1.2 Early Pruning Optimization . 74

7

6.2 Formal Semantics and Policy Compliance 75

6.2.1 Syntax and Formal Semantics 75

6.2.2 Formal Semantics . 77

6.2.3 End-to-End Policy Compliance 82

6.2.4 Early Pruning . 84

III Executing Policy-Agnostic Programs 85

7 Implementing a Policy-Agnostic Web Framework 86

7.1 Python Embedding of the Jeeves Runtime 86

7.1.1 Faceted Execution . 87

7.1.2 Evaluating Policies at Computation Sinks 87

7.1.3 Garbage-Collecting Labels and Policies 88

7.1.4 Representing lists . 88

7.1.5 Jacqueline ORM . 88

7.1.6 Decision to Use Python . 89

7.2 Limitations . 90

8 Jacqueline in Practice 91

8.1 Applications . 92

8.2 Code Comparisons . 92

8.2.1 Django Conference Management System 93

8.2.2 HotCRP . 94

8.3 Performance . 94

8.3.1 Representative Actions . 95

8.3.2 Stress Tests . 96

8.3.3 Early Pruning Optimization . 97

9 Conclusions 98

9.1 Summary of Contributions . 99

9.2 Conclusions . 101

8

A Proofs for Faceted Execution of λjeeves 116

A.1 Proof of Projection . 116

B Proofs for λJDB 121

B.1 Rules from λjeeves . 121

B.2 Proof of Lemma 5 . 122

B.3 Proof of Lemma 6 . 123

B.4 Lemma 7 . 124

B.5 Proof of Theorem 4 (Projection) . 125

9

List of Figures

1-1 Application architecture in Django vs. Jacqueline. 19

3-1 Jacqueline schema fragment for calendar events. Policy code is shown

with a gray background. 37

3-2 The Jacqueline ORMAPI. The argument ∗args denotes an optional list

of arguments. The argument ∗∗kwargs denotes an optional dictionary

of arguments. The filter method takes, for instance, arguments for

field equalities to filter on. 40

4-1 Jeeves syntax. 45

4-2 “Constructor” code for an event record in Jeeves. 48

5-1 The source language λjeeves . 54

5-2 Runtime syntax for λjeevesevalution. 55

5-3 λjeeves expression evaluation. 56

5-4 Auxiliary functions for λjeevesevaluation. 57

5-5 Faceted evaluation semantics for application and statements. 60

5-6 Semantics for derived encodings. 61

6-1 λJDB syntax. 76

6-2 Runtime syntax and contexts rules for faceted evaluation of λJDB. . . 77

6-3 Rules for evaluation λJ subset of λJDB. 78

6-4 Rules for evaluation with relational operations. 79

10

7-1 Representing faceted lists: (a) is the naive representation and (b) is

the optimized representation. 88

8-1 Distribution of policy code with Jacqueline and Django conference

management systems. 93

8-2 Times to view profiles for a single paper and single user, in Jacqueline

and Django. 95

8-3 Times to view list of summary information for all papers and all users,

in Jacqueline and Django. 96

8-4 Jacqueline stress tests for other case studies. 97

8-5 The course manager stress test performs well with the Early Pruning

optimization and times out otherwise. 97

11

List of Tables

6.1 SQL code and example tables, with and without policies. 70

6.2 Translated ORM queries in Django vs. Jacqueline. 70

12

Chapter 1

Introduction

From social networks to electronic health record systems, a growing number of

programs compute using sensitive information. Access permissions are not only

becomingmore complex [39,77], but also application code bases are growing to have

millions of lines of code [50]. When programming these software systems, there are

many opportunities to inadvertently leak information.

Leaks often occur not because information is unprotected, but because it is pro-

tected incorrectly. For instance, applications can fail to prevent indirect leaks through

values computed using sensitive values. In the HotCRP conference management

system [53], paper authors are not supposed to initially see scores for their submitted

papers, but a bug [55] allowed authors to deduce their scores through the search

interface. Another source of leaks is the incorrect viewer problem, where the program

resolves permissions for a viewer different from the actual viewer. Another bug in

the HotCRP conference management system [53] allowed any user to preview a

password reminder email for another user [108]. Here, the programmer failed to

realize the viewer of the preview was different from the recipient of the email.

Priorwork in information flowprevents such leaks,but prevention does not address

the issue of programmer burden from policy spaghetti, the intertwined code for poli-

cies and other functionality. Information flow techniques track the flow of sensitive

information through computations. These tools simply accept or reject flows, leaving

the programmer responsible for constructing programs that do not leak information.

13

Static, language-based approaches [21,34, 35,49, 74, 76,83, 99, 100,102] prevent pro-

grams from running at all, while dynamic approaches [16,20,22,36,44,94,108] cause

unpredictable runtime behavior. In both cases, the programmer remains responsible

for implementing information flow concerns as repeated checks and filters and

handling the different possible execution paths for different viewers. Adding new

functionality or implementing new policies requires reasoning about intertwined

code for policies and other functionality across the application.

An additional source of programmer burden is in preventing leaky policy en-

forcement, where the results of permission checks leak information about sensitive

values. Another HotCRP bug displayed a “Congratulations!” message when the

final-copy submission deadline was set, but only in the presence of the “Accepted”

status [54], allowing authors to infer acceptances before they had become official.

This leak occurred because the policy to display additional information did not take

into account that the “Accepted” status was a sensitive value with its own policy.

With label-based information flow checking approaches [8, 44,63,74], for instance,

the programmer is trusted to manage dependencies between permissions that are

encoded in terms of Boolean checks. Even if the information flow checking approach

can detect these leaks, the programmer needs to construct the program correctly

with respect to these dependencies.

1.1 The Policy-Agnostic Approach

The research I present in this thesis addresses these shortcomings by automating

the enforcement of information flow policies. I present a new paradigm, policy-

agnostic programming, that reduces information leaks by preventing opportunities

for error. The goal is to allow programmers to write security- and privacy-conscious

code that looks as similar as possible to code written without policies in mind. This

paradigm allows the programmer to associate data values with policies that describe

how values may flow through a program. The programmer may implement the

rest of the program in a way that is agnostic to the policies. A language runtime is

14

responsible for customizing program behavior to adhere to the policies. The runtime

also manages policy dependencies, including mutual dependencies between policy

computations and other computations.

The two main challenges in making policy-agnostic programming feasible are 1)

factoring out a specification of correct information flow and 2) customizing program

behavior based on the policies in a scalable way. First, we want a specification of

information flow that does more than simply rejecting disallowed flows. If the

viewer may not see a sensitive location value, for instance, it may be appropriate to

compute an output using the corresponding city or country instead. The challenge is

in determining how to specify this behavior in a way that is not deeply intertwined

with the computation. Second, ensuring that the program behaves according to the

specification may require nontrivial modifications to program execution. I choose

a dynamic approach because for many of these policies, the relevant information,

for instance the viewing context, is only available at runtime. A challenge here is in

ensuring that the approach does not incur excessive overheads.

1.2 Jeeves, a Language for Automatically Enforcing In-

formation Flow Policies

In this thesis, I factor out information flow policies in the design of Jeeves [10, 106],

a language for automatically enforcing information flow policies for security and

privacy. Jeeves programs specify information flow policies once, associated with

sensitive data. Suppose Alice and Bob want to plan a surprise party for Carol at 7pm

next Tuesday at Schloss Dagstuhl. Jeeves allows us to specify that the secret details of

the party are sensitive and that only guests should be able to view this information.

Jeeves also allows us to specify that everyone else sees an alternate default value.

For instance, perhaps only the guests see “surprise party” for the event description,

while everyone else sees “group discussion.” The Jeeves runtime enforces policies to

ensure that the appropriate value is used in all computations. If Carol searches for

15

“parties near Wadern at 7pm next Tuesday,” her surprise party should not appear in

the search results. Jeeves policies may depend on sensitive values: for instance, the

policy on the guest list can require membership in the list itself. Underlying Jeeves

is a well-defined formal semantics and a provable guarantee that runtime policy

enforcement does not leak sensitive information.

I designed Jeeves to be language-agnostic, sufficiently general to work either on its

own or embedded into a host language. The semantics I present allows Jeeves to

be implemented either as a standalone interpreter or embedded into a subset of an

existing compiled or interpreted language. I present implementations of Jeeves as

embeddings in Scala [106], a statically typed language that is typically compiled [78],

and Python, a dynamically typed language that is typically interpreted [82]. I in-

tend for Jeeves to be a kernel language, an “assembly language” containing the key

constructs for policy-agnostic programming. These constructs allow us to create of

higher-level abstractions that can take advantage of the guarantees Jeeves provides

while implementing domain-specific optimizations.

1.3 Jacqueline, a Policy-Agnostic Web Framework

To demonstrate the feasibility of the policy-agnostic approach for building web

applications, I present the Jacqueline web framework [105]. While Jeeves provides a

useful programming model and strong formal guarantees, it is unsuited for building

realistic web applications for the following reasons:

• Guarantees do not extend to interoperation with databases. For performance rea-

sons, web applications rely heavily on interactions with commodity databases.

Unfortunately, a common problem with language-based approaches is that

guarantees apply only to programs running entirely within the language.

Indeed, Jeeves’s policy enforcement guarantees fail when Jeeves programs

interact with an external database.

• Expensive execution model. The Jeeves runtime may explore exponentially many

16

possible execution branches based on the possible viewers. This can become

prohibitively expensive when sensitive values each have their own policies.

Jacqueline overcomes these limitations andenables policy-agnostic programming

for web programs of realistic scale. A key insight is that rather than needing to

modify existing databases to include policy checks, we can create a policy-agnostic

object-relational mapping (ORM) that uses Jeeves constructs to manage policies. With a

standardORM, the programmer does not write database queries directly, but instead

relies on the framework to manipulate data between applications and databases.

With a policy-agnostic ORM, the programmer relies on the framework to manipulate

both data and policies. The challenge is to design an ORM that can track sensitive

data and policies through database queries when the database is not aware of

sensitive values or policies. An ORM can do this through judicious manipulation of

meta-data. Jacqueline improves upon Jeeves in the following ways:

• End-to-end guarantees for database-backed applications. Jacqueline’s semantics

extend Jeeves with relational operators in order to track sensitive values and

policies through database queries. This yields a provable policy compliance

property across the application and database.

• Correctness-preserving optimization approach. Jacqueline does not need to assume

the viewer is unknown until output because it is common for web frameworks

to track the viewing context. Therefore, as soon as the runtime knows the

viewing context, it can prune alternate execution branches. This optimization

preserves end-to-end policy compliance, allows Jacqueline to have reasonable

overheads in practice, and is necessary for non-trivial computations involving

sensitive values.

Another major advantage of using Jacqueline over Jeeves is that Jacqueline sub-

stantially raises the level of abstraction. Not only does Jeeves lack support for building

web applications, but the programmer must also manage the association of policies

with sensitive values and the designation of the viewer. Jacqueline abstracts over

these details, taking responsibility for attaching policies to values upon database

17

writes and keeping track of the user associated with the current session. Jacque-

line provides a general-purpose solution for policy-agnostic programming in web

frameworks. While I present an implementation of Jacqueline that extends the pop-

ular Python web framework Django [2], one could use a different language and

implementation strategy.

In this thesis, I demonstrate the advantages of using Jacqueline for building

realistic web applications. I present results from implementing several case studies,

including a conference management system used to run an academic workshop.

These case studies suggest that Jacqueline is sufficiently expressive for the policy

needs of web applications. I compare an implementation using Jacqueline to an

implementation with manually implemented policies using Django to show that

Jacqueline not only concentrates the policy code in a single location, but also de-

creases the total amount of policy code that the programmer needs to write. I show

through stress tests and representative benchmarks that not only do applications

written using Jacqueline exhibit reasonable performance, but they also often have

negligible overheads compared to applications written using unmodified Django.

1.4 Advantages of the Policy-Agnostic Approach

Jacqueline demonstrates several advantages that make the policy-agnostic program-

ming model especially appealing for large, security-conscious software systems. The

first is that the language runtime manages the policies, thus removing the need to

trust the remaining application code of the web server. The second is that rather

than simply preventing forbidden outputs, Jacqueline adapts program behavior to

adhere to policies. An additional benefit is that factoring out the policy specification

decreases the amount of policy code needed. For these reasons, the programmer

can update policy code independently of other code, reducing policy spaghetti and

the likelihood that new code can introduce an information leak.

By contrast, in most other security-conscious web frameworks, the programmer

must implement policies by writing checks and filters throughout the application

18

Django

Django web server

App + DB code
with policy checks

Python SQL

Jacqueline

Jacqueline web server

Policy-agnostic
app + DB code

Jeeves SQL

TrustedUntrusted

Differs
between

applications

Hardware + OS Hardware + OS

Policy

Shared
across

applications

Figure 1-1: Application architecture in Django vs. Jacqueline.

and database code. Even using dynamic information flow systems that automatically

prevent information leaks at runtime [44,108], the programmer must construct the

program to not leak information in order to avoid uncaught exceptions and silent

failures. In Figure 1-1 we compare the architecture of a Jacqueline program to that

of a program using the popular Python web framework Django [2]. In Jacqueline, 1)

application and database code do not need to be trusted, 2) policies are localized,

and 3) the size of policy code is smaller due to automatic policy enforcement. This

reduces both programmer burden and the opportunity for error.

The work I describe focuses on preventing server-side information leaks that

result from programmer error. Our attack model treats the user as the attacker and

assumes the programmer is not adversarial. The policy-agnostic approach eliminates

the class of errors resulting frommissing and incorrectly-implemented access checks.

Systems-level attacks such as SQL injection, directory traversal, cross-site reference

forging, and cross-site scripting are outside the scope of this approach. Note that this

does not mean policy-agnostic runtimes and web frameworks cannot protect against

such attacks. The Jacqueline web framework inherits Django’s standard integrity

mechanisms for these specific attacks.

19

1.5 Contributions of the Thesis

In this thesis, I demonstrate the feasibility of the policy-agnostic approach for en-

forcing privacy and security in web applications. The main contributions are as

follows:

• The policy-agnostic programming paradigm. To reduce the opportunity for

information leaks, I present a programmingmodel that factors out information

flow policies. The policy-agnostic approach allows the programmer to specify

information flow policies separately from other functionality and rely on the

runtime to customize program behavior based on the policies. The automated

enforcement prevents indirect leaks, reduces the opportunity to compute the

incorrect viewer, reduces policy spaghetti, and prevents leaky enforcement. I

implement this model in the Jeeves language.

• A solution to the leaky enforcement problem. Priorwork on information flow

allows the programmer to leak information through policy enforcement. Tools

can only prevent leaks, leaving the programmer responsible for correctly man-

aging dependencies between sensitive values and permission checks. In the

policy-agnostic paradigm, the language runtimemanages policy dependencies,

thus preventing leaky enforcement.

• A faceted execution semantics for policy-agnostic programming. If we are

to rely on a language runtime to enforce policies, it is important to reason

about the guarantees the runtime provides. I present a dynamic semantics for

Jeeves that extends the standard imperative lambda calculus with constructs

for automatically enforcing information flow. I provide proofs for guarantees of

termination-insensitive non-interference andpolicy compliance. The semantics

describe a programming model that can be implemented as a standalone

interpreter or embedded into an existing host language.

• Apolicy-agnostic semantics for database-backed applications.Modern web

applications rely heavily on commodity databases for performance. To support

20

interoperation with relational databases, I present an extension of the Jeeves

semantics with relational operators that maps naturally onto the implementa-

tion of an object-relational mapping for relational databases. I provide proofs

that this extends Jeeves’s policy compliance guarantees.

• A demonstration of feasibility for database-backed applications. A major

question about the policy-agnostic approach is whether it can scale for realistic

applications. I present the Jacqueline web framework and demonstrate that not

only is the programming model useful for reducing the amount of policy code,

but that it has reasonable overheads compared to code written with manually

implemented policies. I present application case studies and evidence that

policy-agnostic programming 1) reduces the amount of trusted policy code

that the programmer needs towrite and 2) has reasonable overheads compared

to code with manually-implemented policies.

1.5.1 Key Technical Challenges

Realizing practical policy-agnostic programming required addressing several tech-

nical challenges, including:

• Designing a scalable language for enforcing information flow policies. Pro-

cedural programming paradigms do not provide support for factoring out

information flow, as information flow policies can affect all points in the pro-

gram. Constraint functional programming models are a better fit, but existing

constraint functional programming languages [45,46, 64, 73] involve substan-

tial runtime search and thus scale poorly. Policy-agnostic programming is

sufficiently expressive to capture information flow policies for a variety of

applications yet can be executed with reasonable overheads.

• Formulating policy compliance guarantees for Jeeves. Jeeves differs from

previous approaches to information flow in two key ways. First, rather than

checking that a program adheres to a specification of permitted information

21

flows, the Jeeves runtime adapts program behavior to produce outputs that

adhere to specifications. Second, Jeeves allows policies to depend on sensitive

values. Existing semantics for information flow do not model this dependence.

I provide theorems of termination-insensitive non-interference and policy

compliance that describe these guarantees.

• Extending Jeeveswith relational operators.Priorwork on language-based ap-

proaches provides guarantees only within a single runtime. To extend Jeeves’s

guarantees to work with unmodified relational databases, I present an exten-

sion of the Jeeves semantics with relational operators and proofs that this

extends the guarantees. This allows us to use Jeeves for database-backed ap-

plications with an unmodified relational database.

• Optimizing Jacqueline for web applications. The Jeeves semantics are poten-

tially expensive to execute because they consider all possible program paths

based on the different ways sensitive values may be displayed. The work I

present uses observations about typical web frameworks to formulate and

implement an early pruning optimization that makes it so that in the common

case, the overheads are reasonable and often negligible.

1.5.2 Thesis Overview

In Part I, I present the programming model for the Jacqueline web framework (Chap-

ter 3) and explain the key constructs of the underlying language Jeeves (Chapter 4). I

present the semantics and guarantees of Jeeves and Jacqueline in Part II. In Chapter 5

I present the Jeeves semantics and guarantees. In Chapter 6 I present the semantics

for Jeeves extended with relational operators, the translation to relational databases,

and the extension of the guarantees. Part III is about practical considerations. In

Chapter 7 I describe the implementation of Jacqueline as a Python web framework

and in Chapter 8 I demonstrate the practical feasibility of Jacqueline through evalu-

ation on several application case studies.

22

Chapter 2

Background and Related Work

In this chapter, we examine prior solutions to helping programmers construct secure

systems, the gaps they leave, and how policy-agnostic programming addresses the

issues. We also discuss why existing programming solutions are insufficient for

automating the enforcement of information flow policies and the key ways in which

policy-agnostic programming differs.

2.1 The Problem of Constructing Secure Systems

The major prior approaches to constructing secure systems include encryption, access

control, and information flow checking. Using these approaches, problems that may still

arise include indirect flows, computing the incorrect viewer, leaky policy enforce-

ment, and policy spaghetti. We describe the prior work and how policy-agnostic

programming fills the gaps.

2.1.1 When Encryption and Access Control Are Not Enough

Work in encryption and access control focuses on techniques for protecting indi-

vidual sensitive values. For the calendar example about planning Carol’s surprise

party, we can protect event details by encrypting them, ensuring that in case of a

data breach, only viewers with the appropriate secret keys can successfully decrypt

23

the sensitive data to access the contents. Encryption techniques can limit the amount

of information secret key holders may learn. Functional encryption [19, 90] allows

holders of the secret key to learn only functions over encrypted values and secure

multi-party execution [48,107] allows multiple parties to jointly compute functions

over inputs while keeping the inputs private. With encryption approaches, however,

key management remains an issue. It is outside the scope of encryption to determine

what values are private to whom and which viewers receive the secret key.

Access control approaches partially address the issue of key management. Prior

work defines specification languages and implementation strategies for checking

complex access permissions. Using the Margrave policy analysis tool [37,39,101], for

instance, the programmer can specify permissions and issue queries about checks

that the engine uses a model checker to resolve. Rubicon [77] allows the programmer

to express access checks embedded in Ruby programs and Sunny [68] supports

access control checking in model-based, event-driven programs. Related work in

logics for access and authorization characterizes trade-offs between expressiveness

and analyzability [12–15,43,60,61,75,80]. Prior work on access control has two main

issues. First, once access is granted, the programmer is responsible for ensuring data

flows to the viewer for which permission was granted. Second, the separation of

permission checks from other computations leaves the programmer responsible for

managing dependencies of checks on sensitive values.

With encryption and access control, the program can still leak information

through indirect flows and incorrect viewer computation. Once the program de-

crypts a value or resolves an access check, the programmer is responsible for ensuring

that derived values are not revealed under disallowed circumstances. If computa-

tions, for instance search queries, involve sensitive values, the programmer needs to

prevent indirect flows by ensuring that the results of the computations flow only

to viewers who have access to the sensitive values involved in the computations.

Giving the programmers responsibility for ensuring values flow to the appropriate

viewers can also lead to the incorrect viewer problem, which arises when the actual

viewer of a sensitive value or derived value differs from the intended viewer. Recall

24

the HotCRP bug that allows users to preview password reminder emails for any

other user [108]. Especially when the viewer is different from the user driving the

computation, the programmer risks resolving permissions for the incorrect viewer.

2.1.2 The Leaky Enforcement Problem

Leaking policy enforcement is a risk when the programmer is responsible for man-

aging the interaction between permission checks. Leaky enforcement occurs when

resolving permissions for one sensitive value leaks information from other sensitive

values. In Chapter 1, we introduced this problem in relation to the HotCRP bug,

where the presence of another value leaked the sensitive “Accepted” status. This

problem arises in encryption and in access control approaches thatmaintain a stratifi-

cation between the data being protected and the data used for checking permissions.

With encryption, data must be decrypted in order to be used in checks. For instance,

to check the policy that the viewer needs to be a member of the surprise party guest

list in order to see it, the program needs to first decrypt the guest list. Whenever

permissions do not capture dependencies on sensitive values, the programmer is

trusted to prevent leaky enforcement. Much of the prior work on access control uses

policies that depend on sensitive data assume “omniscient access.” That is, policies

can access all data without restrictions [80].

Work on preventing leaky enforcement in database access control addresses the

issue that it is increasingly common for access policies to support arbitrary queries.

Hippocratic databases [7] differentiate between users that own a database table and

users that own data within the table. Follow-up work [59] examines how policies for

such databasesmay depend on data containedwithin a table. Rizvi et al. [87] describe

query rewriting rules for determining whether a query is authorized, allowing only

queries based on authorized views. Olson et al.’s Reflective Database Access Control

(RDBAC) [80] propose reflective access policies that allow access policy decisions to

depend on data contained in other parts of the database. Olson et al.motivate the

problem by citing how popular databases such as Oracle’s Virtual Private Database

25

allow for arbitrary code and providing examples for how policy interactions can

lead to security vulnerabilities. Prior work on leaky enforcement focuses on access

control policies in databases. The work in this thesis prevents leaky enforcement for

information flow across the imperative application code as well as across database

queries.

2.1.3 Programmer Burden with Information Flow Checking

Information flow approaches prevent indirect flows and reduce the opportunity

to resolve permissions for the incorrect viewer. Prior work tracks how sensitive

values flow through computations in order to detect leaks. Static, language-based

approaches [34, 35, 47, 49, 74, 76, 83, 99, 100, 102] analyze the program and check

that any program that is permitted to run does not have leaks. Prior work on static

approaches [89, 97] formulates guarantees such as non-interference: the property that

secret values do not affect public outputs. Dynamic approaches [16, 20–22, 44, 56,

94, 108] allow the programmer to define checking functions to be used at system

boundaries. A runtime tracks the flow of sensitive values, either halting the program

with an exception or silently failing if policies are violated. Prior work on dynamic

approaches requires minimal changes to existing programs, at the expense of using a

modified, slower runtime. The Fabric system [8,63] and Le Guernic et al.’s automata-

based monitoring [58] combine static and dynamic techniques. IFDB [93] uses a

decentralized label-based model for checking information flow in databases.

The main issue with information flow approaches is that of policy spaghetti:

the programmer remains responsible for correctly constructing a program that

exhibits the desired behavior. To support the search “parties near Wadern at 7pm

next Tuesday,” the programmer must ensure that only viewers who know the event

is a surprise party for Carol can see the event in the search results. If wewant Carol to

see that she has an event somewhere in Wadern while guests see the actual location,

the program needs to additionally manage the different views. Implementing and

updating policies and other functionality requires reasoning about the interaction

26

of policies and other functionality across the application.

Two additional issues with static approaches are restricted policies and the annota-

tion burden of specifying permitted flows across the program. For instance, Jif [74]

supports variable annotations describing principals that own them and the princi-

pals that are allowed to see them. The following code declares variables x and y that

are owned by Alice, where Bob can see x and both Bob and Chuck can see y:

i n t { A l i c e→Bob} x ;
i n t { A l i c e→Bob , Chuck} y ;

Jif ensures that only permitted flows may occur in the program:

x = y ; // OK: p o l i c y on x i s s t r o n g e r
y = x ; // BAD: p o l i c y on y i s not as s t r o n g as x

This approachguarantees that forbidden flowswill not occur,but at the cost of limited

expressiveness and programmer burden. These policies only allow the programmer

to specify whether a principal can see a value. They do not allow, for instance,

conditional policies that allow a principal to see a value if some predicate P is true.

In addition, the programmer must correctly construct the program and specify the

annotations. Dependently typed approaches [99] improve expressiveness, but at the

cost of undecidable static checking that restricts both policy and program complexity.

Follow-up work has extended Jif with both more expressive dynamic labels [111] to

improve expressiveness and label polymorphism and label inference [74] to mitigate

programmer burden. Even so, annotation burden has motivated researchers to look

to approaches that are primarily dynamic [23].

Dynamic approaches decrease the annotation burden, but at the cost of unhan-

dled exceptions and silent failures. Dynamic information flow systems such as

Flume [56], Resin [108], and Hails [44] track the flow of sensitive values to prevent

information leaks at different levels of granularity. These approaches allow the

programmer to define permission checking code to be executed at output channels.

These policies are expressive, as they may contain program code, but at the cost of

unpredictable runtime behavior. The runtime system tracks sensitive values and

either raises an exception or fails silently if sensitive values or their derived val-

27

ues flow to disallowed channels. While these approaches prevent leaks, they do

not provide support for constructing programs that do not leak information. The

programmer must still reason about policy spaghetti across the code. Russo and

Sabelfeld [88] discuss more trade-offs between static and dynamic information flow

analyses for security.

Leaky enforcement remains an issue with information flow checking. Because

static analyses must be conservative, typical static information flow approaches

support a static mapping between principals and data they can see. This forces a

stratification between sensitive values and the permission checking code. As a result,

the programmer must enforce such policies outside of the checking tool, leaving the

program vulnerable to leaky enforcement. Dynamic information flow approaches

do allow dependencies of policies on sensitive values. Dynamic techniques prevent

leaky enforcement, but the prevention manifests as unhandled exceptions or silent

failures. To avoid these behaviors, the programmer must correctly manage policy

dependencies.

2.1.4 Limitations of Multi-Execution

Multi-execution is another dynamic information flow checking approach that pre-

vents leaks by executing using multiple values. Capizzi et al. [24] describe shadow

execution, an approach that guarantees non-interference by executingmultiple copies

of the program. Devriese and Piessens’s secure multi-execution strategy [36] applies

this approach to JavaScript code. Kashyap et al.’s scheduling-based dynamic ap-

proach [51] partitions a program into sub-programs for each security level for en-

suring timing and termination non-interference. The faceted execution semantics [9]

simulate simultaneous multiple executions within a single runtime.

Policy spaghetti remains an issue with multi-execution. Multi-execution treats

programs in a black-box manner, deciding whether a programwritten as-is may leak

a sensitive value. The approach does notmodify the program itself and so is only able

to transform a program that leaks information into one that outputs arbitrary values.

28

If the programmer has constructed a program to be non-interferent, then secure

multi-execution will show the result of executing on the sensitive values. Otherwise,

the execution will output the result of computing on an arbitrary alternate value.

Like other checking approaches, the goal of multi-execution is to prevent a missing

check from turning into an information leak, but the programmer is expected to

write a non-interferent program.

With multi-execution, the programmer remains responsible for preventing leaky

policy enforcement. As with the static approaches, prior work [9, 24, 36, 51] requires

the programmer to encode policies in terms of whether a given principal is high-

privilege. To allow a policy such as “only party guests may see the sensitive guest

list,” the programmer must make the users sensitive in order to make the list high-

privilege. In this case, the approach does not prevent leaks. In the other case, the list

cannot be sensitive and the approach also cannot prevent against leaks.

2.1.5 Limitations of Existing Web Frameworks

Priorwork on information flow inweb frameworks focuses on checking and thus also

has the problems of policy spaghetti and leaky enforcement. Passe [17] dynamically

analyzes applications to enforce policies about what information may be leaked

from database queries. Hails [44] uses dynamic information controls to prevent leaks

across the application anddatabase. SIF [31], SELinks [32], SeLINQ [92], and thework

of Lourenço and Caires [67] use label-based approaches for verifying information

flow in database-backed applications. Ur/Web [28] uses static dependent types to

check information flow properties in web programs. Tracking sensitive values in the

database is also related to prior work in data provenance [6, 81], especially recent

work in provenance for security [1, 26] that uses the history of how values were

computed for enforcing security properties.

29

2.1.6 How Policy-Agnostic Programming Fills the Gaps

The policy-agnostic approach factors out the specification of information flow poli-

cies to eliminate policy spaghetti and prevent leaky enforcement. Policy-agnostic

programming allows the programmer to specify each information flow policy once

instead of as checks and filters across the program. A language runtime is responsi-

ble for managing dependencies between policies and with the rest of the program.

Unlike secure multi-execution, policy-agnostic runtimes modify runtime behavior

in order to produce outputs that adhere to policies. Policy-agnostic programming

provides a layer of policy management on top of secure multi-execution to address

the issues of policy spaghetti and leaky enforcement. Policy-agnostic programming

may be used in conjunction with prior work on preventing information leaks. In

fact, the original semantics for the Jeeves programming language for policy-agnostic

programming [106] is based on symbolic execution and developed independently of

the multi-execution work. One of the contributions of this thesis includes a faceted

semantics for policy-agnostic programming [10] that combines multi-execution with

policy-agnostic programming.

Jeeves’s guarantees have some interesting theoretical dimensions with respect to

prior work. Because Jeeves allows mutual dependencies between sensitive values

and policy computations, the non-interference property is similar to a declassification

property. Prior work on secure declassification [30, 62] provides mechanisms for

describing policies that describe when sensitive information may be revealed; for

instance, to check passwords or after all bids have been submitted in a sealed auction.

Formally characterizing declassification and robustness, the property that an attacker

cannot affect the state in such a way that it leaks information [109], are not within

the scope of this thesis. It is also not within the scope of this thesis to address what

happens when policies need to change [99] or when information needs to be erased

or made less accessible based on the needs of the system [29].

30

2.2 Comparing to Other Language-Based Techniques

The policy-agnostic approach provides a new way to 1) specify behavior with re-

spect to information flow concerns and 2) automate the implementation of these

specifications. In this section, we describe why existing programming paradigms

are not enough for automating information flow.

2.2.1 Restrictions of Aspect-Oriented Programming

It may seem that we can automate information flow concerns using aspect-oriented

programming [52], which has the goal of factoring out cross-cutting concerns that recur

across a program. Frameworks for aspect-oriented programming allow the program-

mer to separately specify component code and aspect code. The frameworks automate

the process of weaving in aspect code at component boundaries. The programmer

specifies a pointcut, a set of join points in the program where aspect code should

be executions. Aspects have restricted influence in the rest of the program because

they do not interact within components. Even with Smith’s generative approach that

allows the programmer to express aspects as logical invariants and reconstructs the

call stack to implement them [95,96], aspects are useful for concerns that are more

syntactically than semantically intertwined with the program, for example error

logging and maintaining consistency between a data model and graphical views.

Aspect-oriented programming is not a good fit for information flow because

customizing program behavior based on information flow requires an approach

that is more semantically intertwined with the host language. Consider the checks

required in enforcing that Carol’s surprise party details are not leaked. The program

needs a permission check not only when event details are accessed directly, but

whenever derived values are accessed. Derived values prevent us from encoding

information flow checks as aspects. Determining which values are derived values

requires tracking the flow of information within components, as sensitive values

can affect computations both directly, by being part of the computations themselves,

and indirectly, by being captured in assignments under sensitive conditional checks.

31

Aspects are insufficiently expressive because they only support weaving in code at

component boundaries.

2.2.2 Limitations of Prior Work in Executing Specifications

In thinking about how to automate information flow, we can also look to work in

executable specifications [71], for instance Squander [69]. The goal of executing specifi-

cations is to allow the programmer to provide properties the code should adhere

instead of writing programs operationally. The work in executing specifications fo-

cuses on replacing subroutines with executable specifications. With policy-agnostic

programming, specifications are associated with computations over specific pro-

gram values. The specifications do not need to describe self-contained subroutines:

they may have mutual dependencies with the rest of the program.

Towards automating program concerns, we can look to angelic nondeterminism.

Floyd proposed an angelic nondeterminism that simplifies specifications for back-

tracking algorithms [40]. Bodik et al. [18] show this operator is useful in the develop-

ment and testing of deterministic programs. The SPR [66] and Prophet [65] systems

demonstrate the operator is useful for bug patching. Angelic nondeterminism is

typically expensive to support because it involves searching over an extensive pro-

gram space. Sensitive values in Jeeves behave similarly to angelic values, but their

specifications define a smaller search space than prior work and thus the algorithms

used to resolve their behavior are also different.

The best candidate from existing work for automating information flow concerns

is constraint functional programming. Mück et al. [73] present a calculus that integrates

constraints into a functional programming model. Similar programming models

have been implemented in Mercury [46], Escher [64], and Curry [45]. Constraint

functional programming languages are sufficiently expressive to support the en-

coding of information flow concerns, but the issue is performance. Prior work on

constraint functional languages supports general constraints. In order to do so, the

runtimes execute the programs as logic programs, performing runtime search to

32

produce results. In Jeeves, on the other hand, constraints may only affect the values

of labels, allowing the Jeeves runtime to search over a limited, decidable space.

Relatedwork in dynamic approaches produces values to adhere to a specification,

but the approaches are too restrictive for expressing information flow. Program

repair approaches such as Demsky’s data structure repair [33], the Plan B [91] system

for dynamic contract checking, and Kuncak et al.’s synthesis approach [57] all target

localized program expressions rather than global, intertwined concerns.

2.2.3 Relationship to Variational Data Structures

Variational data structures [103] are similar in philosophy to sensitive values in policy-

agnostic programs. Variational data structures encapsulate properties related to

program customization. Variational data structures are useful for parameterizing

programs with respect to different possible options. For instance, for planning a

trip, a program may be parametric with respect to specific itinerary or cost require-

ments. While this work focuses on representations of variations and variation-aware

algorithms, the policy-agnostic programming work focuses on the guarantees a lan-

guage semantics can provide when interactingwith values that encapsulate multiple

views. By making the language runtime aware of sensitive values, policy-agnostic

programming is able to provide strong runtime guarantees.

2.2.4 Relationship to Acceptability-Oriented Programming

The idea of continuing program execution despite entering a failure state is related

to acceptability-oriented programming [85]. Rinard argues that instead of attempting to

build a system free of errors, the system designer should identify the key proper-

ties the execution must satisfy in order to be acceptable to users. Rinard et al. [86]

demonstrated the effectiveness of the approach for enhancing server availability.

The follow-up work has moved towards characterizing the approximate behavior

of programs when executing with an arbitrary specification [25]. Our work focuses

instead on obtaining a specification of alternate behavior from the programmer and

33

automating its implementation.

2.2.5 Relationship to Declarative Domain-Specific Languages

Prior work uses declarative constraints to address domain-specific programming

issues. Frenetic [41, 42] provides a declarative query language for software-defined

networking. Engage [38] uses constraints tomitigate programmer burden in configur-

ing, installing, and managing software deployments. In these domains, constraints

describe the entire program execution and cannot be mixed into the rest of the

program. An interesting direction of future work involves examining whether a

policy-agnostic approach could improve expressiveness or performance in these

domains.

34

Part I

Policy-Agnostic Programming for

Information Flow

35

Chapter 3

Policy-Agnostic Programming in the

Jacqueline Web Framework

Amajor advantage of the policy-agnostic approach is that the programmer can write

policy-enforcing code that looks similar to policy-free code and rely on the runtime

to customize program behavior. In this chapter, we introduce the programming

model of the Jacqueline web framework [105] through an example. On the surface,

Jacqueline looks similar to a standardmodel-view-controller (MVC)web framework. In

a standardMVC framework, themodel describes the data, the view describes the page

layouts, and the controller describes computation over the data to produce views.

In Jacqueline, the programmer additionally provides specifications of information

flow policies alongside data schemas in the model.

With Jacqueline, we present a general policy-agnostic approach to model-view-

based controller web programming. Our semantics and guarantees are language-

agnostic with respect to the language runtime andworkwith any relational database.

We implemented Jacqueline as an extension of the Django Python web framework,

butwe could have chosen a variety of other languages and implementation strategies.

In this chapter, we show how programming in Jacqueline is similar to programming

in vanilla Django without policies. Jacqueline additionally provides all the benefits

of automatic end-to-end policy enforcement.

36

1 c l a s s Event (Jacque l i n eMode l) :
2 name = C h a r F i e l d (max_length =256)
3 l o c a t i o n = C h a r F i e l d (max_length =512)
4 t ime = DateTimeFie ld ()
5 d e s c r i p t i o n = C h a r F i e l d (max_length =1024)

6 # P u b l i c v a l u e f o r name f i e l d .
7 @sta t i cmethod
8 def j a cque l i n e_ge t_pub l i c_name (even t) :
9 return " [p r i v a t e even t] "

10

11 # P u b l i c v a l u e f o r l o c a t i o n f i e l d .
12 @sta t i cmethod
13 def j a c q u e l i n e _ g e t _ p u b l i c _ l o c a t i o n (even t) :
14 return " U n d i s c l o s e d l o c a t i o n "
15

16 # P o l i c i e s f o r name and l o c a t i o n f i e l d s .
17 @sta t i cmethod
18 @ l a b e l _ f o r (’ name ’ , ’ l o c a t i o n ’)
19 @ j a c q u e l i n e
20 def j a c q u e l i n e _ r e s t r i c t _ e v e n t (event , c t x t) :
21 return (EventGuest . o b j e c t s . ge t (
22 even t=s e l f , gue s t=c t x t) != None)

23 c l a s s EventGuest (Jacque l i n eMode l) :
24 even t = Fore ignKey (Event , n u l l=True)
25 gue s t = Fore ignKey (U s e r P r o f i l e , n u l l=True)

Figure 3-1: Jacqueline schema fragment for calendar events. Policy code is shown
with a gray background.

3.1 Schemas and Policies in Jacqueline

Recall our calendar example from Chapters 1 and 2. Alice and Bob want to plan a

surprise party for Carol at 7pm next Tuesday at Schloss Dagstuhl and need to show

different versions of event information to different parties. In this section, we show

how Jeeves allows us to specify that the secret details of the party are sensitive and

that only guests should be able to view this information. We show how Jeeves also

allows us to specify that everyone else sees an alternate default value, for instance

the coarser-grained country “Germany” for the location. In the next section,we show

37

how the Jeeves runtime enforces policies in all computations, including searches

such as “Who are all of my friends at Schloss Dagstuhl at 7pm next Tuesday?”

A Jacqueline application consists of the model specifying the data and policies,

policy-agnostic controller code, and policy-agnostic view code. In the model code,

the programmer associates policieswith data fields in schemas specifying the data

types. Policies have two components: 1) an information flow policy describing when

data fields may be visible to a given viewer and 2) an alternate default value that

the program can use if the programmer does not have access to the sensitive value.

The alternate default value can be a coarsening of the sensitive value: for instance,

instead of the actual location “Schloss Dagstuhl,” the corresponding town “Wadern.”

The Jacqueline runtime simulates simultaneous multiple executions on the different

views to ensure that if a viewer does not have access to the sensitive data field,

outputs are computed as if the sensitive field was the alternate value.

Continuing with our calendar example, we show a sample schema for the Event

and EventGuest data objects in Figure 3-1. A Django schema is a Python class inher-

iting from Model with field names, field types, and optional methods. A Jacqueline

schema is a Python class inheriting from JacquelineModel with field names, field

types, optional policies, and optional methods. We define the Event class with fields

name, location, description, and visibility, where visibility is the user-specified setting

corresponding to whether the event is visible to everyone or only to guests. Up

to line 5, this looks like a standard Django schema definition. The definition for

EventGuest (line 23), with foreign keys to the Event and UserProfile (definition not

shown) tables, is exactly as it would be in Django.

3.1.1 Secret Values and Public Values

In Jacqueline, sensitive values encapsulate multiple views: a secret view available

only to viewers with sufficient permissions and a public view available to all other

viewers. The Jacqueline runtime simulates simultaneous executions on both views

in order to guarantee that if a viewer does not have access to the secret view, the

38

system will produce outputs as if the secret view never existed. In Jacqueline, if a

data field has a policy, the actual value is the secret view. Jacqueline requires the

programmer to additionally define a method computing the public view.

On line 8we define the jacqueline_get_public_namemethod computing the public

view of the name field. If the information flow policy prohibits a viewer from seeing

the sensitive name field, then the name field will behave as "[private event]" in all

computations, including database queries. This function takes the current row object

(event) as an argument, so we could compute the public value using the row fields

as well. The Jacqueline ORM uses naming conventions (e.g. the jacqueline_get_public

prefix) to find the appropriate methods to compute public views.

Jacqueline allows sensitive values to behave as either the secret value or public

value, depending on the viewing context (i.e. the user viewing a page). Computation

sinks such as print take an additional (implicit) argument corresponding to the

viewer. Jacqueline tracks the viewer,uses that alongwith the policies to determine the

value to display. For instance, print carolParty.name displays "Carol’s surprise party"

to some viewers and "[private event]" to others, depending on the policies. Note that

the programmer does not need to designate the viewer, as this is something that the

framework can track.

3.1.2 Specifying Policies

The programmer specifies information flow policies that determine whether a given

viewer sees the actual data field or the alternate default value. On line 20 we imple-

ment the information flow policy for the fields name and location, as indicated by

the label_for decorator. The policy is a method that takes two arguments, the current

row object (event) and the viewer (ctxt). The framework tracks the viewing context

corresponding to the argument ctxt, for which the programmer determines the type

and value. Here, ctxt corresponds to the user looking at the page.

Policies may contain arbitrary code: our policy queries the database, looking up

in the EventGuest table (line 23) whether a given guest is associated with the event.

39

1 c l a s s Jeeve sQue rySe t (QuerySet) :
2 a l l ()
3 d e l e t e ()
4 f i l t e r (∗∗ kwargs)
5 o rde rby (∗∗ kwargs)
6 get (∗∗ kwargs)
7

8 c l a s s Jacque l i n eMode l (Model) :
9 c r e a t e (∗ args , ∗∗ kwargs)

10 d e l e t e ()
11 save (∗ args , ∗∗ kwargs)
Figure 3-2: The Jacqueline ORM API. The argument ∗args denotes an optional list
of arguments. The argument ∗∗kwargs denotes an optional dictionary of arguments.
The filtermethod takes, for instance, arguments for field equalities to filter on.

Policies may depend on sensitive values: the EventGuest.guest field may have its own

policies associated. Jacqueline enforces policies with respect to the row values at

the time a value is created and the state of the system at the time of output. The

jacqueline_restrict_event policy refers to the contents of the EventGuest table when a

user views a page.

3.2 Policy-Agnostic Controller Code

Once the programmer associates information flow policies with data fields, the rest

of the program looks like a Django program. The programmer needs to be aware that

policies may affect the values flowing through the program, e.g. defaults rather than

sensitive values, but does not need to know the specifics of the policies. In Figure 3-2

we show the API for individual JacquelineModel data records and for sets of records

JeevesQuerySet. The programmer may call these APIs exactly as they would call the

corresponding Django APIs for Model and QuerySet. Note that both ORMs abstract

over implicit joins from foreign keys.

Jacqueline uses faceted execution [9, 10] to simulate simultaneous multiple exe-

cutions on the different facets of a sensitive value. The programmer calls create in

Jacqueline the same way as in Django:

40

c a r o l P a r t y = Event . o b j e c t s . c r e a t e (name = " Ca ro l ’ s s u r p r i s e pa r t y "
, l o c a t i o n = " S c h l o s s Dagstuh l " , . . .)

TheDjangoORMsimply inserts the specified record into the database. In contrast, for

the namefield, the JacquelineORMcreates the facetedvalue 〈k ? "Carol’s surprise party" :

"[private event]"〉, where k is a fresh boolean label guarding the secret actual field

value and the public facet computed from the get_public_name method. The Jacque-

line runtimemaps labels to policies. For computation sinks such as print, the runtime

assigns labels based on policies and the viewing context.

Once the programmer associates policies with sensitive data fields, the rest of

the program may be policy-agnostic and look as the equivalent policy-free Django

program would. The Jacqueline runtime evaluates faceted values by evaluating each

of the facets. For instance, evaluating "Alice’s events: " + str(alice.events) yields the

resulting faceted value guarded by the same label k:

〈k ? " A l i c e ’ s e v e n t s : Ca ro l ’ s s u r p r i s e pa r t y "
: " A l i c e ’ s e v e n t s : [p r i v a t e even t] "〉

Thosewith sufficientpermissions, the guests of the event,will see "Carol’s surprise party"

as part of the list of Alice’s events, while others will see only "[private event]". Faceted

execution propagates labels through all derived values, conditionals, and variable

assignments, thus preventing indirect flows.

The Jacqueline ORM extends faceted execution to database queries. For instance,

consider the query:

Event . o b j e c t s . f i l t e r (
l o c a t i o n=" S c h l o s s Dagstuh l ")

While theDjangoORMsimply issues the corresponding database query formatching

Event rows, the Jacqueline ORMmanipulates faceted values to prevent leaks of sensi-

tive information. Recall that the location field of carolParty is 〈k ? "Schloss Dagstuhl" :

"Undisclosed location"〉. If carolParty is the only event in the database, faceted execu-

tion of the filter query yields a faceted list 〈m ? [carolParty] : []〉. Viewers who should

not be able to see the location field will not be able to see values derived from the

sensitive field.

41

Jacqueline also prevents implicit leaks through writes to the database. For in-

stance, consider the following code that replaces the description field of Event rows

with "Dagstuhl event!" when the location field is "Schloss Dagstuhl":

f o r l o c i n Event . o b j e c t s . a l l () :
i f l o c . l o c a t i o n == " S c h l o s s Dagstuh l " :

l o c . d e s c r i p t i o n = " Dagstuh l even t ! "
save (l o c)

For carolParty the condition evaluates to 〈k ? True : False〉. The runtime records

the influence of k when evaluating the conditional branch. The call to save writes

〈k ? carolPartyNew : carolParty〉, where carolPartyNew is the updated value. If a viewer

cannot see the actual value of carolParty.location, the viewer will also not be able to

see the updated description field.

3.3 Computing Concrete Views

At computation sinks such as print, the runtime uses the viewing context and policies

to produce concrete, non-faceted outputs. The runtime does this by producing a

system of constraints on the labels. Printing carolParty.name to alice produces the

following constraint:

k ⇒
(EventGuest . o b j e c t s . ge t (

even t=s e l f , gue s t=c t x t) != None)

The runtime evaluates this constraint in terms of the guest list at the time of output.

Because policies are program functions, labels are the only free variables in the fully

evaluated constraints. There is always a consistent assignment to the labels: since

policies can only force labels to be False, assigning all labels to False is always valid.

The policy enforcement mechanism handles dependencies between policies,

including mutual dependencies between policies and sensitive values. Suppose, for

instance, that the policy on guest lists depended on the list itself:

@ l a b e l _ f o r (’ gue s t ’)
def j a c q u e l i n e _ r e s t r i c t _ g u e s t (even tgue s t , c t x t) :

42

return (EventGuest . o b j e c t s . ge t (
even t=e v e n t g u e s t . e , gue s t=c t x t) != None)

This policy says that there must be an entry in the EventGuest table where the guest

field is the viewer ctxt. This creates a circular dependency: the policy for the guest

field depends on the value of the guest field. There are two valid outcomes for a

viewer who has access: either the system shows the fields as empty or the system

shows the actual fields. To handle situations like this, Jacqueline has a notion of

maximal functionality and shows values unless policies require otherwise.Wedescribe

the mechanism for handling these dependencies in Section 4.4.

43

Chapter 4

Jeeves, a Language for Automatically

Enforcing Information Flow Policies

Underlying Jacqueline is Jeeves, a language that automatically enforces informa-

tion flow policies. We intend for Jeeves to be the “assembly language” for policy-

agnostic programming, containing key constructs for manipulating sensitive values

and policies. Jeeves extends the imperative λ-calculus with faceted sensitive values

(〈` ? ExpH : ExpL〉), a label construct for introducing labels that guard access to

facets, and a restrict construct for introducing policies on labels. In this chapter, we

present Jeeves using an ML-like concrete syntax, shown in Figure 4-1.

4.1 Sensitive Values and Policies

Jeeves programs associate information flow policies with sensitive values, allowing

other functionality to be policy-agnostic. Recall from Chapter 3 that we represent

sensitive values as faceted values encapsulating multiple views. The following faceted

value behaves as either "Carol’s surprise party" or "[private event]", depending onwhat

the runtime assigns to the guard a:

〈 a ? " Ca ro l ’ s s u r p r i s e pa r t y " : " [p r i v a t e even t] " 〉

44

x variables
` labels
p, r primitives, records
k ::= p | r principals
Label ::= true | false labels
τ ::= int | bool | string types

| record −−→x : τ
| τ2 → τ2 | τ ref
| Label

Exp ::= x | p | r | k expressions
| λx : τ.Exp
| Exp1 (op) Exp2
| if Exp1 then Expt else Exp f
| Exp1 Exp2
| ref Exp
| ! Exp | x := Exp in Expb
| 〈` ? Exphigh : Explow〉
| label ` in Exp
| restrict ` : Expp in Exp

Stmt ::= let x : τ = Exp in Expb statements
| print {Expc}Exp

Figure 4-1: Jeeves syntax.

45

The string "Carol’s surprise party" is the secret, or high-confidentiality facet available to

viewerswithpermissions. The string "[private event]" is the public, or low-confidentiality

facet available to other viewers. The Jacqueline web framework is responsible for cre-

ating faceted values where the actual field value is the secret facet and the alternate

default value is the public facet. A Jeeves program has the flexibility of introducing

faceted values at any point.

To enforce policies, the Jeeves runtime assigns values to labels based on program-

defined policies. Labels take on the values { true, false }, where true corresponds

to the high-confidentiality value and false corresponds to the low-confidentiality

value. The program introduces labels using the label construct and policies using

the restrict construct. This policy on label a says that the user must be the user alice

to have high-confidentiality status:

l a b e l a i n
r e s t r i c t a : λ (v i e w e r : u s e r) . (v i e we r == a l i c e) i n . . .

Policies are functions that take an argument corresponding to the output context

and return a Boolean value describing when the implicated label may take on the

value true. As mentioned before, the output context for policies can be of arbitrary

type, determined by the program. In Jacqueline, the web framework helps keep

track of the output context.

In Jeeves, the labels are assigned based on the conjunction of all relevant policies

evaluating to true. For instance, the following two policies would indicate that only

friends of users alice and bob have permission to view the high-confidentiality facet:

r e s t r i c t a : λ (v i e w e r : u s e r) . i s F r i e n d s (v i ewer , a l i c e) i n
r e s t r i c t a : λ (v i e w e r : u s e r) . i s F r i e n d s (v i ewer , bob) i n . . .

This makes it so that even if policies are declared elsewhere, there is a guarantee that

they can only decrease permissions on high-confidentiality facets. This supports a

distributed programming model.

46

4.2 Policy-Agnostic Programs

As we described with Jacqueline execution, the Jeeves runtime simulates simulta-

neous executions on sensitive values to customize program behavior based on the

policies and the viewer. For instance, consider the following code:

" Your f r i e n d i s go ing to " +
〈 a ? " Ca ro l ’ s s u r p r i s e pa r t y " : " [p r i v a t e even t] " 〉 ;

The Jeeves runtime evaluations operations involving faceted values by evaluating

the operations on each of the facets and putting the resulting values into a resulting

faceted value. Evaluation of the code above yields:

〈 a ? " Your f r i e n d i s go ing to Ca ro l ’ s s u r p r i s e pa r t y "
: " Your f r i e n d i s go ing to [p r i v a t e even t] " 〉

During program evaluation, the Jeeves runtime ensures that only users with the

appropriate permissions can see the string with "Carols’ surprise party". Everyone

else sees the string containing "[private event]".

4.3 Producing Concrete Values

We described how in Jacqueline, the web framework customizes outputs based on

the policies and the viewer. Underlying this functionality is Jeeves’s concretization

mechanism. For effectful statements such as print, the Jeeves runtime customizes

the output based on the policies and viewer. Effectful statements take a parameter

corresponding to the output context:

l e t msg : s t r i ng = " Your f r i e n d i s go ing to " + event ;

(∗ Output : " Your f r i e n d i s go ing to Caro l ’ s s u r p r i s e pa r t y " ∗)
p r i n t { a l i c e } msg ;

(∗ Output : " Your f r i e n d i s go ing to [p r i v a t e even t] " ∗)
p r i n t { c a r o l } msg ;

To produce an assignment to labels, the Jeeves system translates this rule to the

declarative constraint a ⇒ viewer == alice: in order for label a to be assigned the

47

1 l e t mkEvent (name : s t r i n g) (d e s c r i p t i o n : s t r i n g)
2 (h o s t s : u s e r l i s t) (g u e s t s : u s e r l i s t)
3 (i s F i n a l i z e d : bool) : e ven t =
4 l a b e l canSeeEvent i n
5 l e t e = 〈 canSeeEvent ?
6 { name = name ; d e s c r i p t i o n = d e s c r i p t i o n
7 ; h o s t s = h o s t s ; g u e s t s = g u e s t s
8 ; i s F i n a l i z e d = i s F i n a l i z e d }
9 : { name = " [p r i v a t e even t] "

10 ; d e s c r i p t i o n = " [p r i v a t e] " ; h o s t s = [] ; g u e s t s = []
11 ; i s F i n a l i z e d = t r u e } 〉 i n
12 r e s t r i c t canSeeEvent : λ (v i e w e r : u s e r) . (
13 ((isMember v i e w e r e . h o s t s) or
14 (e . i s F i n a l i z e d and (isMember v i e w e r e . g u e s t s))))

Figure 4-2: “Constructor” code for an event record in Jeeves.

value true, the value of the variable viewer must be equivalent to the value of the

variable alice. The runtime collects policies until computation sinks. Each policy

could additionally restrict a to be false. For maximal functionality, the Jeeves system

tries to assign labels to true, setting labels to false only if the policies require it.

Assigning all labels to false always yields a consistent solution because policies can

only require labels to be false. This means that in Jacqueline, it is always acceptable

to show outputs computed using the default values of fields.

4.4 HandlingDependencies Between Sensitive Values

and Policies

In Chapters 1 and 2, we describe how one source of information leaks is leaky en-

forcement, leaks through policy enforcement. One reason these leaks arise is because

there is a stratification between sensitive values and permission checks, making the

programmer trusted to manage mutual dependencies between policies and sensitive

values. In this section, we describe how Jeeves policies are expressive enough to

capture these dependencies and how the Jeeves runtime manages them. As long

as the viewer properly associates policies with sensitive values, the Jeeves runtime

48

produces results that adhere to all policies.

In Figure 4-2 we show an example “constructor” that takes values for the fields

of an event value and creates a faceted event value associated with the appropriate

policy. This code introduces a label canSeeEvent (line 4), uses the label to create a

sensitive value that either shows the event information or shows default information,

and specifies a policy (line 12) on the event. The policy says that in order for a viewer

to see the actual event information, they must either be an event host or the event

has been finalized and the viewer is a guest. As long as the programmer attaches

the policies correctly, Jeeves handles the interaction of the policies.

In our example, there is a mutual dependency between the policy protecting

guest list and the sensitive guest list itself. A viewer may view the contents of the

guest list only if the viewer is amember of the guest list. To understandwhat happens

in this situation, let us consider a simplified example:

l e t u : u s e r =
l a b e l b i n
l e t v : u s e r = 〈 b ? a l i c e : nobody 〉
r e s t r i c t b : λ (v i e w e r : u s e r) . (v i e we r == v) i n

v

This code creates a user that is either alice or nobody guarded by label b and associates

with b a policy that the viewer needs to be equal to this alice-or-nobody value. Now

let us consider what happens when we print the name field of this user value:

p r i n t { a l i c e } u . name

The value u.name evaluates to 〈 b ? alice.name : nobody.name 〉. To resolve the output,

the runtime needs to evaluate the policy associated with b. We evaluate the policy

applied to the output context as follows:
b⇒ alice == 〈 b ? alice : nobody 〉

↪→ b⇒ 〈 b ? true : false 〉

↪→ 〈 b ? b⇒ true : b⇒ false 〉
The circular dependency makes it so that both outcomes are valid: b is true and we

have true⇒ true, or b is false and we have false⇒ false. Stepping up a level, this

means that the permissions allow either for user u to be alice or nobody. The behavior

49

we would like is for the runtime to show the higher-confidentiality value as long as

it is allowed. To handle these dependencies, we have designed the Jeeves runtime

for maximal functionality. If the policies allow a label to be true or false, the runtime

will assign it to be true. This makes it so that the runtime shows the result from

computing on secret values unless the policies disallow it.

The Jeeves runtime resolves circular dependencies by finding the maximally

functional fixed point. Whenever there is a circular dependency, the runtime needs

to find a fixed point to the constraints. The circular dependency leads to multiple

fixed points. For the example above, the two solutions are b is true, allowing the

user u to be the secret value alice, or b is false, requiring u to be the default value

nobody. When there are two fixed points, there is a clear ordering between them. We

discourage writing code with more than two fixed points and have implemented a

dynamic analysis to produce a warning when these cases are detected.

We designed Jeeves so that constraint resolution is decidable and constraints are

always consistent. The constraints that the Jeeves runtime produces take the form

`⇒ P, where ` is a Boolean label and P is a predicate containing only labels as free

variables. The runtime evaluates all other variables in terms of runtime state at the

time of output. The constraint environment is decidable because it contains only

Boolean free variables. The constraints are always consistent because constraints

can only force labels to be assigned to false. Assigning all labels to false is always

consistent with any set of constraints of this form.

4.5 Policy Language Limitations

Our policy language has the following limitations:

• The policy language only allows restrictions that prevent the disclosure of the

secret facet. There is no mechanism for specifying that the secret facet must be

visible. This restriction prevents policy contradictions.

• We have formulated our policy guarantees with respect to individual output

50

instances. As a result, there is noway to specify policies that describe behaviors

across multiple outputs. Jeeves does not, for instance, support policies that

allow value A or B to be shown to a given viewer, but not both. The Jeeves

runtimewill show either A or B for each output,with no guarantees of showing

only A or B. Providing guarantees across outputs is outside the scope of this

thesis, but can be implemented by keeping track of prior outputs.

• Policy revocation is outside the scope of this thesis.

• As previously mentioned, there is only a ranking between fixed point solu-

tions when there is a circular dependency between two labels. There is a clear

ordering between two fixed point solutions, as they arise when a policy de-

pends on the sensitive value it protects. This is not the case when there are

more fixed points. To address this problem, we discourage writing code with

more than two fixed points have implemented a dynamic analysis to produce

a warning when these cases are detected. An area of future exploration in-

volves determinizing the policy semantics based on programming patterns

and needs.

51

Part II

Reasoning about Policy-Agnostic

Programs

52

Chapter 5

Semantics and Guarantees for Faceted

Execution of Jeeves

Another contribution of this thesis is a formalization of what it means for the lan-

guage runtime to enforce information flow policies. In this chapter, we present

the dynamic semantics for Jeeves and use it to prove guarantees of termination-

insensitive non-interference and policy compliance. The semantics describe how

Jeeves simulates simultaneous executions over facets of sensitive values in order

to automatically enforce information flow policies. The formulation of the secu-

rity properties takes into account that the policies and the viewer may depend on

computations involving sensitive values.

5.1 Core Semantics

We model the semantics of Jeeves with λjeeves, a simple core language that extends

the faceted execution semantics of Austin and Flanagan [9] with a declarative pol-

icy language for confidentiality. The λjeeves semantics describes how to evaluate

faceted values, store policies, and use the policy environment to provide assign-

ments to labels for producing concrete outputs. We use these semantics to prove

non-interference and policy compliance guarantees.

We show the source syntax in Figure 5-1. The language λjeeves extends the λ-

53

Syntax:
e ::= Term

x variable
c constant
λx.e abstraction
e1 e2 application
ref e reference allocation
!e dereference
e:= e assignment
〈k ? e1 : e2〉 faceted expression
label k in e label declaration
restrict(k, e) policy specification

S ::= Statement
let x = e in S let statement
print {e} e print statement

c ::= Constant
f file handle
b boolean
i integer

x, y, z Variable
k, l Label

Standard encodings:

true def
= λx.λy.x

false def
= λx.λy.y

if e1 then e2 else e3
def
= (e1 (λd.e2) (λd.e3)) (λx.x)

if e1 then e2
def
= if e1 then e2 else 0

let x = e1 in e2
def
= (λx.e2) e1

e1 ∧ f e2
def
= λx.e1 x ∧ e2 x

e1 ∧ e2
def
= if e1 then e2 else false

Figure 5-1: The source language λjeeves

54

Runtime Syntax

e ∈ Expr ::= ... | a
Σ ∈ Store = (Address→p Value) ∪ (Label→ Value)
R ∈ RawValue ::= c | a | (λx.e)
a ∈ Address

V ∈ Val ::= R | 〈k ? V1 : V2〉
h ∈ Branch ::= k | k

pc ∈ PC = 2Branch

Figure 5-2: Runtime syntax for λjeevesevalution.

calculus with expressions for allocating references (ref e), dereferencing (!e), as-

signment (e1:= e2), creating faceted expressions (〈k ? e1 : e2〉), specifying policy

(restrict(k, e)), and declaring labels (label k in e). Additional statements exist for

let-statements (let x = e in S) and printing output (print {e1} e2). Conditionals are

encoded in terms of function application.

In λjeeves, values V contain faceted values of the form

〈k ? VH : VL〉

A viewer authorized to see k-sensitive data will observe the private facet VH. Other

viewers will instead see VL. For example, the value 〈k ? 42 : 0〉 specifies a value of 42

that should only be viewed when k is true
¯

according to the policy associated with k.

When the policy specifies false
¯

, the observed value should instead be 0.

A program counter label pc records when execution is influenced by public or

private facets. For instance, in the conditional test

if (〈k ? true : false〉) then e1 else e2

our semantics needs to evaluate both e1 and e2. The label k is added to pc during

the evaluation of e1. By doing so, our semantics records the influence of k on this

computation. Similarly, k is added to pc during the evaluation of e2 to record that

the execution should have no effects observable to k. A branch h is either a label k

55

Expression Evaluation Rules Σ, e ⇓pc Σ′, V

Σ, R ⇓pc Σ, R
[f-val]

Σ, e ⇓pc Σ′, V′

a 6∈ dom(Σ′)
V = 〈〈 pc ? V′ : 0 〉〉

Σ, (ref e) ⇓pc Σ′[a := V], a
[f-ref]

Σ, e ⇓pc Σ′, V
V′ = deref (Σ′, V, pc)

Σ, !e ⇓pc Σ′, V′
[f-deref]

Σ, e1 ⇓pc Σ1, V1
Σ1, e2 ⇓pc Σ2, V′

Σ′ = assign(Σ2, pc, V1, V′)
Σ, e1:= e2 ⇓pc Σ′, V′

[f-assign]

Σ, e1 ⇓pc Σ1, V1
Σ1, e2 ⇓pc Σ2, V2

Σ2, (V1 V2) ⇓apppc Σ′, V′

Σ, (e1 e2) ⇓pc Σ′, V′
[f-app]

k 6∈ pc and k 6∈ pc
Σ, e1 ⇓pc∪{k} Σ1, V1
Σ1, e2 ⇓pc∪{k} Σ′, V2

V′ = 〈〈 k ? V1 : V2 〉〉
Σ, 〈k ? e1 : e2〉 ⇓pc Σ′, V′

[f-split]

k ∈ pc Σ, e1 ⇓pc Σ′, V
Σ, 〈k ? e1 : e2〉 ⇓pc Σ′, V

[f-left]

k ∈ pc Σ, e2 ⇓pc Σ′, V
Σ, 〈k ? e1 : e2〉 ⇓pc Σ′, V

[f-right]

k′ f resh
Σ[k′ := λx.true], e[k := k′] ⇓pc Σ′, V

Σ, label k in e ⇓pc Σ′, V′
[f-label]

Σ, e ⇓pc Σ1, V
Σ′ = Σ1[k := Σ1(k) ∧ f 〈〈 pc∪ {k} ? V : λx.true 〉〉]

Σ, restrict(k, e) ⇓pc Σ′, V
[f-restrict]

Figure 5-3: λjeeves expression evaluation.

56

Auxiliary Functions

deref : Store×Val× PC → Val
deref (Σ, a, pc) = Σ(a)

deref (Σ, 〈k ? VH : VL〉, pc) =


deref (Σ, VH, pc) if k ∈ pc
deref (Σ, VL, pc) if k ∈ pc
〈〈 k ? deref (Σ, VH, pc) : deref (Σ, VL, pc) 〉〉 o/w

assign : Store× PC×Val×Val → Store
assign(Σ, pc, a, V) = Σ[a := 〈〈 pc ? V : Σ(a) 〉〉]
assign(Σ, pc, 〈k ? VH : VL〉, V) = Σ′ where Σ1 = assign(Σ, pc∪ {k}, VH, V)

and Σ′ = assign(Σ1, pc∪ {k}, VL, V)

Figure 5-4: Auxiliary functions for λjeevesevaluation.

or its negation k. Therefore pc is a set of branches that never contains both k and k,

since that would reflect influences from both the private and public facet of a value.

The operation 〈〈 pc ? V1 : V2 〉〉 creates a faceted value. The value V1 is visible

when the specified policies correspond with all branches in pc. Otherwise, V2 is

visible instead.

〈〈∅ ? Vn : Vo 〉〉
def
= Vn

〈〈 {k} ∪ rest ? Vn : Vo 〉〉
def
= 〈k ? 〈〈 rest ? Vn : Vo 〉〉 : Vo〉

〈〈 {k} ∪ rest ? Vn : Vo 〉〉
def
= 〈k ? Vo : 〈〈 rest ? Vn : Vo 〉〉〉

For example, 〈〈 {k, l} ? VH : VL 〉〉 returns 〈k ? 〈l ? VH : VL〉 : VL〉. We occasionally

abbreviate 〈〈 {k} ? VH : VL 〉〉 as 〈〈 k ? VH : VL 〉〉.

The semantics are defined via the big-step evaluation relation:

Σ, e ⇓pc Σ′, V

This relation evaluates an expression e in the context of a store Σ and program

counter label pc. It returns a modified store Σ′ reflecting updates and a value V. We

show the runtime syntax in Figure 5-2, the evaluation rules in Figure 5-3, and the

auxiliary functions for dereference and assignment in Figure 5-4.

57

Our language includes support for reference cells, which introduce additional

complexities in handling implicit flows. The rule [f-ref] handles reference allocation

(ref e). It evaluates an expression e, encoding any influences from the program

counter pc to the value V, and adds it to the store Σ′ at a fresh address a. Facets in V

inconsistent with pc are set to 0. (Critically, to maintain non-interference, Σ(a) = 0

for all a not in the domain of Σ.)

The rule [f-deref] for dereferencing (!e) evaluates the expression e to a value V,

which should either be an address or a faceted values where all of the “leaves” are

addresses. The rule uses a helper function deref (Σ′, V, pc) (defined in Figure 5-4),

which takes the addresses from V, retrieves the appropriate values from the store

Σ′, and combines them in the return value V′. As an optimization, addresses that

are not compatible with pc are ignored.

The rule [f-assign] for assignment (e1:= e2) is similar to [f-deref]. It evaluates e1

to a possibly faceted value V1 corresponding to an address and e2 to a value V′.

The helper function assign(Σ2, pc, V1, V′) defined in Figure 5-4 decomposes V1 into

separate addresses, storing the appropriate facets of V′ into the returned store Σ′.

The changes to the store may come from both V1 and pc.

The rule [f-label] dynamically allocates a label (label k in e), adding a fresh label to

the store with the default policy of λx.true. Any occurrences of k in e are α-renamed

to k′ and the expression is evaluated with the updated store. Policies may be further

refined (restrict(k, e)) by the rule [f-restrict], which evaluates e to a policy V that

should be either a lambda or a faceted value comprised of lambdas. The additional

policy check is restricted by pc, so that policy checks cannot themselves leak data. It

is then joined with the existing policy for k, ensuring that policies can only become

more restrictive.

When a faceted expression 〈k ? e1 : e2〉 is evaluated, both sub-expressions must

be evaluated in sequence, as per the rule [f-split]. The influence of k is added to the

program counter for the evaluation of e1 to V1 and k for the evaluation of e2 to V2,

tracking the branch of code being taken. The results of both evaluations are joined

together in the operation 〈〈 k ? V1 : V2 〉〉. As an optimization, only one expression is

58

evaluated if the program counter already contains either k or k, as indicated by the

rules [f-left] and [f-right].

Function application (e1 e2) is somewhat complex in the presence of faceted

values. The rule [f-app] evaluates e1 to V1, which should either be a lambda or a

faceted value containing lambdas, and evaluates e2 to the function argument V2. It

then delegates the application (V1 V2) to an auxiliary relation defined in Figure 5-5:

Σ, (V1 V2) ⇓apppc Σ′, V′

This relation breaks apart faceted values and tracks the influences of the labels

through the rules [fa-split], [fa-left], and [fa-right] in a similar manner to the rules

[f-split], [f-left], and [f-right] discussed previously. The actual application is handled

by the [fa-fun] rule. The body of the lambda (λx.e) is evaluated with the variable x

replaced by the argument V.

Conditional branches (if e1 then e2 else e3) are Church-encoded as function calls

for the sake of simplicity. However, Figure 5-6 shows direct rules for evaluating con-

ditionals in the presence of faceted values. Under the rule [f-if-split], If the condition

e1 evaluates to a faceted value 〈k ? VH : VL〉, the if statement is evaluated twice with

VH and VL as the conditional tests.

While expressions handle most of the complexity of faceted values, statements

in λjeeves illustrate how faceted values may be concretized when exporting data to an

external party. The semantics for statements are defined via the big-step evaluation

relation:

Σ, S ⇓ Vp, f : R

The rules for statements are specified in Figure 5-5. The rule [f-let] handles let

expressions (let x = e in S), evaluating an expression e to a value V, performing

the proper substitution in statement S. The rule [f-print] handles print statements

(print {e1} e2), where the result of evaluating e2 is printed to the channel resulting

from the evaluation of e1. Both the channel Vf and the value to print Vc may be

faceted values, and furthermore, we must select the facets that correspond with

59

Application Rules Σ, (V1 V2) ⇓apppc Σ′, V′

[fa-fun]
Σ, e[x := V] ⇓pc Σ′, V′

Σ, ((λx.e) V) ⇓apppc Σ′, V′

[fa-split]
k 6∈ pc k 6∈ pc

Σ, (VH V2) ⇓apppc∪{k} Σ1, V′H
Σ1, (VL V2) ⇓apppc∪{k} Σ′, V′L

V′ = 〈〈 k ? V′H : V′L 〉〉
Σ, (〈k ? VH : VL〉 V2) ⇓apppc Σ′, V′

[fa-left]
k ∈ pc

Σ, (VH V2) ⇓apppc Σ′, V
Σ, (〈k ? VH : VL〉 V2) ⇓apppc Σ′, V

[fa-right]
k ∈ pc

Σ, (VL V2) ⇓apppc Σ′, V
Σ, (〈k ? VH : VL〉 V2) ⇓apppc Σ′, V

Statement Evaluation Rules Σ, S ⇓ Vp, f : R

[f-let]

Σ, e ⇓∅ Σ′, V
Σ, S[x := V] ⇓ Vp, f : R

Σ, let x = e in S ⇓ Vp, f : R

[f-print]
Σ, e1 ⇓∅ Σ1, Vf
Σ1, e2 ⇓∅ Σ2, Vc

{ k1 ... kn } = closeK(labels(e1) ∪ labels(e2), Σ2)
ep = λx.true ∧ f Σ2(k1) ∧ f ... ∧ f Σ2(kn)

Σ2, ep Vf ⇓∅ Σ3, Vp
pick pc such that pc(Vf) = f , pc(Vc) = R, pc(Vp) = true

Σ,print {e1} e2 ⇓ Vp, f : R

Figure 5-5: Faceted evaluation semantics for application and statements.

60

Semantics for Derived Encodings

[f-if-true]
Σ, e1 ⇓pc Σ1, true
Σ1, e2 ⇓pc Σ′, V

Σ, if e1 then e2 else e3 ⇓pc Σ′, V

[f-if-false]
Σ, e1 ⇓pc Σ1, false
Σ1, e3 ⇓pc Σ′, V

Σ, if e1 then e2 else e3 ⇓pc Σ′, V

[f-if-split]
Σ, e1 ⇓pc Σ1, 〈k ? VH : VL〉
eH = if VH then e2 else e3
eL = if VL then e2 else e3
Σ1, 〈k ? eH : eL〉 ⇓pc Σ′, V

Σ, if e1 then e2 else e3 ⇓pc Σ′, V

Auxiliary Functions

closeK(K, Σ) = let K′ =
⋃

k∈K labels(Σ(k)) in
if K′ = K
then K
else closeK(K′, Σ)

Figure 5-6: Semantics for derived encodings.

our specified policies. We determine the set of relevant labels through the closeK

function, which is then used to construct ep from the relevant policies in the store

Σ2. ep is evaluated and applied to Vf , returning the policy check Vp that is a faceted

value containing booleans. A program counter pc is chosen such that the policies are

satisfied, which determines the channel f and the value to print R. Note that there

exists a pc′ ∈ PC where all branches are set to false
¯

, which may always be displayed,

thereby ensuring that there is always at least one valid choice for pc.

This property allows garbage collection of policies and facets. Because the con-

straints are always consistent, the only set of policies relevant to an expression e

to output are associated with the transitive closure of labels Le appearing in e and

the policies associated with Le. Thus any policy associated with an out-of-scope

variable may be garbaged-collected. In addition, once a policy has been set to the

equivalent of λx.false for a label k, k-sensitive facets and policies cannot be used in a

print statement.

61

5.2 Properties

We prove that a single execution with faceted values is equivalent to multiple differ-

ent executionswithout facetedvalues. From thiswe know that if execution terminates

on each facet of a sensitive value, then faceted execution terminates. We also prove

that the system cannot leak sensitive information either via the output or by the

choice of output channel.

5.2.1 Projection Theorem

A key property of faceted evaluation is that it simulates multiple executions. In

other words, a single execution with faceted values projects to multiple different

executions without faceted values.

pc : Expr (with facets)→ Expr (with fewer facets)

pc(〈k ? e1 : e2〉) =


pc(e1) if k ∈ pc

pc(e2) if k ∈ pc

〈k ? pc(e1) : pc(e2)〉 otherwise

pc(〈k ? V1 : V2〉) =



pc(V1) if k ∈ pc

pc(V2) if k ∈ pc

pc(V1)

if pc(V1) = pc(V2)

〈k ? pc(V1) : pc(V2)〉 otherwise

pc(. . .) = compatible closure

We extend pc to project faceted stores Σ ∈ Store into stores with fewer facets.

pc : Value → Value

pc(Σ) = λa. pc(Σ(a)) ∪ λk. pc(Σ(k))

Thus pc projection does not remove policies, it only removes some labels on

62

expressions or values. We say that pc1 and pc2 are consistent if

¬∃k. (k ∈ pc1 ∧ k ∈ pc2) ∨ (k ∈ pc1 ∧ k ∈ pc2)

We note some key lemmas regarding projection.

Lemma 1. If V = 〈〈 pc ? V1 : V2 〉〉 then ∀q ∈ PC

q(V) =

 〈〈 pc \ q ? q(V1) : q(V2) 〉〉 if q is consistent with pc

q(V2) otherwise

Lemma 2. If V′ = deref (Σ, V, pc) then ∀q ∈ PC where q is consistent with pc, q(V′) =

deref (q(Σ), q(V), pc \ q).

Lemma 3. If Σ′ = assign(Σ, pc, V1, V2) then ∀q ∈ PC

q(Σ′) =


assign(q(Σ), pc \ q, q(V1), q(V2))

if q consistent with pc

q(Σ) otherwise

Lemma 4. Suppose pc and q are not consistent and that either

Σ, e ⇓pc Σ′, V

or Σ, (V1V2) ⇓apppc Σ′, V

Then q(Σ) = q(Σ′).

The following projection theorem shows how a single faceted evaluation simu-

lates (or projects) to multiple executions, each with fewer facets, or possibly with no

facets at all (if for each label k in the program, either k or k is in q).

Theorem 1 (Projection Theorem). Suppose

Σ, e ⇓pc Σ′, V

63

Then for any q ∈ PC where pc and q are consistent

q(Σ), q(e) ⇓pc\q q(Σ′), q(V)

This theorem significantly extends the projection property of Austin and Flana-

gan [9], in that it supports dynamic label allocation and flexible, dynamically speci-

fied policies, and is also more general in that it can either remove none, some, or all

top-level labels in a program, depending on the choice of the projection PC q. A full

proof of the projection theorem is available in Appendix A.1.

5.2.2 Termination-Insensitive Non-Interference

The projection property captures that data from one collection of executions, repre-

sented by the corresponding set of branches pc, does not leak into any incompatible

views, thus enabling a straightforward proof of non-interference.

Two faceted values are pc-equivalent if they have identical values for the set of

branches pc. This notion of pc-equivalence naturally extends to stores (Σ1 ∼pc Σ2)

and expressions (e1 ∼pc e2):

(V1 ∼pc V2) iff pc(V1) = pc(V2)

(Σ1 ∼pc Σ2) iff pc(Σ1) = pc(Σ2)

(e1 ∼pc e2) iff pc(e1) = pc(e2)

The notion of pc-equivalence and the projection theorem enable a concise statement

and proof of termination-insensitive non-interference.

Theorem 2 (Termination-Insensitive Non-Interference).

Let pc be any set of branches. Suppose Σ1 ∼pc Σ2 and e1 ∼pc e2, and that:

Σ1, e1 ⇓∅ Σ′1, V1 Σ2, e2 ⇓∅ Σ′2, V2

Then Σ′1 ∼pc Σ′2 and V1 ∼pc V2.

64

Proof. By the Projection Theorem:

pc(Σ1), pc(e1) ⇓∅ pc(Σ′1), pc(V1)

pc(Σ2), pc(e2) ⇓∅ pc(Σ′2), pc(V2)

The pc-equivalence assumptions imply that pc(Σ1) = pc(Σ2) and pc(e1) = pc(e2).

Hence pc(Σ′1) = pc(Σ′2) and pc(V1) = pc(V2) since the semantics is deterministic.

5.2.3 Termination-Insensitive Policy Compliance

While we have shown non-interference for a set of labels, the labels do not directly

correspond to the output revealed to a given observer. In this section we show

how we can prove termination-insensitive policy compliance; data is revealed to an

external observer only if it is allowed by the policy specified in the program. Thus if

S1 and S2 are terminating programs that differ only in k-labeled components and the

computed policy Vi for each program does not permit revealing k-sensitive data to

the output channel, then the set of possible outputs from each program is identical.

Here, an output f : v combines both the output channel f and the value v, to ensure

that sensitive information is not leaked either via the output value or by the choice

of output channel.

Before we formally prove this property, we introduce the notion of k-security. A

program S is k-secure if it terminates and its computed policy never permits revealing

k-sensitive data, i.e.

∃V, f , R such that ∅, S ⇓ V, f : R.

and
∀V, f , R. if ∅, S ⇓ V, f : R

then ∀pc. pc(V) = true⇒ k ∈ pc

Also, note that every label has a default policy of λx.true. More formally:

Σ(k) = λx.true ∀k 6∈ domain(Σ)

65

Theorem 3. Suppose for i ∈ 1, 2:

Si = print {e} C[〈k ? ei : el〉]

where each Si is k-secure. Then

{ f : R | ∃V. ∅, S1 ⇓ V, f : R } = { f : R | ∃V. ∅, S2 ⇓ V, f : R }.

Proof. We show left-to-right containment as follows. (The converse containment

holds by a similar argument.) Let e′i = C[〈k ? ei : el〉]. Suppose

∅, S1 ⇓ Vp1, f : R

Then by the [f-print] rule

∅, e ⇓∅ Σ1, Vf

Σ1, e′1 ⇓∅ Σ21, Vc1

ep1 = λx.true ∧ f Σ21(k1) ∧ f ... ∧ f Σ21(kn)

{ k1 ... kn } = closeK(labels(e) ∪ labels(e′1), Σ21)

Σ21, ep1 Vf ⇓∅ Σ31, Vp1

pc(Vf) = f , pc(Vc1) = R, pc(Vp1) = true.

Since S1 is k-secure, we now have that k ∈ pc.

Since S2 terminates, there is also an [f-print] run for S2 that includes the antecedents

∅, e ⇓∅ Σ1, Vf

Σ1, e′2 ⇓∅ Σ22, Vc2

ep2 = λx.true ∧ f Σ22(k1) ∧ f ... ∧ f Σ22(kn)

{ k1 ... kn } = closeK(labels(e) ∪ labels(e′2), Σ22)

Σ22, ep2 Vf ⇓∅ Σ32, Vp2

We assume that both rule instances have identical labels {k1, ...kn}. In general, of

course, those labels may differ. For example, ep2 may include an additional conjunct

Σ22(k′) not {k}- equivalent to a corresponding conjunct in ep2, but in this case we

66

can add a semantically transparent corresponding conjunct λx.true to recover the

equivalence ep1 ∼{k} ep2.

Now e′1 ∼{k} e′2.

So by Theorem 5, Σ21 ∼{k} Σ22, Vc1 ∼{k} Vc2.

Also ep1 ∼{k} ep2, so

Σ31 ∼{k} Σ32

Vp1 ∼{k} Vp2

We now continue the [f-print] run on S2 by choosing the same pc as from the run on

S1.

Clearly pc(Vf) = f .

Moreover, since k ∈ pc, pc(Vc2) = pc(Vc1) = R.

Similarly, pc(Vp2) = pc(Vp1) = true.

Hence we can conclude ∅, S2 ⇓ Vp2, f : R as required.

67

Chapter 6

Faceted Execution for

Database-Backed Applications

Interactions with databases complicate the task of protecting sensitive data in web

programs. In particular, the programmer must now reason about how sensitive

data flows through both application code and database queries. Reasoning across

the application-database boundary has led to leaks in systems from the HotCRP

conference management system [4] to the social networking site Facebook [104].

Indeed, the patch for the recentHotCRPbug involves policy checks across application

code and database queries.

With Jacqueline [105], we demonstrate how to reduce the opportunity for error

by automatically enforcing information flow policies in database-backed web ap-

plications. The core of our work on Jacqueline is a policy-agnostic object-relational

mapping (ORM) framework. Standard ORM frameworks abstract over interactions

with an underlying database to provide a uniform data object representation. The

Jacqueline ORM framework additionally provides a uniform representation of sen-

sitive values and policies in order to support policy-agnostic programming. A key

advantage of Jacqueline is that it works with unmodified relational databases, allowing

the programmer to use the policy-agnostic model without giving up the benefits of

an optimized database.

In this chapter, we extend faceted execution to interoperate with relational op-

68

erators, describe how it maps onto an implementation strategy that works with

unmodified relational databases, and prove that this extends the guarantees. To-

wards making policy-agnostic programming scale, we also present and formalize

an early pruning optimization that reduces the scope of faceted execution in web

applications.

6.1 Solution Overview

Austin et al.’s faceted semantics for Jeeves [10] provide strong guarantees, but they

have the following problems for web applications. First, the guarantees only hold for

programs that run entirely within a faceted Jeeves runtime, preventing Jeeves pro-

grams from interoperating with commodity databases. Second, the Jeeves semantics

may explore exponentially many possible execution paths. We make policy-agnostic

programming practical for web programs in the following ways:

• We extend Jeeves’s faceted semantics and guarantees to include unmodified

relational databases.

• We develop an optimization based on the observation that the viewing context

is often predictable.

In this section, we describe our ORM framework by example, as well as the Early

Pruning optimization. We formalize both in Section 6.2.

69

D
ja
ng

o
Ja
cq

ue
lin

e

CR
EA

TE
TA

BL
E

E
ve

nt
CO

LU
M

NS
(

id
IN
TE

GE
R

PR
IM

AR
Y

K
EY

,
na

m
e
VA

RC
HA

R
(1

28
),

lo
ca

ti
on

VA
RC

HA
R

(1
28

),
);

CR
EA

TE
TA

BL
E

E
ve

nt
CO

LU
M

NS
(

id
IN
TE

GE
R

PR
IM

AR
Y

K
EY

,
#

ig
no

re
d

na
m

e
VA

RC
HA

R
(1

28
),

lo
ca

ti
on

VA
RC

HA
R

(1
28

),
ja

c_
id

IN
TE

GE
R

,
ja

c_
va

rs
VA

RC
HA

R
(1

28
),

);

id
na
m
e

lo
ca
tio

n
1

"C
ar
ol
’s
...

pa
rty

"
"S
ch
lo
ss

D
ag
st
uh

l"

id
na
m
e

lo
ca
tio

n
ja
c_

id
ja
c_

va
rs

1
"C

ar
ol
’s
...

pa
rty

"
"S
ch
lo
ss

D
ag
st
uh

l"
1

"x
=
Tr
ue
"

2
"[
pr
iva

te
ev
en
t]"

"U
nd

isc
lo
se
d
lo
ca
tio

n"
1

"x
=
Fa

lse
"

Ta
bl
e
6.
1:

SQ
L
co
de

an
d
ex
am

pl
e
ta
bl
es
,w

ith
an

d
w
ith

ou
tp

ol
ic
ie
s.

D
ja
ng

o
Q
ue

ry
Ja
cq

ue
lin

e
Q
ue

ry

Ev
en
tG

ue
st
.o
bj
ec
ts
.fi
lte

r(
gu

es
t_

_n
am

e=
"A

lic
e"
)

SE
LE

CT
E

ve
nt

G
ue

st
.e

ve
nt

,
E

ve
nt

G
ue

st
.g

ue
st

FR
OM

E
ve

nt
G

ue
st

JO
IN

U
se

rP
ro

fi
le

ON
E

ve
nt

G
ue

st
.g

ue
st

_
id

=
U

se
rP

ro
fi

le
.i

d
W
HE

RE
U

se
rP

ro
fi

le
.n

am
e=

’A
li

ce
’;

SE
LE

CT
E

ve
nt

G
ue

st
.e

ve
nt

,
E

ve
nt

G
ue

st
.g

ue
st

,
E

ve
nt

G
ue

st
.j

ac
_

id
,

E
ve

nt
G

ue
st

.j
ac

_
va

rs
,

U
se

rP
ro

fi
le

.j
ac

_
va

rs
FR
OM

E
ve

nt
G

ue
st

JO
IN

U
se

rP
ro

fi
le

ON
E

ve
nt

G
ue

st
.g

ue
st

_
id

=
U

se
rP

ro
fi

le
.j

ac
_

id
W
HE

RE
U

se
rP

ro
fi

le
.n

am
e=

’A
li

ce
’;

Ta
bl
e
6.
2:

Tr
an

sl
at
ed

O
RM

qu
er
ie
si
n
D
ja
ng

o
vs
.J
ac
qu

el
in
e.

70

6.1.1 Executing Relational Queries with Facets

We designed the Jacqueline ORM to track sensitive values and policies through

database queries when the database is not aware of sensitive values or policies. The

ORM is able to do this by 1) using meta-data to represent faceted values in the

database and 2) marshalling values to and from the database representation to the

application-level faceted representation. Our representation allows us to use the

following SQL queries unmodified: CREATE, UPDATE, SELECT ... WHERE ...,

JOIN, and ORDER BY. Our solution works with any non-SQL relational database

as well. A database not designed to work with policy-agnostic programming may

be transformed into one that is simply by adding meta-data columns.

To describe our mapping, we first introduce the concept of a faceted row, a faceted

value containing leaves that are non-faceted SQL records. (Any record containing

faceted values may be rewritten to be of this form.) The Jacqueline ORM stores each

faceted row as multiple SQL rows. We map each faceted row to multiple SQL rows

by augmenting records with meta-data columns corresponding to 1) an identifier

jac_id, chosen uniquely for each faceted row, and 2) an identifier jac_vars describing

which facet the SQL row corresponds to, using a string-encoded description of labels,

for instance "k1=True,k2=True".

We provide examples of our mapping in Table 6.1, showing a version without

policies on the left-hand side and a version with policies on the right-hand side.

The faceted value 〈k ? "Carol’s surprise party" : "[private event]"〉 is stored as two rows

in the Event table with the same jac_id of 1. The secret facet has a jac_vars value of

"k=True" and the public facet has a jac_vars value of "k=False". For nested facets, we

storemore labels in the jac_vars column. For instance, the following facetedvalue gets

encoded as three database rows where the jac_vars strings are "k1=True,k2=True",

"k1=True,k2=False", and "k1=False":

〈k1 ? 〈k2 ? " Ca ro l ’ s s u r p r i s e pa r t y " : " Par ty "〉
: " P r i v a t e even t "〉

71

Queries That Track Sensitive Values

Our representation of faceted rows allows the Jacqueline ORM to issue standard

SQL queries for selections, projections, joins, and sorts. The ORM can simply rely

on the correct marshalling of query results into faceted rows for tracking sensitive

values and policies through queries. No modification of the database is necessary.

Our SQL representation of faceted values allows us to rely on faceted execution

to lift the projection operator. Consider the following query on the rows from Fig-

ure 6.1: SELECT ∗ from Event WHERE location = "Schloss Dagstuhl". Issuing the

SELECT...WHERE on the augmenteddatabasewill return only the rows thatmatch:
. . . location jac_id jac_vars

. . . "Schloss Dagstuhl" 1 "k=True"
Reconstructing the facet structure yields the faceted value:

〈 k ?
[{ . . . , l o c a t i o n=" S c h l o s s Dagstuh l " , . . . }]
: [] 〉

Since the initial location field is guarded by label k, the results are also guarded by

label k.

The Jacqueline tracks sensitive values and policies through joins bymanipulating

the meta-data appropriately. Rows from joins that occur based on sensitive values

will be appropriately guarded by the appropriate path conditions. To prevent the

join from leaking information, the ORM takes into account the jac_vars fields from

both tables.1 The ORM also ensures that foreign keys, references into another table,

reference faceted rows with jac_id rather than the primary key. In Table 6.2, we

show an example where theWHERE clause filters on the results of a JOIN. In the

ON clause, we use the jac_id rather than id. In the SELECT clause, we include the

User.jac_vars as well as the EventGuest.jac_vars field.

The representation also allows us to take advantage of SQL’s ORDER BY func-

tionality for sorting. Suppose we had faceted records, each with a single field f, with
1The ORM maintains the invariant that all tables have the correct jac_vars columns. We can

migrate tables without these columns to comply.

72

values 〈a ? "Charlie" : "∗∗∗"〉, 〈b ? "Bob" : "∗∗∗"〉, and 〈c ? "Alice" : "∗∗∗"〉. On the

left we show the database representation and on the right we show the records

ordered by the field f (where jid and jvars are abbreviations for jac_id and jac_vars,

respectively):
f jid jvars

"Charlie" 0 "a=True"

"∗∗∗" 0 "a=False"

"Bob" 1 "b=True"

"∗∗∗" 1 "b=False"

"Alice" 2 "c=True"

"∗∗∗" 2 "c=False"

f jid jvars

"∗∗∗" 0 "a=False"

"∗∗∗" 1 "b=False"

"∗∗∗" 2 "c=False"

"Alice" 2 "c=True"

"Bob" 1 "b=True"

"Charlie" 0 "a=True"

We can use the standard SQL ORDER BY procedure without leaking informa-

tion because the secret values are stored in different rows from the public values.

The ORM is responsible for enforcing the policies so that, for instance, an output

context with the permitted labels {a, b, c} would see ["∗∗∗", "Alice", "Charlie"].

While the Jacqueline ORM can use SQL queries for selects, joins, and sorts,

there is no equivalent aggregate function, for instance COUNT or SUM. Using

aggregate queries in the database could leak information. While selects, joins, and

sorts preserve non-interference by preserving the representation of faceted values,

aggregate queries would combine values across facets. For instance, using a SQL

query to sum across all rows of some description would sum across the secret and

public facets. For this reason, Jacqueline performs these operations in memory using

the Jeeves runtime.

Updating Data and Policies

Jacqueline’s representation of faceted rows ensures that any action involving a

row facet is visible only to those with the appropriate permissions. The Jacqueline

ORM implements save, updating meta-data and potentially deleting rows, such that

all corresponding rows are updated appropriately. (The ORM computes default

73

public values based on the state at the time of the save, using the entire row as

the argument to the jacqueline_get_public function.) If the program invokes save in

branches that depend on faceted values, Jacqueline creates facets that incorporate

the path conditions.

Storing labels as meta-data makes it straightforward to 1) add policies to data

that previously had no policies and 2) update policies on sensitive values. To add

policies, the programmer needs to manipulate only the meta-data columns (jac_vars

and jac_id). The programmer can add policies to legacy data by writing a database

migration that adds the meta-data columns. To update policies using existing labels,

the programmer can simply update the policies in the application code.

6.1.2 Early Pruning Optimization

With Jeeves, much of the overhead comes from executing with all possible views

until a computation sink, as faceted values may grow exponentially in the number

of labels. Whenever the viewer is not known, executing with all possible paths is

necessary. This happens, for instance, when the program computes the viewer based

on sensitive information, for instance when sending mail to all invitees of an event.

Another case is when the program computes sensitive values to be written to the

database, as the system usually cannot know the viewer of future database queries.

In many cases, however, a useful correctness-preserving optimization is to prune

facets as soon as the runtime knows the viewer. As soon as the runtime knows the

viewer, it can discard unnecessary facets. Doing this optimization involves being

able to determine 1) the value of the viewing context and 2) that the state relevant

to the policies will not change until output. In general, determining when we can

perform this optimization requires non-trivial static analysis.

Two properties of web programsmake this optimization feasible. First, the frame-

work often knows the viewing context ahead of time, as it is often the session user.

Secondly, computation sinks are easy to identify inmodel-view-controllerweb frame-

works. Second, the most common information-leaking computation sinks involve

74

writing to the database and rendering a page. Most controller functions either read

from the database or write to the database, but not both. This allows us to imple-

ment functionality that, for “get” requests, speculates on when the viewer is known,

rolling back to the beginning of the controller function to perform faceted execution

when the hypothesized viewer is incorrect. The Early Pruning optimization is es-

pecially helpful in the common case because many pages that require substantial

computation do not also involve writes to the database. We can also perform an

Early Pruning optimization for saves by adding extra code that limits the visibility

of a save operation to certain viewers, provided that the programmer knows the

viewers ahead of time.

6.2 Formal Semantics and Policy Compliance

In this section, we capture the key ideas underlying Jacqueline in an idealized

core language called λJDB. We prove that λJDB satisfies the key security property

of termination-insensitive non-interference and policy compliance. When public

values do not depend on secret values, λJDB satisfies an end-to-end non-interference

property.

6.2.1 Syntax and Formal Semantics

The language λJDB extends the language λjeeves [10] with support for databases,

which we model as relational tables. Figure 6-1 summarizes the λJDB syntax, with

the constructs from λjeeves marked in gray. The λjeeves language, in turn, extends the

standard imperative λ-calculus with constructs for declaring new labels (label k in e),

for imperatively attaching policies to labels (restrict(k, e)), and for creating faceted

values (〈k ? eH : eL〉). This last expression behaves like eH from the perspective of

any principal authorized to see data with label k. For all other principals, the faceted

expression behaves exactly like eL.

The language λJDB extends λjeeves with support for databases, which wemodel as

relational tables, where each table is a (possibly empty) sequence of rows and each

75

e ::= Term
x variable
c constant
λx.e abstraction
e1 e2 application
ref e reference allocation
!e dereference
e1:= e2 assignment
〈k ? eH : eL〉 faceted expression
label k in e label declaration
restrict(k, e) policy specification
row e create a table
σi=j e select rows where fields are equal
πi e project columns
e1 ./ e2 join or cross-product of tables
e1 ∪ e2 union of tables
fold e f ep et table fold

S ::= Statement
let x = e in S let statement
print {ev} er print statement

c ::= Constant
f file handle
b boolean
i integer
s string

x, y, z Variable
k, l Label

Figure 6-1: λJDB syntax.

76

Runtime Syntax

e ∈ Expr ::= ... | a | table T
Σ ∈ Store = (Address→p Value) ∪ (Label→ Value)
R ∈ RawValue ::= c | a | (λx.e)
a ∈ Address
F ∈ FacetedValue ::= R | 〈k ? F1 : F2〉
T ∈ Table = (Branches× Stringn)∗

V ∈ Val ::= F | table T
b ∈ Branch ::= k | k

pc, B ∈ Branches ::= b∗

Contexts Rules

Evaluation Contexts
E ::= 〈k ? E : e〉 | 〈k ? V : E〉
| • e | v • | ref • | ! • | • := e | V:= •
| row V . . . • e . . . | σi=j • | πi •
| • ./ e | V ./ • | • ∪ e | V ∪ •
| fold • e e | fold V • e | fold V V •

Strict Contexts
S ::= • e | ! • | • :=V | σi=j • | πi •
| • ./ V | table T ./ • | • ∪V | table T ∪ •
| row V . . . • e . . . | fold V V •

Figure 6-2: Runtime syntax and contexts rules for faceted evaluation of λJDB.

row is a sequence of strings. We require that all rows in a table have the same size.

To manipulate tables, λJDB includes the usual operators of the relational calculus:

selection (σi=j e), which selects the rows in a table where fields i and j are identical,

projection (πi e), which returns a new table containing columns i from the table e,

cross-product (e1 ./ e2), which returns all possible combinations of rows from e1 and

e2, and union (e1 ∪ e2), which appends two tables. The construct row e creates a new

single-row table. The fold operation fold e f ep et supports iterating, or folding, over

tables. Fold has the “type” ∀A, B.(B→ A→ B)→ B→ table A→ B.

6.2.2 Formal Semantics

We formalize the big-step semantics as the relation Σ, e ⇓pc Σ′, V, denoting that

expression e and store Σ evaluate to V, producing a new store Σ′. The program

77

Expression Evaluation Rules for λjeeves Subset Σ, e ⇓pc Σ′, V

Σ, V ⇓pc Σ, V
[f-val]

a 6∈ dom(Σ)
Σ′ = Σ[a := 〈〈 pc ? V : 0 〉〉]

Σ, ref V ⇓pc Σ′, a
[f-ref]

a 6∈ dom(Σ)
Σ, !a ⇓pc Σ, 0

[f-deref-null]

Σ, !a ⇓pc Σ, Σ(a)
[f-deref]

Σ′ = Σ[a := 〈〈 pc ? V : Σ(a) 〉〉]
Σ, a := V ⇓pc Σ′, V

[f-assign]

E 6= [] ∧ e not a value
Σ, e ⇓pc Σ′, V′

Σ′, E[V′] ⇓pc Σ′′, V′′

Σ, E[e] ⇓pc Σ′′, V′′
[f-ctxt]

Σ, e[x := V] ⇓pc Σ′, V′

Σ, (λx.e) V ⇓pc Σ′, V′
[f-app]

k 6∈ pc and k 6∈ pc
Σ, e1 ⇓pc∪{k} Σ1, V1
Σ1, e2 ⇓pc∪{k} Σ′, V2

V′ = 〈〈 k ? V1 : V2 〉〉
Σ, 〈k ? e1 : e2〉 ⇓pc Σ′, V′

[f-split]

k ∈ pc Σ, e1 ⇓pc Σ′, V
Σ, 〈k ? e1 : e2〉 ⇓pc Σ′, V

[f-left]

k ∈ pc Σ, e2 ⇓pc Σ′, V
Σ, 〈k ? e1 : e2〉 ⇓pc Σ′, V

[f-right]

Σ, 〈k ? S[VH] : S[VL]〉 ⇓pc Σ′, V′

Σ, S[〈k ? VH : VL〉] ⇓pc Σ′, V′
[f-strict]

Figure 6-3: Rules for evaluation λJ subset of λJDB.
78

Ev
al
ua

tio
n
w
it
h
R
el
at
io
na

lO
pe

ra
tio

ns

Σ
,r
ow

s
⇓ p

c
Σ

,(
ta
bl
e
(ε

,s
))

[f
-r

ow
]

T
′
=
{(

B
,s

1
..

.s
n
)
∈

T
|s

i
=

s j
}

Σ
,σ

i=
j
(t
ab

le
T
)
⇓ p

c
Σ

,(
ta
bl
e

T
′)

[f
-s

el
ec

t]

i=
i 1

..
.i

n
T
′
=
{(

B
,s

i 1
..

.s
i n
)
|(

B
,s

1
..

.s
m
)
∈

T
}

Σ
,π

i
(t
ab

le
T
)
⇓ p

c
Σ

,(
ta
bl
e

T
′)

[f
-p

ro
je

ct
]

T 3
=
{(

B 1
∪

B 2
,s

1
..

.s
m

s′ 1
..

.s
′ n
)
|(

B 1
,s

1
..

.s
m
)
∈

T 1
,(

B 2
,s
′ 1

..
.s
′ n
)
∈

T 2
}

Σ
,(
ta
bl
e

T 1
)
./

(t
ab

le
T 2
)
⇓ p

c
Σ

,(
ta
bl
e

T 3
)

[f
-jo

in
]

Σ
,(
ta
bl
e

T 1
)
∪
(t
ab

le
T 2
)
⇓ p

c
Σ

,(
ta
bl
e

T 1
.T

2)
[f

-u
ni

on
]

Σ
,f
ol
d

V
f

V
p
(t
ab

le
ε)
⇓ p

c
Σ

,V
p

[f
-f

ol
d-

em
pt

y]

Σ
,f
ol
d

V
f

V
p
(t
ab

le
T
)
⇓ p

c
Σ
′ ,

V
′

B
in
co
ns

is
te
nt

w
ith

pc
Σ

,f
ol
d

V
f

V
p
(t
ab

le
(B

,s
).

T
)
⇓ p

c
Σ
′ ,

V
′

[f
-f

ol
d-

in
co

ns
ist

en
t]

Σ
,f
ol
d

V
f

V
p
(t
ab

le
T
)
⇓ p

c
Σ
′ ,

V
′

B
co
ns

is
te
nt

w
ith

pc
Σ
′ ,

V
f

s
V
′
⇓ p

c∪
B

Σ
′′ ,

V
′′

Σ
,f
ol
d

V
f

V
p
(t
ab

le
(B

,s
).

T
)
⇓ p

c
Σ
′′ ,
〈〈

B
?

V
′′

:V
′ 〉〉

[f
-f

ol
d-

co
ns

ist
en

t]

Fi
gu

re
6-
4:

Ru
le
sf
or

ev
al
ua

tio
n
w
ith

re
la
tio

na
lo

pe
ra
tio

ns
.

79

counter pc is a set of branches. Each branch is either a label k or a negated label k.

Association with k means the computation is visible only to principals authorized

to see k. Association with k means the computation is visible only to principals not

authorized to see k.

We could represent faceted tables as 〈k ? table T1 : table T2〉, but this approach

would incur significant space overhead, as it requires storing two copies of possibly

large database tables, possibly with only small differences between the two tables.

Instead, we use the more efficient approach of faceted rows, where each row (B, s)

in the database includes a set of branches B describing who can see that row. For

example, the expression 〈k ? row "Alice" "Smith" : row "Bob" "Jones"〉 evaluates to

the following table 2:

({k}, ("Alice", "Smith"))

({k}, ("Bob", "Jones"))

We do not model the facet identifier row jac_id. It is useful in the implementation

but not necessary for the formal semantics or proof.

To accommodate both faceted values and faceted tables, we define the partial

operation 〈〈 · ? · : · 〉〉 to create either a new faceted value or a table with internal

branches on rows:

〈〈 · ? · : · 〉〉 : Label×Val×Val→ Val

〈〈 k ? FH : FL 〉〉
def
= 〈k ? FH : FL〉

〈〈 k ? table TH : table TL 〉〉
def
= table T

where T = {(B ∪ {k}, s) | (B, s) ∈ TH, k 6∈ B}

∪{(B ∪ {k}, s) | (B, s) ∈ TL, k 6∈ B}

Wrapping a facet with label k around non-table values FH and FL simply creates a

faceted value containing k, FH, and FL. Wrapping a facet with label k around tables
2Note that this value representation does not support mixed expressions such as 〈k ? 3 :

row "Alice"〉, which mix integers and tables in the same faceted values. Programs that try to cons
unnaturally mixed values will get stuck.

80

TH and TL creates a new table T containing the rows from TH and TL, annotated

with k and k respectively. We extend this operator to sets of branches:

〈〈 · ? · : · 〉〉 : Branches×Val×Val→ Val

〈〈∅ ? VH : VL 〉〉
def
= VH

〈〈 {k} ∪ B ? VH : VL 〉〉
def
= 〈〈 k ? 〈〈 B ? VH : VL 〉〉 : VL 〉〉

〈〈 {k} ∪ B ? VH : VL 〉〉
def
= 〈〈 k ? VL : 〈〈 B ? VH : VL 〉〉 〉〉

We show the runtime syntax for faceted evaluation rules in Figure 6-2, the evalua-

tion expression rules for the λJ subset of λJDB in Figure 6-3, and the evaluation rules

for relational operations in Figure 6-4. The key rule is [f-split], describing how evalu-

ation of a faceted expression 〈k ? e1 : e2〉 involves evaluating the sub-expressions in

sequence. Evaluation adds k to the program counter to evaluate e1 and k to evaluate

e2 and then joins the results in the operation 〈〈 k ? V1 : V2 〉〉. The rules [f-left] and

[f-right] show that only one expression is evaluated if the program counter already

contains either k or k.

Our rules use contexts (Figure 6-2) to describe faceted execution. The rule [f-ctxt]

for E[e] enables evaluation of a subexpression inside an evaluation context. We use

S to range over strict operator contexts: that is, operations that require a non-faceted

value. If an expression in a strict context yields a faceted value 〈k ? VH : VL〉, then

the rule [f-strict] applies the strict operator to each of VH and VL. Thus, for example,

the evaluation of 1+ 〈k ? 2 : 3〉 reduces to the evaluation of 〈k ? 1 + 2 : 1 + 3〉, where

S in this case is 1 + • . The rules [f-select], [f-select], [f-proj], [f-join], and [f-union]

formalize the relational calculus operators on tables of faceted rows. These rules are

mostly straightforward.

The rules for fold aremore interesting. If a row (B, s) is inconsistent (i.e., not visible

to) the current program counter label pc, then rule [f-fold-inconsistent] ignores that

row. If the row is consistent, then rule [f-fold-consistent] applies the fold operator

Vf to the row contents s and the accumulator V′, producing a new accumulator V′′.

The result of that fold step is 〈〈 B ? V′′ : V′ 〉〉, a faceted expression that appears like

V′′ to principals that can see the B-labeled row and like V′ to other principals.

81

The faceted execution semantics describe the propagation of labels and facets for

the purpose of complying with policies at computation sinks. λJDB expressions do

not perform I/O, while λJDB statements include the effectful construct print {ev} er

that prints expression er under the policies and viewing context ev. The λjeeves se-

mantics describes how, for printing, the runtime assigns labels based on the policies

and viewers and projects a single facet based on the label assignment. The λjeeves

rules for declaring new labels and attaching policies to labels are in Appendix B.1.

6.2.3 End-to-End Policy Compliance

Austin et al. have proven policy compliance guarantees for λjeeves [10], showing the

faceted semantics have the properties that 1) a single faceted execution is equivalent

to multiple different executions without faceted values and 2) the system cannot

leak sensitive information through the output or the choice of output channel. We

prove that this property extends to λJDB, yielding guarantees of end-to-end policy

compliance for database-backed applications.

The proof of policy compliance involves extending the projection property of

λjeeves. A key property of λjeeves is that a single execution with faceted values projects

to multiple different executions without faceted values. If a viewer has access only

to the public facet of an expression, then faceted execution is output-equivalent to

executing with only the public facet in the first place.

To prove this property, we first define what it means to be a view and to be visible.

A view L is a set of principals. B is visible to view L (written B ∼ L) if

∀k ∈ B.k ∈ L

∀k ∈ B.k 6∈ L

82

We extend views to values:

L : Val(with facets)→ Val(without facets)

L(R) = R

L(〈k ? F1 : F2〉) =

 L(F1) k ∈ L

L(F2) k 6∈ L

L(table T) = {(∅, s) | (B, s) ∈ T, B visible to L}

We extend views to expressions:

L(〈k ? e1 : e2〉) =

 L(e1) k ∈ L

L(e2) k 6∈ L

For all other expression types we recursively apply the view to subexpressions.

We then prove the Projection Theorem. The full proof is in Appendix B.5. Proofs

of the key lemmas are in Appendices B.2 and B.3.

Theorem 4 (Projection). Suppose Σ, e ⇓pc Σ′, V. Then for any view L for which pc is

visible,

L(Σ), L(e) ⇓∅ L(Σ′), L(V)

The Projection Theorem allows us to extend λjeeves’s property of termination-

insensitive non-interference. To state the theorem we first define two faceted values

to be L-equivalent if they have identical values for the view L. This notion of L-

equivalence naturally extends to stores (Σ1 ∼pc Σ2) and expressions (e1 ∼pc e2). The

theorem is as follows:

Theorem 5 (Termination-Insensitive Non-Interference).

83

Let L be any view. Suppose Σ1 ∼L Σ2 and e1 ∼L e2, and that:

Σ1, e1 ⇓∅ Σ′1, V1 Σ2, e2 ⇓∅ Σ′2, V2

then Σ′1 ∼L Σ′2 and V1 ∼L V2.

The Termination-Insensitive Non-Interference Theorem allows us to extend the

termination-insensitive policy compliance theorem of λjeeves [10]: data is revealed to

an external observer only if it is allowed by the policy specified in the program.

6.2.4 Early Pruning

The Early Pruning optimization involves shrinking a table T by keeping each row

(B, s) only when B is consistent with the viewer constraint described by pc. We show

the rule below:

Σ, e ⇓pc Σ′, (table T)

T′ = {(B, s) ∈ T | B consistent with pc}

Σ, e ⇓pc Σ′, (table T′)
[f-prune]

We prove the Projection Theorem holds with this extension.

84

Part III

Executing Policy-Agnostic Programs

85

Chapter 7

Implementing a Policy-Agnostic Web

Framework

An important part of demonstrating the feasibility of policy-agnostic programming

involves building a realistic prototype that we can use to demonstrate advantages

over implementations with manually implemented information flow policies. In

this chapter, we describe the implementation of Jeeves as an embedding in Python,

a dynamically typed language that is typically interpreted. We also describe the

implementation of Jacqueline as an extension of Django, a popular Python web

framework. Finally, we discuss the tradeoffs of using Python, as opposed to Scala.

7.1 Python Embedding of the Jeeves Runtime

We embedded Jeeves in a subset of Python, as a library1. Python’s flexibility facil-

itates embedding through overloading and dynamic source transformation. We

implemented Jeeves as an embedding that allows the programmer to use a subset

of Python with policy-agnostic programming constructs. Programmers can write

Jeeves programs simply by importing our library and annotating classes and func-

tions with the @jeeves decorator. The library exports functions for creating labels,

creating sensitive values, attaching policies, and producing non-faceted values based
1The code is publicly available at https://github.com/jeanqasaur/jeeves.

86

https://github.com/jeanqasaur/jeeves

on policies. Our implementation supports a subset of Python’s syntax that includes

if-statements, for-loops, and return statements.

7.1.1 Faceted Execution

To support faceted execution, the implementation defines a special Facet data type to

store information about faceted values. During faceted execution, an object’s fields

might be faceted values, either faceted primitive values (e.g. int, bool) or faceted

references to other objects. A field may exist only in some execution paths, in which

case we use a special object Unassigned() for other paths.

To perform faceted execution, the implementation overloads operators (except op-

erator such as in and and that do not support overloading) and performs a dynamic

source transformation using the macro library MacroPy [5]. The source transfor-

mation intercepts the standard evaluation of conditionals, loops, assignments, and

function calls. The runtime also keeps track of path conditions corresponding to

label assumptions in the current branch. Since the scope of a Python variable is

determined by where it is assigned in the source code, the implementation handles

local assignment by replacing a function’s local scopewith a specialNamespace object

that determines the scope of each local variable.

7.1.2 Evaluating Policies at Computation Sinks

The runtime keeps an environment that maps labels to policies for the purpose

of using policies to de-facet values. Effectful computations take two arguments:

the expression to show and an additional argument corresponding to the output

context. If there are no mutual dependencies between policies and sensitive values,

the runtime simply evaluates policies to determine label values. Otherwise, the

runtime creates a system of constraints in order to find an assignment for label

values consistent with the policies. The implementation produces an ordering over

Boolean label assignments and uses the SAT subset of the Z3 SMT solver [72] to find

a satisfying assignment.

87

(a) 〈x ? 〈y ? [0,1,2] : [1,2]〉 : 〈y ? [0,1] : [1]〉〉

(b) [
0

(x=True) , 1 , 2
(y=True)

]
Figure 7-1: Representing faceted lists: (a) is the naive representation and (b) is the
optimized representation.

7.1.3 Garbage-Collecting Labels and Policies

We designed our environments to support long-running programs. For a given

expression, Jeeves policies have the property that only policies associated with

labels involved in transitive closure of the expression and associated policies may

affect the concretization. This allows us to garbage-collect irrelevant policies. The

policy environment is a map between labels and policies that stores weak references

to labels, allowing the Python runtime to garbage-collect labels and policies once

the labels are no longer in use. The implementation uses a new solver instance for

each concretization because Z3 does not yet support garbage collection.

7.1.4 Representing lists

When data values can encapsulate multiple views, it is possible to significantly

improve performance if algorithms over data structures take the multiple views into

account [103]. The naive representation of a faceted list is as a facet tree (Figure 7-

1(a)), but this is exponential in the number of labels. We can do better by leveraging

common subsequences to represent it as a list of values and label conditions (Figure 7-

1(b)). Concretizing the list returns the subsequence of values that correspond to

conditions that evaluate to True. In addition to being more compact for the general

case, this representation enables us to perform list comprehensions in linear time.

7.1.5 Jacqueline ORM

We implemented Jacqueline’s ORM as an extension of Django’s ORM. The Jacqueline

ORM creates schemas with additional meta-data columns for keeping track of facets.

88

All queries through the ORM manipulate the meta-data columns in addition to the

actual columns. The ORM reconstructs facets from the meta-data. The ORM looks

up policies from object schemas when reconstructing facets and adds the policies to

the Jeeves runtime environment. We implement the Early Pruning optimization by

reconstructing only the relevant facets when the runtime knows the viewer.

7.1.6 Decision to Use Python

We considered implementing Jacqueline in Scala, especially since there existed a

Scala implementation of Jeeves [10,106]. We chose to implement Jacqueline in Python

for three reasons: 1) the popularity of dynamically typed for web programming, 2)

the ease of use of dynamically typed languages for prototyping, and 3) the flexibility

of Python as a target for embedding a domain-specific language.

A major reason we switched from Scala to Python was our desire to demonstrate

feasibility in the web application domain. Dynamically typed languages are increas-

ingly popular for web programming. Of the candidate dynamic languages, we chose

Python for the target source language because of its popularity: according to the

TIOBE index [98], Python is the fifth most popular programming language as of

August 2015, behind Java, C, C++, and C#.

Another reason we switched was because adoption was important to us and we

hypothesized that users of dynamically typed languages are more likely to adopt

policy-agnostic programming. Policy-agnostic programming provides runtime sup-

port for automating the enforcement of information flowpolicies.With this approach,

the programmer trades ease of programming for runtime overhead: the programmer

no longer needs to explicitly implement policies as repeated checks and filters, with

the expectation that the runtime will do more work to customize program behavior.

This strategy is a better fit for the rapid development that programmers like to do in

dynamically typed languages [110].

We found Python to be a more flexible language for embedding an experimental

domain-specific language. Our Scala code was verbose, as Scala requires us to explic-

89

itly annotate the different evaluation cases for different types. We also spent a fair

amount of the implementation time providing type-checking and type-conversion

hints to the type checker. The trade-off is that Scala’s static types provide more

guarantees, making it more crucial to thoroughly test the Python implementation.

Both Python and Scala allow for most, but not all, operators to be overloaded. With

Scala, a work-around for supporting a fully sugared embedded language is to use

compiler extensions like Scala-Virtualized [70] that allow programmers to over-

load key constructs. With Python, we were able to work around the lack of full

overloading by doing a source transformation. In Python, this was straightforward

because the AST is relatively simple and the Python MacroPy library [5] for imple-

menting macros provides support. Python’s dynamic typing also made it easy to

“monkey-patch” the Django web framework by overloading Django functions with

replacement Jeeves functions. Building our ownORMwould have been substantially

more labor-intensive in Scala because of the types.

7.2 Limitations

We embed into a subset of Python that corresponds with our extension of the im-

perative lambda calculus. While incorporating more Python constructs is mostly a

matter of engineering, constructs such as eval and those used for reflection cannot

be supported using our embedding strategy. This is because this implementation

embeds Jeeves on top of the Python interpreter and thus relies on runtime invari-

ants that are at risk of being violated by malicious users. For instance, we assume

that only the runtime can examinine the facets of sensitive values. For this reason,

the guarantees hold only if the program remains within the permitted subset of

Python. This should not be a problem, as 1) it is possible to statically verify that

the programmer uses the permitted subset and 2) we assume the programmer is

cooperative rather than adversarial. Note that we do not have these limitations if,

rather than embedding faceted execution into a non-faceted language, we used an

interpreter that supports faceted execution.

90

Chapter 8

Jacqueline in Practice

In this chapter, we demonstrate the practical feasibility of policy-agnostic in terms

of both expressiveness and performance. Using Jacqueline we built 1) a conference

management system, 2) a health record manager, and 3) a course management

system. We evaluate Jacqueline along the following dimensions:

• Expressiveness.We worked with two programmers who were not involved in

Jacqueline development to ensure that Jacqueline provides a natural program-

ming interface. One of the applications we built is a conference management

system we have deployed to run the Workshop on Programming Languages

Technology for Massive Open Online Courses (PLOOC) 2014.

• Code architecture. We compare the implementation of the Jacqueline confer-

ence management system to an implementation of the same system in Django,

as well as the HotCRP conference management system. We demonstrate that

Jacqueline helps with both centralizing policies and with size of policy code.

• Performance.We demonstrate that Jacqueline can handle data from hundreds

of simulated users in the database. We show that for representative actions,

Jacqueline has comparable performance to the Django equivalent. For the

stress tests, the Jacqueline programs often have close to zero overhead and at

most a 1.75x slowdown compared to vanilla Django. We also demonstrate the

effectiveness of and necessity of the Early Pruning optimization.

91

8.1 Applications

We have developed the following applications using Jacqueline.

Conference management system. Our conference management system supports

user registration, update of profile information, designation of roles (i.e. PCmember),

paper and review submission, and assignment of reviews. Users may be authors,

PC members, or the PC chair; only the PC chair can designate users as PC members.

The administrator specifies the PC chair when configuring the system. The PC chair

has additional privileges: for instance, assigning reviewers to papers. Permissions

depend on the current stage of the conference: submission, review, or decision.

Health record manager. We implemented a health record system based on a rep-

resentative fragment of the privacy standards described in the Health Insurance

Portability and Accountability Act (HIPAA) [11, 79]. The HIPAA standards describe

how individuals and entities (such as hospitals and insurance companies) may view

a patient’s medical history depending on the information and the viewer’s role. An

example policy is that information about an individual’s hospital visits is visible to

the individual, the individual’s insurance company, and to the site administrator.

Policies may also depend on more stateful properties, for instance whether there

exists a waiver permitting information release.

Course manager. Our course management tool allows instructors and students to

organize assignments and submissions. Relying on Jacqueline to manage policies

allows us to experiment with more complex policies than are normally in a course

manager: for instance, stateful policies that depend on submission history or the

activity of other students in the course.

8.2 Code Comparisons

We compare our Jacqueline implementation of a conference management system

against HotCRP and a Django implementation of the same system. We demonstrate

that 1) centralized policies in Jacqueline reduces the trusted computing base and 2)

92

Policy Code: Jacqueline vs. Django

0
50

100
150
200
250
300
350
400

L
in

es
 o

f
co

de Jacqueline non-policy
Jacqueline policy
Django non-policy
Django policy

models.py views.py

Figure 8-1: Distribution of policy code with Jacqueline and Django conference man-
agement systems.

separating policies and other functionality decreases policy code size.

8.2.1 Django Conference Management System

We compare the lines of code in the Jacqueline and Django conference manage-

ment systems in Figure 8-1. Note Jacqueline code requires additional imports and

function decorators because we have implemented Jacqueline by extending Python

and Django. (With our current implementation, each class and function executing

according to the faceted semantics requires the @jacqueline decorator. Policies require

additional decorators.)

Jacqueline demonstrates advantages in both the distribution and size of policy

code. In the Jacqueline implementation, policy code is confined to the models.py file

describing the data schemas, while in the Django implementation, the programmer

needs to implement policies throughout the controller file views.py as well. These

policies increase the overall code size. The Jacqueline implementation has 106 total

lines of policy code, whereas the Django implementation has 130 lines. These ad-

ditional lines of policy code manifest as repeated checks and filters across views.py.

Thus, Django requires auditing of all of models.py and views.py (~575 total lines of

code) to ensure policy compliance. In contrast, Jacqueline requires only auditing

models.py (~200 lines of code), reducing the size of the application-specific trusted

computing base by 65%.

There are two other code-related arguments for why Jacqueline provides ad-

vantages over Django. The first has to do with policy spaghetti. The policies are

93

concentrated in the data schema file models.py for Jacqueline, whereas the Django

policies are additionally distributed across the code. In our small conferencemanage-

ment system, there are at least ten distinct locations where the program implements

a policy check in the controller file views.py. This brings us to the second argument,

which has to do with ease of reasoning and maintainability. In Jacqueline, the pro-

grammer can trust that policies will be implemented without needing to reason

about other functionality. In Django, the programmer needs to understand the code

in order to implement policies and understand the policies in order to implement

new functionality. Otherwise, a single misplaced check can leak information.

8.2.2 HotCRP

Policies and functionality are intertwined across the HotCRP conference manage-

ment system [53], written mostly using PHP and SQL. There are 191 occurrences

alone of checks for whether the viewer is the PC chair or has the appropriate conflict

status, as well as dynamically generated SQL queries based on analogous conditional

checks. The policy code is in at least 24 of the 82 files. A programmer needs to edit

code across the system to add policies or fix bugs. The HotCRP bug we mentioned

in the introduction involved 40 additions and 25 deletions, including adding checks

in dynamically generated SQL, in multiple places across two files [4].

8.3 Performance

Weevaluated the performance of our systemon representative actions and stress tests

compared to an implementation written using vanilla Django. We also evaluated

the effectiveness of the Early Pruning optimization, demonstrating its necessity for

non-trivial computations involving sensitive values.

We measured running times using an Amazon EC2 m3.2xlarge instance running

Ubuntu 14.04 with 30GB of memory, two 80GB SSD drives, and eight virtual 64-bit

Intel(R) Xeon(R) CPU E5-2670 v2 2.50Ghz processors. We use the FunkLoad testing

framework [3] for functional and load testing to time HTTP requests from another

94

CFM Representative Actions
View single paper

Papers Jacq. Django
8 0.160s 0.177s

16 0.165s 0.175s
32 0.160s 0.177s
64 0.159s 0.173s
128 0.160s 0.173s
256 0.159s 0.173s
512 0.159s 0.178s

1024 0.161s 0.173s

View single user
Users Jacq. Django

8 0.164s 0.158s
16 0.164s 0.159s
32 0.164s 0.159s
64 0.164s 0.159s

128 0.167s 0.158s
256 0.163s 0.159s
512 0.169s 0.162s

1024 0.163s 0.159s
Figure 8-2: Times to view profiles for a single paper and single user, in Jacqueline
and Django.

machine across the network. We ran all tests using the −−simple−fetch option

to exclude CSS and images. We averaged running times over 10 rapid sequential

requests. We show results only from sequential requests because howwell Jacqueline

handles concurrent users compared to Django simply depends on the amount of

available memory.

8.3.1 Representative Actions

We measured the time it takes for our system to view the profiles for a paper and

user as there is more data in the database. We show these numbers, as well as

comparisons to Django, in Figure 8-2. The time it takes to load these profiles is under

two milliseconds and roughly equivalent to the time it takes to do the equivalent

action in theDjango implementation. Forviewing a single paper, Jacqueline performs

better than the Django implementation because in a few places, the implementation

needs iterate over collections of data rows a second time in order to apply policy

checks. In the Jacqueline implementation, the programmer can simply rely on the

ORM to attach the policies. Note that roundtrips to the database dominate theDjango

baseline performance. This is a known performance bottleneckwith object-relational

mappings that Cheung et al. [27] address.

95

CFM Stress Tests
View all papers

Papers Jacq. Django
8 0.241s 0.201s

16 0.299s 0.241s
32 0.542s 0.388s
64 0.855s 0.554s
128 1.551s 0.931s
256 2.810s 1.633s
512 5.717s 3.265s

1024 10.729s 6.055s

View all users
Users Jacq. Django

8 0.172s 0.163s
16 0.249s 0.234s
32 0.279s 0.254s
64 0.358s 0.341s
128 0.510s 0.541s
256 0.769s 0.820s
512 1.352s 1.269s

1024 2.305s 1.538s

0 200 400 600 800 1000

Number of papers

0
1
2
3
4
5
6
7
8
9

10
11
12

A
ll

pa
pe

rs
 (

s)

Avg. time for showing all papers

Jacqueline
Django

...

0 200 400 600 800 1000

Number of users

0.0

0.5

1.0

1.5

2.0

2.5

D
is

pl
ay

 a
ll

us
er

s
(s

)

Jacqueline
Django

...

Figure 8-3: Times to view list of summary information for all papers and all users,
in Jacqueline and Django.

8.3.2 Stress Tests

In Figure 8-3 we show results for showing an increasing number of papers and

users for conference management systems implemented in Jacqueline and Django.

In these tests, the system resolves different policies for each paper and user field.

The graphs demonstrate that with both Jacqueline and Django, the time to load data

scales linearly with respect to the underlying algorithms. In these results, Jacqueline

has a 1.75x overhead for showing all papers that comes from fetching both versions

of data from the database before resolving the policies. Integrating policies more

deeply with the database could reduce this overhead. There is no solver overhead,

as there are no mutual dependencies between sensitive values and policies.

Results for the other case studies show similar promise for Jacqueline’s ability to

scale. In Figure 8-4 we show stress test data from our health record manager and

course manager. Jacqueline resolves policies for rendering hundreds of data records

in seconds. Most systems will not load over a thousand data rows at once, especially

96

Other Stress Tests
0 200 400 600 8001000

Number of users

0.0

0.5

1.0

1.5

2.0

2.5

D
is

pl
ay

 u
se

rs
 (

s)

Health records

...
0 200 400 600 8001000

Number of courses

0

1

2

3

4

5

6

7

D
is

pl
ay

 c
ou

rs
es

 (
s)

Course manager

...

(a) (b)
Figure 8-4: Jacqueline stress tests for other case studies.

Showing All Courses, with and without Pruning
Courses Without pruning With pruning

4 0.377s 0.185s
8 64.024s 0.192s

16 – 0.248s
32 – 0.337s
64 – 0.522s
128 – 0.886s
256 – 1.630s
512 – 3.691s

1024 – 6.233s
Figure 8-5: The course manager stress test performs well with the Early Pruning
optimization and times out otherwise.

when each row value has its own privacy policy involving calls to the database. A

more realistic website would load such a page in fragments and consolidate policies.

8.3.3 Early Pruning Optimization

We found the Early Pruning optimization to be necessary when the program per-

forms nontrivial computations over sensitive values. In the course manager stress

test, the page that shows all courses also looks up the instructors for each course,

leading to blowup. Before the course is known, the system must look up all possible

instructors. We show in Figure 8-5 how for just 8 randomly generated courses and

instructors, the system begins to hit memory limits. Early Pruning makes it possible

to execute such programs. As long as the computation to determine a viewer is

simple, Early Pruning can simplify other computations after the viewer is known.

97

Chapter 9

Conclusions

As users share more sensitive data and as more code computes using this data,

information leaks are becoming more prevalent. A standard way of protecting

sensitive data is by implementing checks and filters across the program. When

programs become more complex, it is increasingly difficult to reason about the

interaction of these checks with each other and with the rest of the program. There

are many opportunities for the programmer to inadvertently leak information.

This thesis addresses the problem of information leaks resulting from program-

mer error. The work focuses on information flow, the flow of sensitive values through

computations. The fundamental idea behind the approach is a new programming

model called policy-agnostic programming that allows the programmer to factor out

information flow policies from the rest of the program. Using this approach, the pro-

grammer is trusted only with correctly specifying the policies, rather than correctly

implementing the policies across the program. Program correctness with respect to

information flow policies now relies on the correct specification of the policies and

the correctness of the language runtime implementation. We show that this reduces

the amount of trusted code with reasonable performance tradeoffs.

98

9.1 Summary of Contributions

We present Jacqueline, a policy-agnostic web framework that automatically enforces

information flow policies. Jacqueline allows the programmer to implement informa-

tion flow policies once, alongside data schemas, rather than as repeated checks and

filters across the program. Rather than simply preventing programs from leaking

information, Jacqueline customizes program behavior based on the policies. The

runtime executes alternate behaviors when flows are disallowed, instead of raising

an error or producing a default value. The result is that the programmer can factor

information flow policies out of the rest of the program. Jacqueline manages policy

interactions and policy resolution so that the programmer does not need to.

Underlying Jacqueline is Jeeves [10,106], a kernel language for policy-agnostic

programming. Jeeves allows the programmer to associate sensitive values with

policies and write the remainder of the program in a policy-agnostic manner. In

Jeeves, sensitive values encapsulate multiple views. Policies describe rules under

which each view is visible to a given viewer. The rest of the program needs to account

for the fact that different views, perhaps corresponding to different granularities of

sensitive values, are flowing through computations, but the program does not need

to be aware of the policies guarding the views.

This thesis presents the design, semantics, and implementation of Jeeves and

Jacqueline. We show how the Jeeves’s runtime semantics and Jacqueline’s object-

relational mapping framework enforce policy compliance by construction. Through

application case studies built using Jacqueline, we demonstrate that policy-agnostic

is practically feasible. The key contributions are as follows:

• Design of Jeeves, a language for policy-agnostic programming. Factoring

out information flow from the rest of the program is challenging because

information flow is so intertwined with the rest of the program. We present

a language, Jeeves, that allows the programmer to specify multiple views of

sensitive values and associate policies specifying when secret views are acces-

sible to a given viewer. In Jeeves, policies define a set of declarative constraints

99

over label values guarding sensitive values. Scalability is often a challenge

with declarative languages because the declarative constraints define large,

often infinite, spaces of possible behaviors. Jeeves’s constraints allow the run-

time to manage policy dependencies, including mutual dependencies between

sensitive values and policy computations, while exploring a finite space. We

present a formalization of Jeeves and proofs of termination-insensitive non-

interference and policy compliance.

• Design and implementation of Jacqueline, a web framework for policy-

agnostic programming. There is a gap between the guarantees that Jeeves

provides and what we need to use policy-agnostic programming for database-

backedwebapplications. It is important for Jeeves to interoperatewithdatabases

for web applications, but interacting with any external database can subvert

the guarantees. To address this issue, we extend the policy-agnostic model

for database-backed applications. The key to the solution is to use an object-

relational mapping framework to map the Jeeves execution model onto a

relational database. We present a formalization of this mapping and provide

proofs that it extends Jeeves’s policy compliance guarantees.We present Jacque-

line, a web framework based on these semantics that is implemented as an

extension of the Django Python web framework and works with unmodified

SQL databases.

• Optimization strategies formaking policy-agnostic programming practical.

Jeeves may explore exponentially many possible execution branches based on

the possible viewers. This can become prohibitively expensive when sensitive

values each have their own policies. We observe that web frameworks do need

to assume the viewer is unknown until output because it is common for web

frameworks to track the viewing context. We present an optimization strategy

for web applications that allows the runtime to prune alternate execution

branches based on the viewing context. We formalize this optimization, show

that it preserves end-to-end policy compliance, show that it allows Jacqueline

100

to have reasonable overheads in practice, and demonstrate it is necessary for

non-trivial computations involving sensitive values.

• Demonstration of practical feasibility. One reason programmers continue to

use error-prone languages and tools is because they facilitate implements of

scalable applications. For this reason, it is important to demonstrate that Jacque-

line has reasonable overheads compared to manually implemented policies.

We demonstrate the expressiveness and performance of Jacqueline through

several application case studies, including a conference management system

that we have deployed to run an academic workshop. We compare Django

code with hand-implemented policies, showing that not only does Jacqueline

reduce lines of policy code, but also that the automatic policy enforcement has

reasonable overheads.

9.2 Conclusions

As programmers create more programs that compute using sensitive information,

it becomes increasingly attractive to decouple security and privacy concerns from

the other functionality. It has previously been difficult to separate these concerns

because they are often deeply intertwined with the rest of the program. To help

programmers manage sensitive data, we present an approach that factors out the

specification information flow policies from the rest of the program and automates

their implementation. In this thesis, we show that policy-agnostic programming

provides strong theoretical guarantees, centralizes the policy code, and exhibits

reasonable execution overheads in our web application case studies.

Towards making policy-agnostic programming more appealing to programmers,

one direction of future work involves creating tools for helping programmers check

they wrote the policies they intended to write. With the policy-agnostic approach,

we do not need to verify the correctness of the implementation of information flow

policies, as the runtime automatically enforces them. The question that remains is

whether the policies that the programmer specified are the policies the programmer

101

intended. A standard way to verify the correctness of code is to check it against

an additional specification—meta-policies—from the programmer. Because these

policies are already automatically enforced, however, an interesting question is what

additional specifications should look like. Because we are executing specifications,

it may be useful for the programmer to express sanity-checking specifications in the

form of test cases.

Towards making policy-agnostic programming more general-purpose, another

direction of future research involves extending the policy language to handle more

stateful policies. Information flow is often too strong a requirement for the properties

that programmers want. For instance, information flow policies cannot permit an

average salary to be revealed while protecting individual salaries. To support such

policies, we can expand policy-agnostic programming to enforce policies based on

aggregate values. One way to do this is to incorporate differential privacy, which

allows an aggregate value to be revealed if the likelihood of inferring individual

values is low. Another potential solution is to support policies on computation

histories, for instance allowing values to be revealed if certain operators have been

applied to derive the result. Runtime support for this would be a natural extension

of Jeeves’s dynamic enforcement approach.

Looking forward, there is no reason to limit the enforcement of information

flow policies to security and privacy. Software is increasingly operating over data

from many users, for the consumption of many users, where each user may have a

customized experience with respect to the data and application. Customization may

have to do with access permissions, but it may also has to do with all sorts of other

preferences of the data producers and consumers. Using existing programming

paradigms, managing these policies across the program becomes both a program-

mer bottleneck and a source of error. Policy-agnostic programming promises to

remove this bottleneck and help programmers focus on the novel and semantically

interesting parts of software applications.

102

Bibliography

[1] Toward provenance-based security for configuration languages. In Presented

as part of the 4th USENIX Workshop on the Theory and Practice of Provenance,

Berkeley, CA, 2012. USENIX.

[2] Django: The web framework for perfectionists with deadlines. https://www.

djangoproject.com, accessed July 3, 2015.

[3] Funkload. http://funkload.nuxeo.org, accessed July 3, 2015.

[4] HotCRP bug report: Download PC review assignments obeys pa-

per administrators. https://github.com/kohler/hotcrp/commit/

80ff96606bbe26e242ac7ebca85b440f2dbffebb, accessed July 3, 2015.

[5] MacroPy. https://github.com/lihaoyi/macropy, accessed July 3, 2015.

[6] Umut A. Acar, Amal Ahmed, James Cheney, and Roly Perera. A core calculus

for provenance. Journal of Computer Security, 2014. In press.

[7] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Hip-

pocratic databases. In Proceedings of the 28th International Conference on Very

Large Data Bases, VLDB ’02, pages 143–154. VLDB Endowment, 2002.

[8] Owen Arden, Michael D. George, Jed Liu, K. Vikram, Aslan Askarov, and

AndrewC.Myers. Sharingmobile code securelywith information flow control.

In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12, pages

191–205, Washington, DC, USA, 2012. IEEE Computer Society.

103

https://www.djangoproject.com
https://www.djangoproject.com
http://funkload.nuxeo.org
https://github.com/kohler/hotcrp/commit/80ff96606bbe26e242ac7ebca85b440f2dbffebb
https://github.com/kohler/hotcrp/commit/80ff96606bbe26e242ac7ebca85b440f2dbffebb
https://github.com/lihaoyi/macropy

[9] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic in-

formation flow. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’12, pages 165–178,

New York, NY, USA, 2012. ACM.

[10] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama.

Faceted execution of policy-agnostic programs. Proceedings of the Eighth ACM

SIGPLAN workshop on Programming languages and analysis for security - PLAS

’13, page 15, 2013.

[11] AdamBarth,AnupamDatta, JohnC.Mitchell, andHelenNissenbaum. Privacy

and contextual integrity: Framework andapplications. InProceedings of the 2006

IEEE Symposium on Security and Privacy, SP ’06, pages 184–198, Washington,

DC, USA, 2006. IEEE Computer Society.

[12] Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Secpal: Design

and semantics of a decentralized authorization language. J. Comput. Secur.,

18(4), December 2010.

[13] Moritz Y. Becker and Sebastian Nanz. The role of abduction in declarative

authorization policies. In Paul Hudak and David Scott Warren, editors, PADL,

Lecture Notes in Computer Science, 2008.

[14] Moritz Y. Becker and Sebastian Nanz. A logic for state-modifying authoriza-

tion policies. ACM Trans. Inf. Syst. Secur., 13(3), 2010.

[15] Moritz Y. Becker, Alessandra Russo, and Nik Sultana. Foundations of logic-

based trust management. In Proceedings - IEEE Symposium on Security and

Privacy. IEEE, 2012.

[16] Arnar Birgisson, Alejandro Russo, and Andrei Sabelfeld. Capabilities for infor-

mation flow. In Proceedings of the ACM SIGPLAN 6th Workshop on Programming

Languages and Analysis for Security, PLAS ’11, pages 5:1–5:15, New York, NY,

USA, 2011. ACM.

104

[17] Aaron Blankstein and Michael J. Freedman. Automating isolation and least

privilege in web services. In Proceedings of the 2014 IEEE Symposium on Security

and Privacy, SP ’14, Washington, DC, USA, 2014. IEEE Computer Society.

[18] Rastislav Bodik, Satish Chandra, Joel Galenson, Doug Kimelman, Nicholas

Tung, Shaon Barman, and Casey Rodarmor. Programming with angelic non-

determinism. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL ’10, New York, NY, USA,

2010. ACM.

[19] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions

and challenges. In Proceedings of the 8th Conference on Theory of Cryptography,

TCC’11. Springer-Verlag, 2011.

[20] N. Broberg and David Sands. Flow locks: Towards a core calculus for dynamic

flow policies. In European Symposium on Programming (ESOP), 2006.

[21] Niklas Broberg and David Sands. Flow locks: Towards a core calculus for

dynamic flow policies. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3924

LNCS(March):180–196, 2006.

[22] Niklas Broberg and David Sands. Paralocks: Role-based information flow

control and beyond. 45(1), 2010.

[23] Pablo Buiras, Deian Stefan, and Alejandro Russo. On dynamic flow-sensitive

floating-label systems. CoRR, abs/1507.06189, 2015.

[24] Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and A. Prasad Sistla.

Preventing information leaks through shadow executions. In Proceedings -

Annual Computer Security Applications Conference, ACSAC, pages 322–331, 2008.

[25] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard. Prov-

ing acceptability properties of relaxed nondeterministic approximate pro-

105

grams. In PLDI: Programming Languages Design and Implementation, volume 47,

pages 169–180, 2012.

[26] James Cheney. A formal framework for provenance security. In Proceedings of

the 2011 IEEE 24th Computer Security Foundations Symposium, CSF ’11, pages

281–293, Washington, DC, USA, 2011. IEEE Computer Society.

[27] Alvin Cheung, Samuel Madden, and Armando Solar-Lezama. Sloth: Being

lazy is a virtue (when issuing database queries). In Proceedings of the 2014

ACM SIGMOD International Conference on Management of Data, SIGMOD ’14,

pages 931–942, New York, NY, USA, 2014. ACM.

[28] Adam Chlipala. Static checking of dynamically-varying security policies in

database-backed applications. In Remzi H. Arpaci-Dusseau and Brad Chen,

editors, 9thUSENIX Symposium onOperating Systems Design and Implementation,

OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada, Proceedings, pages 105–118.

USENIX Association, 2010.

[29] S. Chong and A.C. Myers. Language-Based Information Erasure. 18th IEEE

Computer Security Foundations Workshop (CSFW’05), pages 241–254.

[30] Stephen Chong and Andrew C. Myers. Security policies for downgrading. In

Proceedings of the 11th ACM conference on Computer and communications security

- CCS ’04, page 198, New York, New York, USA, 2004. ACM Press.

[31] Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: Enforcing confiden-

tiality and integrity in web applications. In Proceedings of the 16th USENIX

Security Symposium, pages 1–16, August 2007.

[32] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks. Cross-tier, label-based

security enforcement for web applications. In Proceedings of the ACM SIGMOD

International Conference on Management of Data (SIGMOD), pages 269–282, June

2009.

106

[33] B. Demsky andM. Rinard. Data structure repair using goal-directed reasoning.

Proceedings. 27th International Conference on Software Engineering, 2005. ICSE

2005., 2005.

[34] Dorothy E. Denning. A lattice model of secure information flow, May 1976.

[35] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure

information flow. Communications of the ACM, 20(7):504–513, 1977.

[36] Dominique Devriese and Frank Piessens. Noninterference through secure

multi-execution. In Proceedings - IEEE Symposium on Security and Privacy, pages

109–124, 2010.

[37] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Specifying and

reasoning about dynamic access-control policies. In Proceedings of the Third

International Joint Conference on Automated Reasoning, IJCAR’06. Springer-Verlag,

2006.

[38] Jeffrey Fischer, Rupak Majumdar, and Shahram Esmaeilsabzali. Engage: a

deployment management system. In Jan Vitek, Haibo Lin, and Frank Tip,

editors, ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages 263–274. ACM,

2012.

[39] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl

Tschantz. Verification and change-impact analysis of access-control policies.

ICSE ’05, New York, NY, USA, 2005. ACM.

[40] Robert W. Floyd. Nondeterministic algorithms. J. ACM, 14, October 1967.

[41] Nate Foster, Arjun Guha, Mark Reitblatt, Alec Story, Michael J. Freedman,

Naga Praveen Katta, Christopher Monsanto, Joshua Reich, Jennifer Rexford,

Cole Schlesinger, David Walker, and Rob Harrison. Languages for software-

defined networks. IEEE Communications Magazine, 51(2), 2013.

107

[42] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jen-

nifer Rexford, Alec Story, and David Walker. Frenetic. Proceeding of the 16th

ACM SIGPLAN international conference on Functional programming - ICFP ’11,

46(9):279, 2011.

[43] Deepak Garg and Frank Pfenning. Stateful authorization logic - proof theory

and a case study. Journal of Computer Security, 20(4), 2012.

[44] Daniel B. Giffin, Amit Levy, and Deian Stefan. Hails: Protecting data privacy

in untrusted web applications. In 10th Symposium on . . . , pages 47–60, 2012.

[45] M. Hanus. Improving control of logic programs by using functional logic

languages. In Proc. of the 4th International Symposium on Programming Language

Implementation and Logic Programming. Springer LNCS 631, 1992.

[46] Michael Hanus. Curry - An Integrated Functional Logic Language. Technical

Report 5, 2006.

[47] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with

secrecy and integrity. 1998.

[48] Martin Hirt and Ueli M. Maurer. Complete characterization of adversaries

tolerable in secure multi-party computation (extended abstract). In James E.

Burns and Hagit Attiya, editors, Proceedings of the Sixteenth Annual ACM Sym-

posium on Principles of Distributed Computing, Santa Barbara, California, USA,

August 21-24, 1997. ACM, 1997.

[49] Sebastian Hunt and David Sands. On flow-sensitive security types. In Sympo-

sium on Principles of Programming Languages (POPL), 2006.

[50] Information is Beautiful. Codebases: Millions of lines of code. http://www.

informationisbeautiful.net/visualizations/million-lines-of-code/,

August 2015.

108

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

[51] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing- and

Termination-Sensitive Secure Information Flow: Exploring a New Approach.

2011 IEEE Symposium on Security and Privacy, pages 413–428, 2011.

[52] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented

Programming. ACM Computing Surveys, 28(June):220–242, 1997.

[53] Eddie Kohler. HotCRP. http://www.read.seas.harvard.edu/ kohler/hotcrp/.

[54] Eddie Kohler. Github commit: Don’t expose paper acceptance by allow-

ing final copy submission. https://github.com/kohler/hotcrp/commit/

ba826918adfbece55ba1c04252c371e2c86a5ffb, July 2009.

[55] Eddie Kohler. hotcrp / news. https://github.com/kohler/hotcrp/blob/

9f9382f711e6c719bc28c25433a5d228988ba314/NEWS, June 2015.

[56] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans

Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for

standard os abstractions. In Proceedings of Twenty-first ACM SIGOPS Sym-

posium on Operating Systems Principles, SOSP ’07, New York, NY, USA, 2007.

ACM.

[57] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Complete

functional synthesis, 2010.

[58] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A. Schmidt.

Automata-based confidentiality monitoring. In Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), volume 4435 LNCS, pages 75–89, 2007.

[59] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan,

Yirong Xu, and David DeWitt. Limiting disclosure in hippocratic databases.

In Proceedings of the Thirtieth International Conference on Very Large Data Bases -

Volume 30, VLDB ’04, pages 108–119. VLDB Endowment, 2004.

109

https://github.com/kohler/hotcrp/commit/ba826918adfbece55ba1c04252c371e2c86a5ffb
https://github.com/kohler/hotcrp/commit/ba826918adfbece55ba1c04252c371e2c86a5ffb
https://github.com/kohler/hotcrp/blob/9f9382f711e6c719bc28c25433a5d228988ba314/NEWS
https://github.com/kohler/hotcrp/blob/9f9382f711e6c719bc28c25433a5d228988ba314/NEWS

[60] Ninghui Li, J.C. Mitchell, and W.H. Winsborough. Design of a role-based

trust-management framework. In Security and Privacy, 2002. Proceedings. 2002

IEEE Symposium on, pages 114–130, 2002.

[61] Ninghui Li and John C. Mitchell. Datalog with constraints: A foundation for

trust management languages. In Proceedings of the 5th International Symposium

on Practical Aspects of Declarative Languages, PADL ’03. Springer-Verlag, 2003.

[62] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterfer-

ence. ACM SIGPLAN Notices, 40(1):158–170, January 2005.

[63] Jed Liu, MD George, K Vikram, and X Qi. Fabric: A platform for secure

distributed computation and storage. Proceedings of the ACM . . . , 2009.

[64] J. W. Lloyd. Programming in an integrated functional and logic language.

Journal of Functional and Logic Programming, 3, 1999.

[65] Fan Long and Martin Rinard. Prophet: Automatic patch generation via learn-

ing from successful patches. Technical Report MIT-CSAIL-TR-2015-027, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts, July 2015.

[66] Fan Long andMartin Rinard. Staged condition repairwith condition synthesis.

In SIGSOFT FSE, 2015.

[67] Luísa Lourenço and Luís Caires. Information flow analysis for valued-indexed

data security compartments. In Trustworthy Computing, 2013.

[68] Aleksandar Milicevic, Daniel Jackson, Milos Gligoric, and Darko Marinov.

Model-based, event-driven programming paradigm for interactive web appli-

cations. In SPLASH 2013. ACM, 2013.

[69] Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, and Daniel Jackson.

Unifying execution of imperative and declarative code. 2011 33rd International

Conference on Software Engineering (ICSE), pages 511–520, 2011.

110

[70] Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. Scala-

virtualized. In Proceedings of the ACM SIGPLAN 2012 Workshop on Partial

Evaluation and Program Manipulation, PEPM ’12, New York, NY, USA, 2012.

ACM.

[71] Carroll Morgan. The specification statement. ACM Trans. Program. Lang. Syst.,

10(3):403–419, July 1988.

[72] Leonardo De Moura and Nikolaj Björner. Z3: An efficient SMT solver. In In

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), 2008.

[73] AndyMück and Thomas Streicher. A tiny constraint functional logic language

and its continuation semantics. In ESOP ’94: Proceedings of the 5th European

Symposium on Programming, pages 439–453, London, UK, 1994. Springer-Verlag.

[74] Andrew C Myers. JFlow: Practical Mostly-Static Information Flow Control.

In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages - POPL ’99, pages 228–241. ACM Press, 1999.

[75] Prasad Naldurg and K. R. Raghavendra. SEAL: a logic programming frame-

work for specifying and verifying access control models. In Ruth Breu, Jason

Crampton, and Jorge Lobo, editors, SACMAT 2011, 16th ACM Symposium on

Access Control Models and Technologies, Innsbruck, Austria, June 15-17, 2011, Pro-

ceedings. ACM, 2011.

[76] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Verification of

information flow and access control policies with dependent types. In IEEE

Symposium on Security and Privacy, 2011.

[77] Joseph P. Near and Daniel Jackson. Rubicon: bounded verification of web

applications. In SIGSOFT FSE, 2012.

111

[78] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mi-

haylov, M. Schinz, E. Stenman, and M. Zenger. An overview of the Scala

programming language. Technical report, Citeseer, 2004.

[79] Office for Civil Rights. Summary of the HIPAA privacy rule, 2003.

[80] Lars E. Olson, Carl A. Gunter, and P. Madhusudan. A formal framework

for reflective database access control policies. In Proceedings of the 15th ACM

Conference on Computer and Communications Security, CCS ’08, New York, NY,

USA, 2008. ACM.

[81] Roly Perera, Umut A. Acar, James Cheney, and Paul Blain Levy. Functional

programs that explain their work. ICFP ’12, New York, NY, USA, 2012. ACM.

[82] JoeGibbs Politz,AlejandroMartinez,MatthewMilano, SumnerWarren,Daniel

Patterson, Junsong Li,AnandChitipothu, and ShriramKrishnamurthi. Python:

the full monty. In Antony L. Hosking, Patrick Th. Eugster, and Cristina V.

Lopes, editors, Proceedings of the 2013 ACM SIGPLAN International Conference

on Object Oriented Programming Systems Languages & Applications, OOPSLA

2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, pages

217–232. ACM, 2013.

[83] François Pottier and Vincent Simonet. Information flow inference for ML. In

Proceedings of the 29th ACM Symposium on Principles of Programming Languages

(POPL’02), Portland, Oregon, 2002. Superseded by [84].

[84] François Pottier andVincent Simonet. Information flow inference forML. ACM

Transactions on Programming Languages and Systems, 25(1):117–158, January

2003.

[85] Martin Rinard. Acceptability-oriented computing, 2003.

[86] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu,

and William S. Beebee, Jr. Enhancing server availability and security through

112

failure-oblivious computing. In Proceedings of the 6th Conference on Symposium

on Opearting Systems Design & Implementation - Volume 6, OSDI’04. USENIX

Association, 2004.

[87] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending

query rewriting techniques for fine-grained access control. In Proceedings of the

2004 ACM SIGMOD International Conference on Management of Data, SIGMOD

’04, New York, NY, USA, 2004. ACM.

[88] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive secu-

rity analysis. In Proceedings - IEEE Computer Security Foundations Symposium,

pages 186–199, 2010.

[89] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow

security. IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[90] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Proceed-

ings of the 24th Annual International Conference on Theory and Applications of

Cryptographic Techniques, EUROCRYPT’05. Springer-Verlag, 2005.

[91] Hesam Samimi, Ei Darli Aung, and ToddMillstein. Falling back on executable

specifications. In Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 6183

LNCS, pages 552–576, 2010.

[92] Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. SeLINQ: Tracking

information across application-database boundaries. ICFP ’14, New York, NY,

USA, 2014. ACM.

[93] David Schultz and Barbara Liskov. IFDB: Decentralized information flow

control for databases. In EuroSys, 2013.

[94] Paritosh Shroff, Scott F. Smith, and Mark Thober. Dynamic dependency mon-

itoring to secure information flow. In Proceedings - IEEE Computer Security

Foundations Symposium, pages 203–217, 2007.

113

[95] Douglas Smith. A generative approach to aspect-oriented programming.

Generative Programming and Component Engineering, pages 483–535, 2004.

[96] Douglas R Smith. Aspects as Invariants. In Olivier Danvy, Fritz Henglein,

HarryMairson, andAlberto Pettorossi, editors,Automatic ProgramDevelopment,

pages 270–286. Springer Netherlands, 2008.

[97] Geoffrey Smith. Principles of secure information flow analysis. In Malware

Detection, pages 291–307. 2007.

[98] TIOBE Software. Tiobe index for august 2015. http://www.tiobe.com/index.

php/content/paperinfo/tpci/index.html, August 2015.

[99] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic. Managing Policy Updates

in Security-Typed Languages. In 19th IEEE Computer Security Foundations

Workshop (CSFW’06), pages 202–216. Ieee.

[100] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan

Bhargavan, and Jean Yang. Secure distributed programming with value-

dependent types, 2011.

[101] Michael Carl Tschantz and Shriram Krishnamurthi. Towards reasonability

properties for access-control policy languages. In Proceedings of the Eleventh

ACM Symposium on Access Control Models and Technologies, SACMAT ’06, New

York, NY, USA, 2006. ACM.

[102] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. a Sound Type System

for Secure Flow Analysis. Journal of Computer Security, pages 1–20, 2009.

[103] Eric Walkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and Eric Bod-

den. Variational data structures: Exploring tradeoffs in computing with vari-

ability. In Onward!, 2014.

[104] Ashford Warwick. Facebook photo leak flaw raises security

concerns. http://www.computerweekly.com/news/2240242708/

114

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
http://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns

Facebook-photo-leak-flaw-raises-security-concerns, March 2015.

[Online; posted 20-March-2015].

[105] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cor-

mac Flanagan, and Stephen Chong. End-to-end policy-agnostic security for

database-backed applications. arXiv.org, cs.PL, 2015.

[106] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for auto-

matically enforcing privacy policies, 2012.

[107] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd

Annual Symposium on Foundations of Computer Science, SFCS ’82. IEEEComputer

Society, 1982.

[108] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Im-

proving application security with data flow assertions. ACM Symposium on

Operating Systems Principles, page 13, 2009.

[109] Steve Zdancewic. A type system for robust declassification. In Proceedings

of the Nineteenth Conference on the Mathematical Foundations of Programming

Semantics. Electronic Notes in Theoretical Computer Science, pages 1–16. Citeseer,

2003.

[110] Haiping Zhao. Hiphop for PHP: Move fast. http://developers.facebook.

com/blog/post/358/, February 2010.

[111] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static

information flow control. Int. J. Inf. Sec., 6(2-3):67–84, 2007.

115

http://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
http://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
http://developers.facebook.com/blog/post/358/
http://developers.facebook.com/blog/post/358/

Appendix A

Proofs for Faceted Execution of λjeeves

A.1 Proof of Projection

Theorem 1. Suppose

Σ, e ⇓pc Σ′, V

Then for any q ∈ PC where pc and q are consistent

q(Σ), q(e) ⇓pc\q q(Σ′), q(V)

Proof. We prove a stronger inductive hypothesis, namely that for any q ∈ PC where

¬∃k.(k ∈ pc∧ k ∈ q) ∨ (k ∈ pc∧ k ∈ q)

1. If Σ, e ⇓pc Σ′, V then q(Σ), q(e) ⇓pc\q q(Σ′), q(V).

2. If Σ, (V1 V2) ⇓apppc Σ′, V then q(Σ), (q(V1) q(V2)) ⇓apppc\q q(Σ′), q(V).

The proof is by induction on the derivation of Σ, e ⇓pc Σ′, V and the derivation of

Σ, (V1 V2) ⇓apppc Σ′, V, and by case analysis on the final rule used in that derivation.

• For case [f-label], e = label k in e′.

116

By the antecedents of this rule:

k′ fresh

Σ[k′ := λx.true], e′[k := k′] ⇓pc Σ′, V

By induction

q(Σ[k′ := λx.true]), q(e′[k := k′]) ⇓pc\q q(Σ′), q(V)

Since k′ 6∈ Σ, we know that k′ 6∈ q(Σ).

Therefore, q(Σ)[k′ := λx.true] = q(Σ[k′ := λx.true]).

By α-renaming, we assume k 6∈ q, k 6∈ q, k′ 6∈ q, and k
′ 6∈ q.

Therefore q(e′)[k := k′] = q(e′[k := k′]).

• For case [f-restrict], e = restrict(k, e′). By the antecedents of this rule:

Σ, e′ ⇓pc Σ1, V

Σ′ = Σ1[k := Σ1(k) ∧ f 〈〈 pc∪ {k} ? V : λx.true 〉〉]

By induction, q(Σ), q(e′) ⇓pc\q q(Σ1), q(V).

q(Σ′)=q(Σ1[k := Σ1(k) ∧ f 〈〈 pc∪ {k} ? V : λx.true 〉〉])

=q(Σ1)[k := q(Σ1(k))∧ f

q(〈〈 pc∪ {k} ? V : λx.true 〉〉)]

=q(Σ1)[k := q(Σ1(k))∧ f

〈〈 pc∪ {k} \ q ? q(V) : λx.true 〉〉)]

by Lemma 1

• For case [f-val], e = V.

Since Σ, V ⇓pc Σ, V and q(Σ), q(V) ⇓pc\q q(Σ), q(V), this case holds.

117

• For case [f-ref], e = ref e′. Then by the antecedents of the [f-ref] rule:

Σ, e′ ⇓pc Σ′′, V′

a 6∈ dom(Σ′′)

V′′ = 〈〈 pc ? V′ : 0 〉〉

Σ′ = Σ′′[a := V′′]

V = a

By induction, q(Σ), q(e′) ⇓pc\q q(Σ′′), q(V′).

Since a 6∈ dom(Σ′′), a 6∈ dom(q(Σ′′)).

By Lemma 1, q(V′′) = 〈〈 pc \ q ? q(V′) : q(0) 〉〉.

Since Σ′ = Σ′′[a := V′′], q(Σ′) = q(Σ′′)[a := q(V′′)].

Therefore q(Σ), ref q(e′) ⇓pc\q q(Σ′), q(V).

• For case [f-deref], e = !e′. Then by the antecedents of the [f-deref] rule:

Σ, e′ ⇓pc Σ′, V′

V = deref (Σ′, V′, pc)

By induction, q(Σ), q(e′) ⇓pc\q q(Σ′), q(V′).

By Lemma 2, q(V) = deref (q(Σ′), q(V′), pc \ q).

Therefore q(Σ), q(!e′) ⇓pc\q q(Σ′), q(V).

• For case [f-assign], e = (ea:= eb).

By the antecedents of the [f-assign] rule:

Σ, ea ⇓pc Σ1, V1

Σ1, eb ⇓pc Σ2, V

Σ′ = assign(Σ2, pc, V1, V)

By induction
q(Σ), q(ea) ⇓pc\q q(Σ1), q(V1)

q(Σ1), q(eb) ⇓pc\q q(Σ2), q(V)

118

ByLemma3,q(Σ′) = assign(q(Σ2), pc \ q, q(V1), q(V)). Therefore q(Σ), q(ea:= eb) ⇓pc\q

q(Σ′), q(V).

• For case [f-app], e = (ea eb). By the antecedents of the [f-app] rule:

Σ, ea ⇓pc Σ1, V1

Σ1, eb ⇓pc Σ2, V2

Σ2, (V1 V2) ⇓apppc Σ′, V

By induction
q(Σ), q(ea) ⇓pc\q q(Σ1), q(V1)

q(Σ1), q(eb) ⇓pc\q q(Σ2), q(V2)

q(Σ2), (q(V1) q(V2)) ⇓apppc\q q(Σ′), q(V)

Therefore q(Σ), q(ea eb) ⇓pc\q q(Σ′), q(V).

• For case [f-left], e = 〈k ? ea : eb〉. By the antecedents of this rule

k ∈ pc

Σ, ea ⇓pc Σ′, V

– If k ∈ q, then q(〈k ? ea : eb〉) = q(ea).

By induction q(Σ), q(ea) ⇓pc\q q(Σ′), q(V).

– Otherwise k 6∈ q and k 6∈ q.

Therefore q(〈k ? ea : eb〉) = 〈k ? q(ea) : q(eb)〉.

Since k ∈ pc \ q, it holds by induction that

q(Σ), 〈k ? q(ea) : q(eb)〉 ⇓pc\q q(Σ′), q(V)

• Case [f-right] holds by a similar argument as [f-left].

119

• For case [f-split], e = 〈k ? ea : eb〉. By the antecedents of the [f-split] rule:

Σ, ea ⇓pc∪{k} Σ1, V1

Σ1, eb ⇓pc∪{k} Σ′, V2

V = 〈k ? V1 : V2〉

– Suppose k ∈ q. Then q(e) = q(ea) and q(V1) = q(V).

By induction, q(Σ), q(ea) ⇓pc∪{k}\q q(Σ1), q(V1).

Lemma 4 implies q(Σ1) = q(Σ′), so this case holds.

– If k ∈ q, Then q(e) = q(eb) and q(V2) = q(V).

By Lemma 4 we know that q(Σ) = q(Σ1).

By induction, q(Σ1), q(eb) ⇓pc∪{k}\q q(Σ′), q(V2).

– If k 6∈ q and k 6∈ q, then by induction

q(Σ), q(ea) ⇓pc∪{k}\q q(Σ1), q(V1)

q(Σ1), q(eb) ⇓pc∪{k}\q q(Σ′), q(V2)

By Lemma 1, q(V) = 〈〈 pc \ q ? q(V1) : q(V2) 〉〉.

• For case [fa-fun], V1 = λx.e′. By the antecedent of this rule

Σ, e′[x := V2] ⇓pc Σ′, V

We know that q(λx.e′ V2) = q(e′[x := V2]).

By induction q(Σ), q(e′[x := V2]) ⇓pc\q q(Σ′), q(V).

• Both cases [fa-left] and [fa-right] hold by a similar argument as [f-left].

• Case [fa-split] holds by a similar argument as [f-split].

120

Appendix B

Proofs for λJDB

B.1 Rules from λjeeves

These rules from λjeeves [9] describe how to declare labels and attach policies to labels.

The rule [f-label] dynamically allocates a label (label k in e), adding a fresh label to

the store with the default policy of λx.true. Any occurrences of k in e are α-renamed

to k′ and the expression is evaluated with the updated store. Policies may be further

refined (restrict(k, e)) by the rule [f-restrict], which evaluates e to a policy V that

should be either a lambda or a faceted value comprised of lambdas. The additional

policy check is restricted by pc, so that policy checks cannot themselves leak data. It

is then joined with the existing policy for k, ensuring that policies can only become

121

more restrictive.

k′ f resh

Σ[k′ := λx.true], e[k := k′] ⇓pc Σ′, V

Σ, label k in e ⇓pc Σ′, V′
[f-label]

Σ, e ⇓pc Σ1, V

Vp = 〈〈 pc∪ {k} ? V : λx.true 〉〉

Σ′ = Σ1[k := Σ1(k) ∧ f Vp]

Σ, restrict(k, e) ⇓pc Σ′, V
[f-restrict]

B.2 Proof of Lemma 5

Lemma 5 (A).

L(〈〈 k ? V1 : V2 〉〉) =

 L(V1) if k ∈ L

L(V2) if k 6∈ L

L(〈〈 k ? V1 : V2 〉〉) =

 L(V1) if k ∈ L

L(V2) if k 6∈ L

Proof. By case analysis on the definition of 〈〈 k ? V1 : V2 〉〉.

Let x = L(〈〈 k ? V1 : V2 〉〉).

• If x = L(〈k ? F1 : F2〉) for some non-table values F1 and F2, then this case holds

since

122

– x = L(F1) if k ∈ L.

– x = L(F2) if k 6∈ L.

• If x = L(〈〈 k ? table T1 : table T2 〉〉), then x = L(table T) where

T = {(B ∪ {k}, s) | (B, s) ∈ T1, k 6∈ B}

∪ {(B ∪ {k}, s) | (B, s) ∈ T2, k 6∈ B}.

And so

x = {(∅, s) | (B, s) ∈ T1, k 6∈ B, B ∪ {k} ∼ L}

∪ {(∅, s) | (B, s) ∈ T2, k 6∈ B, B ∪ {k} ∼ L}.

– If k ∈ L, then B ∪ {k} 6∼ L and

B ∪ {k} ∼ L => k 6∈ B, and so

x = {(∅, s) | (B, s) ∈ T1, B ∼ L}

= L(table T1), as required.

– If k 6∈ L, then this case holds by a similar argument as the previous case.

B.3 Proof of Lemma 6

Lemma 6 (B).

L(〈〈 B ? V1 : V2 〉〉) =

 L(V1) if B ∼ L

L(V2) if ¬(B ∼ L)

Proof. The proof is by induction and case analysis on the derivation of L(〈〈 B ? V1 :

V2 〉〉). Let x = L(〈〈 B ? V1 : V2 〉〉).

• If B = ∅, then B ∼ L, so x = L(V1) as required.

• Otherwise, B = B′ ∪ {k}.

123

– If B ∼ L, then

x = L(〈〈 k ? 〈〈 B′ ? V1 : V2 〉〉 : V2 〉〉)

= L(〈〈 B′ ? V1 : V2 〉〉) by Lemma 5, since k ∈ L

= L(V1) by induction, as B′ ∼ L.

– Otherwise, B 6∼ L, then

∗ if k 6∈ L, then x = L(V2) by Lemma 5.

∗ otherwise k ∈ L, so B′ 6∼ L.

Therefore, x = L(〈〈 B′ ? V1 : V2 〉〉) = L(V2), as required.

B.4 Lemma 7

If a set of branches is compatible with view L, then we can execute only using that

view. We prove an additional lemma that if pc is not visible, then execution should

not affect the environment under projections of L.

Lemma 7 (C). If pc is not visible to L and

Σ, e ⇓pc Σ′, V

then L(Σ) = L(Σ′). If pc is not visible to L and

Σ, e ⇓pc Σ′, V

then L(Σ) = L(Σ′).

This lemma is also useful in the proof of the Projection Theorem.

124

B.5 Proof of Theorem 4 (Projection)

For convenience, we restate Theorem 4.

Suppose Σ, e ⇓pc Σ′, V. Then for any view L for which pc is visible,

L(Σ), L(e) ⇓∅ L(Σ′), L(V)

For our proof, we extend L to project evaluation contexts, but they may project

away the hole, and so map evaluation contexts to expressions, in which case filling

the result is a no-op.

We also note that if a branch B is inconsistent with the program counter pc, at

most one of B and pc may be visible to any given view L. This property is captured

in the following lemma.

Lemma 8. If B is inconsistent with pc and pc ∼ L, then B 6∼ L.

With these properties established, we now prove projection.

Proof. By induction on the derivation of L(Σ), L(e) ⇓∅ L(Σ′), L(V) and by case

analysis on the final rule used in that derivation.

• Cases [f-val], [f-deref], [f-deref-null], [f-row], [f-project], and [f-union] hold triv-

ially.

• For case [f-select], e = σi=j (table T), so

Σ, σi=j (table T) ⇓pc Σ, (table T′)

where T′ = {(B, s) | si = sj}.

Therefore, this case holds since L(table T) = {(∅, s) | (B, s) ∈ T, B ∼ L},

and L(table T′) = {(∅, s) | (B, s) ∈ T, B ∼ L, si = sj},

125

• For case [f-join], e = (table T1) ./ (table T2), so

Σ, (table T1) ./ (table T2) ⇓pc Σ, (table T)

where T = {B.B′, s.s′) | (B, s) ∈ T1, (B′, s′) ∈ T2}.

L(T) = {(B.B′, s.s′) | (B, s) ∈ T1, (B′, s′) ∈ T2, B.B′ ∼ L}, so this case holds.

• For case [f-ctxt], e = E[e′]. By the antecedents of this rule

E 6= []

e′ not a value

Σ, e′ ⇓pc Σ1, V′

Σ1, E[V′] ⇓pc Σ′, V

Note that L(E[V′]) = L(E)[L(V′)], etc., so by induction

L(Σ), L(e′) ⇓∅ L(Σ1), L(V′)

L(Σ1), L(E)[L(V′)] ⇓∅ L(Σ′), L(V)

Therefore, L(Σ), L(E[e]) ⇓∅ L(Σ′), L(V), as required.

• For case [f-strict], e = S[〈k ? V1 : V2〉]. By the antecedents of this rule

Σ, 〈k ? S[V1] : S[V2]〉 ⇓pc Σ′, V′

We now consider each possible case for the next step in the derivation.

– For subcase [f-left], we know that k ∈ pc, k ∈ L and

Σ, S[V1] ⇓∅ Σ′, V

By induction, L(Σ), L(〈k ? S[V1] : S[V2]〉) ⇓∅ L(Σ′), L(V′).

– Subcase [f-right] holds by a similar argument.

126

– For subcase [f-split], k 6∈ pc, k 6∈ pc and

Σ, S[V1] ⇓pc∪{k} Σ′′, V′′

Σ′′, S[V2] ⇓pc∪{k} Σ′, V′′′

V = 〈〈 k ? V′′ : V′′′ 〉〉

∗ If k ∈ L, then by induction L(Σ), L(S[V1]) ⇓∅ L(Σ′′), L(V′′).

L(Σ′′) = L(Σ′) by Lemma 7, and L(V) = L(V′′).

Therefore, L(Σ), L(S[V1]) ⇓∅ L(Σ′), L(V′), as required.

∗ If k 6∈ L, then this case holds by a similar argument.

• For case [f-fold-empty], we have

Σ, fold Vf Vb (table ε) ⇓pc Σ, Vb

Clearly, L(Σ), fold L(Vf) L(Vb) L(table ε) ⇓∅ L(Σ), L(Vb).

• For case [f-fold-inconsistent], e = fold Vf Vp (table (B, s).T). By the antecedents

of this rule, we have

Σ, fold Vf Vb (table T) ⇓pc Σ′, V

B is inconsistent with pc

By Lemma 8, B 6∼ L.

Therefore, L(table (B, s).T) = L(table T).

By the [f-fold-empty] rule,

L(Σ), fold L(Vf) L(Vb) L(table (B, s).T) ⇓∅ L(Σ′), L(V)

By induction, L(Σ), L(fold Vf Vb (table T)) ⇓∅ L(Σ′), L(V), as required.

• For case [f-fold-consistent], e = fold Vf Vb (table T).

127

By the antecedents of this rule, we have

Σ, fold Vf Vb (table T) ⇓pc Σ1, V1

B is consistent with pc

Σ1, Vf s V1 ⇓pc∪B Σ′, V2

V = 〈〈 B ? V2 : V1 〉〉

– If B ∼ L, then pc∪ B ∼ L.

By induction,

L(Σ), L(fold Vf Vb (table T)) ⇓∅ L(Σ1), L(V1)

L(Σ1), L(Vf s V1) ⇓∅ L(Σ′), L(V2)

By Lemma 6, L(V) = L(〈〈 B ? V2 : V1 〉〉), as required.

– Otherwise, B 6∼ L, and therefore pc∪ B 6∼ L. By Lemma 7, L(Σ1) = L(Σ′).

By induction, L(Σ), L(fold Vf Vb (table T)) ⇓∅ L(Σ1), L(V1).

L(table (B, s).T) = L(table T).

By Lemma 6, L(V) = L(〈〈 B ? V2 : V1 〉〉), as required.

• For case [f-left], e = 〈k ? e1 : e2〉.

By the antecedents of this rule, we have

k ∈ pc

Σ, e1 ⇓pc Σ′, V

Since k ∈ pc, L(e) = L(e1).

By induction, L(Σ), L(e1) ⇓∅ L(Σ′), L(V).

• Case [f-right] holds by a similar argument.

• For case [f-split], e = 〈k ? e1 : e2〉.

128

By the antecedents of this rule, we have

k 6∈ pc k 6∈ pc

Σ, e1 ⇓pc∪{k} Σ1, V1

Σ1, e2 ⇓pc∪{k} Σ′, V2

V = 〈〈 k ? V1 : V2 〉〉

– If k ∈ L, then by induction L(Σ), L(e1) ⇓∅ L(Σ1), L(V1).

L(Σ1) = L(Σ′) by Lemma 7, and by Lemma 5

L(V) = L(〈〈 k ? V1 : V2 〉〉) = L(V1), as required.

– Otherwise k ∈ L, so L(Σ) = L(Σ1) by Lemma 7.

By induction, L(Σ1), L(e2) ⇓∅ L(Σ′), L(V2),

and by Lemma 5 L(V) = L(〈〈 k ? V1 : V2 〉〉) = L(V2), as required.

• For case [f-app], e = (λx.e′ V′). By the antecedents of this rule,

Σ, e′[x := V′] ⇓pc Σ′, V

We know that L(e) = L(λx.e′ V′) = L(e′[x := V′]).

By induction, L(Σ), L(e′[x := V′]) ⇓∅ L(Σ′), L(V), as required.

• For case [f-ref], e = ref V′. By the antecedents of this rule

a 6∈ dom(Σ)

Σ′ = Σ[a := 〈〈 pc ? V′ : 0 〉〉]

Without loss of generality, we assume that both evaluations allocate the same

address a. Since a 6∈ dom(Σ), a 6∈ dom(L(Σ)).

Also, we know that ∀a′ ∈ dom(Σ), Σ(a′) = Σ′(a′), and therefore L(Σ(a′)) =

L(Σ′(a′)).

Since pc ∼ L, L(Σ′(a)) = L(〈〈 pc ? V′ : 0 〉〉) = L(V′) by Lemma 6. Since

L(〈〈∅ ? V′ : 0 〉〉) = L(V′) = L(V), this case holds.

129

• For case [f-assign], e = (a:=V). By the antecedent of this rule, Σ′ = Σ[a :=

〈〈 pc ? V : Σ(a) 〉〉]. We know ∀a′ ∈ dom(Σ), Σ(a′) = Σ′(a′), and therefore

L(Σ(a′)) = L(Σ′(a′)).

Since L ∼ pc, L(Σ′(a)) = L(〈〈 pc ? V : Σ(a) 〉〉) = L(V) by Lemma 6. And since

L(〈〈∅ ? V : Σ(a) 〉〉) = L(V), this case holds.

130

	Introduction
	The Policy-Agnostic Approach
	Jeeves, a Language for Automatically Enforcing Information Flow Policies
	Jacqueline, a Policy-Agnostic Web Framework
	Advantages of the Policy-Agnostic Approach
	Contributions of the Thesis
	Key Technical Challenges
	Thesis Overview

	Background and Related Work
	The Problem of Constructing Secure Systems
	When Encryption and Access Control Are Not Enough
	The Leaky Enforcement Problem
	Programmer Burden with Information Flow Checking
	Limitations of Multi-Execution
	Limitations of Existing Web Frameworks
	How Policy-Agnostic Programming Fills the Gaps

	Comparing to Other Language-Based Techniques
	Restrictions of Aspect-Oriented Programming
	Limitations of Prior Work in Executing Specifications
	Relationship to Variational Data Structures
	Relationship to Acceptability-Oriented Programming
	Relationship to Declarative Domain-Specific Languages

	I Policy-Agnostic Programming for Information Flow
	Policy-Agnostic Programming in the Jacqueline Web Framework
	Schemas and Policies in Jacqueline
	Secret Values and Public Values
	Specifying Policies

	Policy-Agnostic Controller Code
	Computing Concrete Views

	Jeeves, a Language for Automatically Enforcing Information Flow Policies
	Sensitive Values and Policies
	Policy-Agnostic Programs
	Producing Concrete Values
	Handling Dependencies Between Sensitive Values and Policies
	Policy Language Limitations

	II Reasoning about Policy-Agnostic Programs
	Semantics and Guarantees for Faceted Execution of Jeeves
	Core Semantics
	Properties
	Projection Theorem
	Termination-Insensitive Non-Interference
	Termination-Insensitive Policy Compliance

	Faceted Execution for Database-Backed Applications
	Solution Overview
	Executing Relational Queries with Facets
	Early Pruning Optimization

	Formal Semantics and Policy Compliance
	Syntax and Formal Semantics
	Formal Semantics
	End-to-End Policy Compliance
	Early Pruning

	III Executing Policy-Agnostic Programs
	Implementing a Policy-Agnostic Web Framework
	Python Embedding of the Jeeves Runtime
	Faceted Execution
	Evaluating Policies at Computation Sinks
	Garbage-Collecting Labels and Policies
	Representing lists
	Jacqueline ORM
	Decision to Use Python

	Limitations

	Jacqueline in Practice
	Applications
	Code Comparisons
	Django Conference Management System
	HotCRP

	Performance
	Representative Actions
	Stress Tests
	Early Pruning Optimization

	Conclusions
	Summary of Contributions
	Conclusions

	Proofs for Faceted Execution of jeeves
	Proof of Projection

	Proofs for JDB
	Rules from jeeves
	Proof of Lemma 5
	Proof of Lemma 6
	Lemma 7
	Proof of Theorem 4 (Projection)

