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Abstract—1In this paper, we propose a new benchmark for
scientific data management systems called SS-DB. This bench-
mark, loosely modeled on an astronomy workload, is intended
to simulate applications that manipulate array-oriented data
through relatively sophisticated user-defined functions. SS-DB
is representative of the processing performed in a number of
scientific domains in addition to astronomy, including earth
science, oceanography, and medical image analysis. The bench-
mark includes three types of operations: (i) manipulation of
raw imagery, including processing pixels to extract geo-spatial
observations; (ii) manipulation of observations, including spatial
aggregation and grouping into related sets; and (iii) manipulation
of groups, including a number of relatively complex geometric
operations.

We implemented the benchmark on two systems. The first is
a sophisticated implementation in MySQL based with a custom-
built distribution layer; the second is an implementation on
SciDB, a recently proposed scientific database system, built from
the ground up to manipulate array-oriented data. We find that
SciDB performs substantially better than MySQL, due to a
number of architectural features, including its use of columnar
storage, aggressive compression (including avoiding the storage
of array indices when possible), and an efficient, chunk-based
storage manager that is able to parallelize many operations and
perform most I/O sequentially.

I. INTRODUCTION

Current science users are generally very unhappy with
relational DBMSs, for at least the following reasons:

1) Many science applications are hard to represent in the
relational model. Rather, scientists tend to organize
much of their data in ordered data models, such as arrays
and vectors.

2) Most science users need specialized operations like
frequency transforms, matrix decompositions, and mul-
tidimensional windowing which are not easy to express
in SQL.

3) Required features such as provenance and version con-
trol are missing in current implementations.

The first two issues tend to generate unacceptable perfor-
mance; all three make RDBMSs difficult to use for scientific
data. These issues have been clearly articulated at recent
XLDB workshops [1]-[3] and stop most large science applica-
tions from using RDBMSs. Instead, the common practice is to
build capabilities on top of the “bare metal”, using RDBMSs
either not at all or only for the metadata of the application.

In recent years, there have been several research efforts to
build database systems that offer a more natural data model
than tables, such as arrays. Approaches include:

1) Using an array simulation on top of a relational DBMS.
This is the approach suggested by MonetDB [4].

2) Using an array executor on top of blobs in a relational
DBMS. This is the approach suggested in Rasdaman [5].

3) Using a from-scratch native implementation of arrays.
This is the approach chosen by SciDB [6].

In order to properly understand the performance differences
between these models, in this paper we propose a benchmark
for scientific database systems called SS-DB. In contrast
to previous benchmarking efforts (such as Jim Gray’s “20
astronomy queries” [7]), we wanted SS-DB to be relatively
general and not tailored to a particular scientific discipline.
In addition, Gray only queried derived (“cooked”) data sets.
In contrast a complete benchmark should model all phases of
scientific data management, namely:

1) Data ingest of raw imagery or sensor data
2) Queries to the raw data

3) Cooking the raw data into a derived data set
4) Queries to the cooked data.

SS-DB includes all four phases of processing.

Coming up with a generic benchmark capturing every type
of scientific activity is impossible. Instead, heeding the advice
of the XLDB workshop participants, we chose to start with a
restricted subset focusing on multidimensional array queries,
which are essential in a number of scientific domains. We
decided to concentrate on a few queries only initially (simple
benchmarks are from our perspective better than complex
ones) and defined all the key operations we wanted to include
in our benchmark through two functions and nine queries.
Additional modules can be added to the benchmark to reflect
other scientific workloads, just as TPC [8] has different
variants.

SS-DB queries are on 1D arrays (e.g., polygon boundaries),
dense/sparse 2D arrays (e.g., imagery data / “cooked” data)
and 3D arrays (e.g., trajectories in space and time). Although
the data and queries are loosely based on the requirements
of the Large Synoptic Survey Telescope (LSST) [9], [10],
the SciDB.org Science Advisory Board [11] found the SS-DB
queries relevant to a number of scientific disciplines that deal



with large arrays or meshes of data and perform operations
similar to the ones in our benchmark. Astronomers acquire
data using telescopes, detecting and measuring star-like and
galaxy-like features in the images. Earth scientists acquire data
using satellites or aircraft, detecting and measuring vegetation
patterns or wildfire boundaries or gravitational anomalies.
Oceanographers acquire ocean temperature, wave height or
wind velocity data using satellites, detecting and measuring
differences from models or long-term averages. Medical prac-
titioners acquire data using X-rays or MRI, detecting and
measuring tumors or other anomalies. All of these disciplines
perform analyses on raw and derived data, including tracking
the derived detections over time.

In addition to proposing a new benchmark, we highlight
the potential performance gains of a purpose-built scientific
data processing engine over a conventional relational system
by providing SS-DB results for MySQL and SciDB (approach
3 above). We chose to implement our benchmark on MySQL
since it is very frequently used by scientists to store their
data in practice, despite its architectural flaws when compared
with other systems. We found that it was necessary to mix in
aspects of approaches 1 and 2 to enable MySQL to execute
the benchmark in a reasonable way. We hope additional
systems will choose to run this benchmark and provide other
architectural data points.

Our results show that SciDB is able to significantly out-
perform MySQL in all phases of processing, running the
benchmark queries two orders of magnitude faster overall. The
main reasons SciDB is able to outperform MySQL include:

o SciDB’s array-oriented data model enables direct offset-
ting and omission of index attributes.

e SciDB uses a column-oriented design where each at-
tribute is stored separately.

o SciDB uses aggressive and efficient compression.

o SciDB partitions data into overlapping tiles, which allows
some operations to be processed in parallel in SciDB
while they must be processed sequentially in MySQL.

In summary, the major contributions of this paper are:

« We propose a new scientific data processing benchmark,
designed with collaboration from domain experts, that
is representative of tasks real scientific users want to
perform. It includes not just processing on cooked data,
but operations over raw data and cooking operations
themselves.

e We have developed an initial implementation of the
benchmark on MySQL and SciDB and a performance
comparison of the two approaches.

o We show the benefits that a ground-up implementation of
an array-based data model can offer on SS-DB.

The rest of this paper is organized as follows. In Section II, we
present the benchmark specifications. Then, in Section III we
discuss the SciDB implementation, followed in Section IV by
the MySQL implementation. Section V presents the results that
we observed, with a discussion of the differences observed.
Lastly, we review related work in Section VI and conclude

this paper in Section VIIL.

II. BENCHMARK COMPONENTS

The benchmark encompasses ingesting raw data, cooking it
into two different derived forms useful for further analysis, and
then querying both the raw and derived data to find information
of interest. The detection algorithm that we use for cooking
is standard (it is essentially the same as that used by the
extremely common astronomy package “SExtractor” [12] and
stemming from even earlier work [13]). We describe the ingest
and cooking phases in the next three subsections, followed
by the queries to be executed. We then give instructions
for how these phases are to be combined when running the
benchmark. Lastly, we give benchmark parameters, which
control the benchmark runs. A data generator that can produce
the data for all configurations of this benchmark, canonical
implementations of the required functions, the full MySQL
implementation and a more detailed description are available
on our web site [14].

A. Raw Data Ingest

Raw data arrives as 2-D arrays. Such data could be from as-
tronomy (e.g., telescope images), remote sensing (e.g., aircraft
observations), oceanography (e.g., satellite imagery), medical
imaging (e.g., X-rays), or simulations in a variety of fields.

Each 2-D array is in the same local coordinate system,
which for simplicity starts at (0,0) and has increasing integer
values for both dimensions, ending at 7499. Hence, each
array has 56,250,000 cells. Each array cell has 11 values,
V1,...,V11 which are 32-bit integers. Five of these values
are based on actual observational data which, as is typical,
has concentrations of “interesting data” in the total array
space interspersed with data (“background”) of less interest;
the other six values are chosen non-uniformly to simulate
scientific data. Notice that each array is 2.48 Gbytes in size;
the array dimensions and number of values per cell are chosen
specifically to produce a size of this magnitude.

The benchmark contains 400 such arrays taken at distinct
times T1,...,T400. In practice, the times of these observations
will not be regularly spaced, but for simplicity we assume
regularity, i.e. array times are T, 2T, 3T, etc. The 400 arrays are
arranged into 20 cycles, each containing 20 arrays. Scientific
data is often processed or reprocessed at periodic intervals,
simulated by these cycles. With 400 arrays, the total bench-
mark is 0.99 TBytes.

Moreover, there is a world
coordinate system, which goes Y
from 0 to 10® in each dimen-

sion. Each raw image has a 10° (2 + 7500,
starting point (I,J) in this coor- J + 7500)
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practical sensor at a single

point in time. Telescopes cannot view the whole sky; satellite
imagers cannot view the whole planet; CAT scanners cannot
view the whole body.

Images at different times thus have different values for
1,J). A full data set would include multiple observations
of each point in the world coordinate system, but such a
data set would be impractically large to transport or even
generate. In order to replicate both the repeated observation
rate and the breadth of coverage in a limited-size benchmark,
we create a data set composed of two regions. The first,
dense region comprises 80% of the images and has I and J
uniformly distributed between 49,984,189 and 50,015,811 (or
108/2 410 /2), with the values chosen to ensure a specific
average repeat observation rate. The other region comprises
20% of the images and has I and J uniformly distributed
between 0 and 99,992,499 (or 108 — 7500 — 1), ensuring even
coverage of the rest of the world coordinate space. We chose
the array boundaries and positions in order to reproduce the
key characteristics of real-world datasets from astronomy and
other sciences such as object density, repeated observation rate,
and range of coordinates, but at reduced scales.

Raw data can be compressed in any way the user chooses.
However, any compression must be lossless.

We call the above specification the normal dataset. In order
to support installations that are modest in size, there is a small
version of the benchmark. This has a smaller number of images
(160 in 8 cycles of 20) that are 3750 by 3750 in size in
the same world coordinate system and have 80% distributed
between 49,995,000 and 50,004,999 (or 108/2 + 104/2).
Hence, the smaller benchmark is 99 Gbytes. The coordinates
for the dense region here are selected to maintain the same
density of observations in the central region.

There is also a large configuration. Here, there are 1000
images in 50 cycles of 20, each 15,000 by 15,000, again in the
same world coordinate system with 80% distributed between
49,950,000 and 50,049,999 (or 108 /24105 /2), for a total size
of 9.9 TBytes.

A configuration with ten times the data size is generated
by multiplying the number of images by 2.5, each image
dimension by 2, and the dense region size by 10°-%, allowing
the benchmark to be scaled to petabytes, if suitable hardware
is available.

B. Cooking Data into Observations

A user-defined function F1 (see Appendix A-1), provided
with the benchmark data generator, sequences through the raw
2-D array values and produces a collection of observations.
Each observation consists of:

1) An (x,y) center, where x and y are 4-byte integers
between 0 and 10%. An observation can be identified
by looking only at cell values within a square box of
size D1 index values centered on (X,y) in the world
coordinate space. The choice of D1 is discussed in
Section II-F.

2) A polygon boundary, B, specified as an ordered list of
4-byte (I, J) points in the world coordinate system, each
between 0 and 10%. Polygons have an average of 12
sides. If the number of edges in B for a given observation
is greater than a maximum specified by value D2, that
observation is ignored in order to filter out artifacts
and excessive noise contamination. Each polygon has a
bounding rectangle, whose length and width are bounded
with a maximum size of D1.

3) 2 other observation-specific values (avgdist, pixelsum),
which are 8-byte floating point numbers. These are
meant to represent domain-specific observation informa-
tion.

Each raw array generates an average of 2.3 x 10* obser-
vations, which amount to about 4 Mbytes. The data set will
grow over the life of the benchmark to 1.6 Gbytes as new data
arrives. Again lossless compression can be applied to this data
set, if desired.

Observations could correspond to stars (astronomy), bound-
aries of vegetation regions (satellite imagery), temperature
regions (oceanography), or medical anomalies (medical imag-

ing).

C. Cooking Observations into Groups

One expects to see the same physical phenomena at different
times in different arrays during the study. As such, we want to
place observations into groups that appear to describe the same
physical phenomenon. A physical observation may appear at
different coordinates because it may be moving or the sensor
may be in a different position. A simple clustering algorithm
is used to perform this second-level cooking.

Given a collection of groups assembled so far, a new
observation, B1, is put into all existing groups for which
a user defined function F2 (B1, B2) (see Appendix A-2),
provided with the benchmark data, returns true for some B2
already in the group. Since there is invariably a maximum
(x,y) distance that an observation can move in a time period
T, the benchmark models this situation by specifying that two
observations B1 and B2 at times N1 * T and N2 * T with
centers (Clx, Cly) and (C2x, C2y) cannot be in the same
group unless

V/(C2z — Clx)% 4 (C2y — Cly)? < D3 x (N2 — N1).
Hence D3 is the maximum allowable velocity in time period T
for the object described by the group of observations. In other
words, D3 is the maximum number of array cells in the world
coordinate system that an object can move in time T. Again,
the value of D3 will alter the complexity of the benchmark
and is discussed further in Section II-F.

Notice that an observation can belong to multiple groups.
Also, if an observation is not put in any group, then it begins
a new group as a singleton.

Although F2 is defined on pairs of observations, it may
be more efficient to have F2 operate in “batch” mode on a
collection of observations. Therefore, a user may wrap F2 in
a function, F2’, that operates on a batch of observations.




D. Queries on the Data

In addition to cooking and grouping, the benchmark in-
cludes a total of 9 queries in three categories:

e Queries and recooking on the raw data (Q1-Q3)
o Queries on the observation data (Q4-Q6)
o Queries on the observation groups (Q7-Q9)

All queries are described in terms of a slab size and a slab
starting point, which together specify a rectangular region of
the coordinate space to operate on. The starting point [X1,
Y1] is given in the local coordinate space for the first three
queries. In other queries the starting point [X2, Y2] is in the
world coordinate space. Here, 80% of the time it is uniformly
distributed in the “dense” central area, and 20% of the time
it is uniformly distributed in the rest of the space. A file on
the project web site gives the starting points we used for this
paper. A slab has a constant size of [U1, V1], and the choice
of this pair of numbers is discussed in Section II-F. We will
also use a set of parameters D1,...,D6, and the pairs [U2,
V2] and [U3, V3] as a way to control the complexity of the
benchmark. Common settings are described later.

Q1 aggregation: For the 20 images in each cycle (as defined
in Section II-A) and for a slab of size [Ul, V1] in the local
coordinate space, starting at [X1, Y1], compute the average
value of Vi for a random value of i. This might simulate,
for example, finding the average background noise in the raw
imagery.

Q2 recooking: For a slab of size [Ul, V1] starting at [X1,
Y1], recook the raw imagery for the first image in the cycle
with a different clustering function F1°, which has the same
distance and scaling properties as F1. F1’ is provided on the
project web site.

Q3 regridding: For a slab of size [Ul, V1] starting at [X1,
Y1], regrid the raw data for the images in the cycle, such that
the cells collapse 10:3. All Vi values in the raw data must be
regridded in this process. Gridding of the raw data values is
performed by an interpolation function, I1, also provided on
the project web site.

Q4 aggregation: For the observations in the cycle with
centers in a slab of size [U2, V2] starting at [X2, Y2] in
the world coordinate space, compute the average value of
observation attribute Oi, for a randomly chosen i.

QS5 polygons: For the observations in the cycle and for
a slab of size [U2, V2] starting at [X2, Y2] in the world
coordinate space, compute the observations whose polygons
overlap the slab.

Q6 density: For the observations in the cycle and for
a slab of size [U2, V2] starting at [X2, Y2] in the world
coordinate space, group the observations spatially into D4
by D4 tiles, where each tile may be located at any integral
coordinates within the slab. Find the tiles containing more
than DS observations.

Q7 centroid: Find each group whose center falls in the slab
of size [U2, V2] starting at [X2, Y2] in the world coordinate
space at any time t. The center is defined to be the average
value of the centers recorded for all the observations in the

group.

Q8 trajectory: Define the trajectory to be the sequence of
centers of the observations in an observation group. For each
trajectory that intersects a slab of size [U3, V3] starting at
[X2, Y2] in the world coordinate space, produce the raw data
for a D6 by D6 tile centered on each center for all images that
intersect the slab.

Q9 trajectory-2: Consider an alternate definition of tra-
jectory to be the sequence of polygons that correspond to the
boundary of the observation group. For a slab [U3, V3] starting
at [X2, Y2], find the groups whose trajectory overlaps the slab
at some time t and produce the raw data for a D6 by D6 tile
centered on each center for all images that intersect the slab.

E. Running the Benchmark

The benchmark should perform the following process for
8 (small), 20 (normal) or 50 (large) cycles, depending on the
data size:

1) Ingest 20 new raw data sets produced by running the
data generator.

2) Cook each of the data sets by computing observation
data for the 20 new data sets and then perform grouping
on the observations.

Total elapsed time should be recorded for all 8, 20 or 50 cycles.
This is the loading/cooking performance result of a benchmark
run.

When all cycles are loaded and cooked, the benchmark
also runs the benchmark query tasks indicated in the previous
section with randomly chosen query parameters a total of
15 times. The total time of the 15 runs is the querying
performance result of the benchmark run.

F. Benchmark Parameters

The difficulty of the benchmark can be adjusted by
making the slabs either larger or smaller. In addi-
tion, the difficulty can also be adjusted by increasing
or decreasing the other benchmark parameters. There-

fore, we specify the following parameter configurations:
DI [D2 ] D3 [ D4 [D5] D6 | UL VI | U2,V2 [ U3,V3
Easy 25 | 25 [0.05] 50 | 10 | 50 | 3750 | 5000 500
Medium | 50 | 50 | 0.1 | 100 | 20 | 100 | 7500 | 10000 | 1000
Hard 100 | 100 | 0.2 | 200 | 40 | 200 | 15000 | 20000 | 2000

As a result, the benchmark can be run for the small, normal,
or large data sets and with easy, medium, or hard parameters.
In Section 5 we give results for the benchmark for the small
data set with the medium parameter choices for a single
computing node. We also give results for the normal/medium
benchmark spread over 10 nodes. First, however, we discuss
the implementation of the benchmark in SciDB and MySQL.

III. IMPLEMENTING SS-DB oN SciDB

In this section we describe how we implemented SS-DB on
SciDB. We start by giving a high-level introduction to SciDB,
and then describe the arrays and structures used to implement
the benchmark.
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Fig. 2. SciDB’s nested array model and chunking model. Here, each array

cell contains three attributes, an integer, a floating point number, and a 1-D
nested array.

A. SciDB Basics

SciDB supports a multi-dimensional, nested array model.
More specifically, arrays can have any number of named
dimensions with contiguous integer values between 1 and N.
Each combination of dimension values defines a cell. Every
cell has the same data type(s) for its value(s), which are one
or more scalar values, and/or one or more arrays.

Each array attribute is stored independently of the others
(so-called “vertical” storage). Spatially contiguous values of
the same attribute are co-located on disk. Each array is thus
divided into fixed-sized multidimensional array chunks, each
containing the values of one attribute for a portion of the
array in the multi-dimensional space (see Figure 2). Chunks
can be either dense or sparse. In dense chunks, scalar values
are compactly stored in array order, without any index or
dimensional information, and can be efficiently accessed by
direct offsetting. Sparse chunks contain variable-length vectors
of values, each preceded with dimensional information. The
position of each array chunk is stored using a dedicated index.
Nested arrays must all share the same dimensions and can also
be co-located on disk: a series of M-dimensional arrays nested
in an N-dimensional parent array is represented in SciDB as
an (M+N)-dimensional array and can be chunked arbitrarily
in order to regroup spatially contiguous nested values (see
Figure 3). Chunks are all stored in a compressed form on disk
using a variety of compression techniques (including Null-
Suppression, Lempel-Ziv and Run-Length Encoding schemes)
and are decompressed on the fly when being accessed. Chunk
sizes are selected in order to minimize I/O costs, as in [15].

B. Operators and User-Defined Functions

As well as having a rich set of built-in, array-oriented
operators, SciDB makes heavy use of user-defined functions
(UDFs), which must be coded in C++, the implementation
language of SciDB. SciDB’s operators can be structural and
modify the structure of the input arrays, content-dependent
and based on the values of the input arrays, or both; SciDB
includes a collection of basic operators built using this UDF
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Fig. 3. A series of variable-length, one-dimensional arrays nested in a bi-
dimensional space.

interface, as described in [6], and that will be treated specially
by the optimizer. As in Postgres, UDFs can internally call
other UDFs. SciDB’s queries are expressed as XML fragments
containing a series of UDF instantiations. At the logical level,
UDFs are defined as taking one or several arrays as input
and producing one or several arrays as output. Internally, all
UDFs operate at a chunk granularity: they receive one or
several array chunks as input, create internal chunk iterators to
consume the chunk values, and produce a series of chunks as
output (see Figure 4). SciDB implements its own chunk buffer
pool in order to minimize disk I/O and unnecessary compres-
sion/decompression: processed chunks are tagged with a flag
indicating whether or not they should stay in main memory for
further processing and are replaced whenever necessary using
a clock eviction algorithm.

Given that all arrays are physically divided into chunks
and that UDFs operate at a chunk granularity, SciDB is able
to automatically parallelize many UDFs by creating several
instances of the UDFs (e.g., one per processor) and distributing
the input chunks accordingly to keep all UDF instances busy.
This can be done both locally — by creating several worker
threads, each running a UDF instance — and in distributed set-
tings by distributing the chunks over several nodes and running
parallel UDFs on each node. Output arrays can then either
remain scattered across several nodes or be reconstructed as
one local array on one of the processing nodes. UDFs are
annotated with whether or not they can be parallelized in this
way since some operations (e.g., matrix inversions) cannot
operate on strictly independent array partitions. For those
operations, SciDB supports a set of very flexible replication
mechanisms, where data can either be replicated at the chunk
level or can be replicated on the fringes of the chunks in order
to create overlapping array partitions (the next section gives a
few examples of such overlapping partitions in the context of
the benchmark).

C. SciDB Structures and Queries for SS-DB

Raw Data: Most SS-DB data is array-oriented and is thus a
natural fit for SciDB’s data model. Raw imagery data is stored
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as a series of dense, two-dimensional arrays. Each new image
is stored in an array with a timestamp and (I,J) offset (see
Figure 1). A small, sparse index is used to efficiently lookup
arrays which overlay a given time range and X,Y offset. Since
every array is chunked across the 2-D plane and stored very
compactly on disk, retrieving contiguous array portions for Q1,
Q2, Q3, Q8, and Q9 is thus very efficient and can be executed
in parallel. Output arrays containing imagery data (for Q3, Q8
and Q9) are handled similarly.

Cooking cannot always be executed correctly using inde-
pendent array partitions, since the raw pixels corresponding
to a single observation may overlap several array chunks.
Cooking images using individual chunks can thus result in
an observation being missed or detected multiple times. In
order to parallelize cooking while guaranteeing correct query
execution, the SciDB implementation partitions the imagery
arrays with an overlap D1 in both dimensions. Hence, each
observation is guaranteed to be fully contained in at least one
chunk (see Figure 5 for an illustration). This ensures that all
chunks are self-contained and can be processed in parallel,
independently of the other chunks. To avoid duplicates, we
discard all observations whose center falls on an overlapping
cell (our partitioning ensures that the same observation will
also be detected in spatially neighboring chunks with a center
falling on a non-overlapping cell). When 2D1 > D6, this
overlap also allows SciDB to retrieve the D62 pixels around
any pixel in a chunk for Q8 and Q9 without having to retrieve
the neighboring chunks (which would also be feasible but is
costly in a distributed setting).

Derived Data: The cooking process produces observations,
which are stored as a series of sparse 2-D arrays. As with im-
agery, each observation array is indexed on the time and offset
of the imagery array it was derived from. Cooking produces
several sparse arrays for each 2-D input array, one for each
observation value (sum of pixels, average pixel distance, etc.).
Observation values are stored in those arrays at the cell posi-
tion corresponding to the center of the observation in the 2-D
space. Hence, retrieving a series of neighboring observation
values based on time/I/J intervals is very efficient. Cooking
also produces a 1-D nested polygon array for each observation.
Those nested arrays are also spatially co-located and stored as

lap 2
I(1ve_rlag1_ —_————- - overlap 2
chunk 1 chunk 2

Fig. 5. Two chunks with overlap; the observation in the middle of the chunks
is correctly detected thanks to the overlap region and stored within the second
chunk.

sparse 3-D arrays following the scheme described above in
Section III-B. We created a dedicated UDF for intersecting
polygons by reimplementing the algorithm used for polygon
intersection in MySQL (the SliceScan algorithm [16]).

Observation groups are stored as a series of sparse arrays.
For each observation, we maintain a 1-D nested array to
record the list of groups it belongs to. Those nested arrays
are co-located on the 2-D plane as for the polygon arrays
described above. The group centers are stored separately in a
dedicated sparse 2-D array in order to answer Q7 efficiently.
Finally, when grouping observations, we pre-compute 3-D
sparse arrays materializing the trajectories of the observations
in space and time in order to be able to answer Q8 and Q9
efficiently.

Distribution: In a distributed setting involving N nodes, all
input array chunks are distributed in a round-robin fashion
across the nodes. Each node stores thus on average 1/Nth of
the chunks of each array. The queries are then parallelized
by running local UDFs on the N nodes and by processing
the relevant portions of the arrays locally. Query results are
stored locally for cooking and queries Q2, Q3, Q5, Q6, Q7, Q8
and Q9, while they are sent to a coordinator and aggregated
on a single node for the other queries. Grouping is the only
global operation in the benchmark as it operates on very large
portions of the observation arrays as a whole. As such, it is
very difficult to parallelize, so the operation is performed on
a local node in SciDB, by successively retrieving the relevant
portions of the observation arrays from the other nodes. The
grouping results are stored locally as well (note that the
resulting arrays could also be distributed over all nodes as
an alternative).

IV. IMPLEMENTING SS-DB OoON MYSQL

In this section, we describe the implementation of SS-DB
on MySQL we made to see how an RDBMS would perform.

A. Assumptions

All data and query results are stored in MySQL databases.
Many projects store only the metadata in an RDBMS; in
contrast, we insisted that all data reside inside MySQL. Since
many scientific projects have skilled development resources,
we used advanced MySQL features such as spatial indexes.



In addition, we wrote a few thousand lines of C++ code with
embedded SQL to implement the benchmark queries, the cook-
ing operations, and to parallelize some queries across multiple
nodes. In this endeavor, we preferred to use native MySQL
functionality, even where this required a less straightforward
or lower-performing design, and only used custom code when
required and when it did not add an unreasonable development
cost. We chose not to create code in situations where we
would have had to implement substantial DBMS functionality
ourselves, such as when parallelizing Q4—Q7. Lastly, we tuned
our C++ code, the MySQL schema design, and the MySQL
queries, using the services of a MySQL expert. In essence,
we made use of the skilled resources that would be available
to a large scientific research project in an effort to get the
best performance out of MySQL without writing our own new
database.

B. Tables and Indexes

There are three kinds of objects to store: raw images,
observations, and groups.

We created one table for each raw image. To cluster pixel
data of the image based on the 2D locations, we grouped
pixels into square tiles of size 100 by 100. Hence, each raw
image table has a tile_id, a tile_location, and is clustered on the
attribute. We found this simple approach performs significantly
better than having secondary indexes on 2D locations of pixels
(either B-trees or spatial indexes) because we usually need to
retrieve several thousands of contiguous pixels at a time.

In addition, we created an additional table that includes the
name of each raw data table and the time of that table’s image.
This is used in cooking and grouping queries. These tables
are stored in InnoDB so that we could use clustered B-tree
indexes.

Observations are stored in two tables. An Observation
table records each observation’s unique id, observed time,
and center. The ObservationPolygon table, which is used in
constructing groups, lists all points in an observation and
orders them. To speed up Q4-Q6, the Observation table also
stores geometry objects for both the center and the polygon
boundary of an observation. We used MyISAM as the storage
engine for these tables to take advantage of its spatial indexing
features.

Similarly, groups are stored in two tables. A Group table
contains a tuple for each group as well as a GEOMETRY
object to store and index the trajectory defined by the centers
of all the observations in the group. The Group table is stored
in MyISAM storage to utilize its spatial index feature. In
addition, the GroupObservation table records the mapping
between groups and observations. The GroupObservation table
is stored in InnoDB to utilize its clustered index feature.

Finally we constructed an additional table called Group-
Trajectory to speed up Q9. It represents the location where
an observation group exists during some time period. For
example, if a group contains an observation A at time 20 and
an observation B at time 30, we store a tuple (from_time=20,
to_time=30, trajectory=polygons of A and B) meaning the

group could exist at any time between 20 and 30 in any spatial
location within the union of the polygons. We store such a
tuple for each of the series of observations in each group and
build a spatial index on the trajectory in MyISAM.

Finally, as an optimization for Q7-Q9, we do not physically
store singleton groups in the database to make the cooking
faster and the spatial index smaller. Instead, we issue another
query on the observation table and mix the results with those
from the group table. Because the center of a singleton group
is always the same as the only observation in the group, we
do not need to store it twice. Obviously, this saves space and
time, but may limit flexibility when dealing with future queries
not in the benchmark.

C. Data Loading and Cooking

We modified the benchmark-generated data to append the
tile numbers for raw pixels, which we need for raw data
storage. Moreover, we sorted image files by MySQL’s primary
key, so that its data loads are perfectly sequential and go as
fast as possible.

We generated observations and their groups using the
benchmark-provided code. Our C++ code retrieves and stores
data in batches, using a LOAD DATA operation from a CSV
file, both for input at the image level and for inserting
observations for an image.

D. Partitioning and Distribution

When running on a 10 node configuration, we distributed
the raw images in a round-robin fashion. This ensures skew-
free partitioning and maximizes the opportunity to parallelize
queries that retrieve pixel data from a number of images (e.g.,
Q1, Q3, Q8, Q9). In order to work with spatial queries (Q4—
Q09), observation data and group data need MySQL’s spatial
indexes which do not support distribution. Therefore, we store
these spatial indexes at a single master node, which limits their
parallelizability.

E. Query Implementation

Q1 and Q3 (raw image queries) are easy to parallelize
because all the operations occur on a per image basis. Ql
issues SQL queries to each node in parallel to compute sums
and counts, and then merges these at a single node to produce
the final average. Q3 simply runs the cooking and re-gridding
C++ code and stores the result at each node. Since Q2 handles
only one image, we do not parallelize its execution.

Q4-Q6 (observation queries) are not parallelized because
all the observations and their spatial indexes are stored at the
single master node. Instead, the query implementation simply
uses the spatial index on the master node.

Q7-Q9 (observation group queries) are also not parallelized
for this reason. However, Q8 and Q9 can parallelize the
retrieval of the raw pixels at the various nodes. Specifically,
we issue spatial queries in SQL at the master MySQL node to
get a list of observations and their centers. We then retrieve
pixels in parallel for the centers from images that intersect
with the slab.



As with loading, for all queries, we retrieve and store data
in batches as much as possible to avoid per-query or per-tuple
overheads. For example, a list of new observations is written
into a CSV file first and then loaded into MySQL via a single
LOAD DATA operation, saving the overhead of multiple query
calls.

V. BENCHMARK RESULTS

In this section, we show the results of the SS-DB benchmark
on our SciDB implementation and MySQL. We also analyze
the performance of the two systems to characterize which
features cause differences.

A. Setup

We ran the benchmark on our internal version of SciDB
and MySQL 5.1.39 on a gigabit ethernet cluster of 10 Linux
machines, each of which runs Ubuntu Karmic and has 2 GB
RAM, a 1.5 TB SATA HDD and a dual core 3.2 GHz CPU.

The data sizes we use are normal and small, both with the
medium benchmark parameters. The small dataset is tested on
a single machine while the normal dataset is distributed across
all 10 machines. We loaded the data onto each node, cooked
the raw images to get observations and their groups, and ran
the benchmark queries. Each benchmark query was executed
with 5 different starting points (Xi and Yi offsets) and was
run 3 times, for a total of 15 runs. All queries are cold start,
meaning that we cleared the caches and restarted the database
services between every run of each query. Times reported are
the total runtime of all 15 runs.

B. Results

Table 1 shows the results of the benchmark on the two
systems. The scaleup line shows the ratio of runtime with
the normal and small datasets, in which a lower number
means a better scaleup. Note that a linear scaleup would be
1.0, and a value less than 1.0 indicates super-linear scaling.
Although the loading/cooking scaleup for SciDB is less than
for MySQL, query runtimes scale much better in SciDB and
also improve superlinearly. Only Q7 fails to show significant
parallelization in SciDB (SciDB stores the array used in Q7 on
a single node), whereas Q4-Q9 do not scale well in MySQL.
The (MySQL/SciDB) block shows the ratio of runtime with
MySQL and SciDB.

C. Analysis

The results above show that SciDB performs one or two
orders of magnitude faster on most queries. The difference is
especially high (three orders of magnitude) in Q4-Q6 with
large datasets. The total runtime of the benchmark queries is
about 40 times faster in the small dataset, 120 times faster in
the normal dataset. Differences on the small dataset are due
to architectural advantages of SciDB (compression, column-
orientation, efficient representations of sparse and dense ar-
rays), while the normal dataset is able to further take advantage
of parallelization. We explain these differences in the rest of
this section, starting with a discussion of parallelization.

D. Parallel Performance

We look at parallel performance in loading as well as in
each of the three groups of queries.

Data Loading and Cooking: Both SciDB and MySQL
successfully parallelize loading the raw images and detecting
observations on each node. In MySQL, loading the 10x larger
dataset (normal) took almost the same time as the smaller
dataset except for a slight slowdown for observation cooking
(1.8x) because observations are collected at a single master
node.

SciDB’s distributed data loading works as follows: it first
distributes the input arrays over the nodes; then, each node par-
titions (i.e. chunks) its local arrays and distributes the resulting
chunks over all the nodes in a round-robin fashion. Distributed
loading is thus a highly parallel operation in SciDB, with many
chunk exchanges between arbitrary nodes. Hence, it suffers a
2x performance overhead compared to the local loading due to
the network exchanges and the asynchronous I/O operations
needed to write chunks coming from other nodes.

Overall, SciDB is much faster than MySQL at loading
because MySQL is quite slow at populating spatial indexes
at load time (see Section V-E).

Neither DBMS scales up well when detecting groups of
observations. This is because finding groups requires global
knowledge of observations (to merge into other groups) and
is not amenable to parallelization.

Queries on Raw Data (Q1-Q3): In these queries, SciDB
scaled up quite well and performed even faster with the larger
dataset. This happens because, although the normal dataset
has 10x larger data in total, the size of each image is only
4x larger than in the small dataset. Q1-Q3 process the same
number of images in both settings, therefore the scaled up
SciDB performs 2.5x faster (0.4x scaleup ratio) with 10x more
processing power.

The same speedup occurs with MySQL, but it does not
scale up for Q2 because Q2 processes only one image, and
our benchmark implementation on MySQL partitions data by
image while SciDB partitions images into chunks, resulting in
a 630x performance difference between the two implementa-
tions on the larger dataset.

Queries on Observations (Q4—-Q6): In these queries, the
performance difference due to parallelization is far larger.
SciDB scales up well (only 2x slowdown in the larger dataset)
because it distributes observations to the 10 nodes and paral-
lelizes the query execution. MySQL, however, does not scale
up and performs two orders of magnitude slower on the larger
dataset.

The slowdown of MySQL is even larger than the growth of
the data (10x) because MySQL’s spatial index performs poorly
when the size of the spatial index becomes much larger than
RAM. This slowdown could be avoided by distributing the
spatial index to the 10 nodes, but as we noted earlier MySQL
does not support a distributed spatial index. This results in
the huge (three orders of magnitude) performance difference
between SciDB and MySQL on the larger dataset.



Loading/Cooking [min]

Query Runtimes [min]

DBMS | Dataset | 17524 T Obsv | Group [ Toral || QT [ Q2 [ @3 | @4 | Q5 | Q6 | Q7 [ Q8 [ @ | Toml
small 760 | 110 | 2 [ 872 123 ] 21 [ 393 ] 04 | 036 | 06 | 06 | 40 | 50 | 638
MySQL | normal || 770 | 200 | 90 | 1060 | 54 | 44 | 161 | 50 | 32 | 51 | 52 | 395 | 395 | 1234
(scaleup) || (1.0) | (1.8) | &%) | (1.2) | 04| @1 | 04 | (125 | @9 | @5 | &7 | @&.1) | 7.9 | (1.93)
small 3 | 16 | 06 | 36 |82 | 02 [ 37 [0007 | 001 | 001 [001 | 1.8 | 19 | 16
SeiDB | normal || 67 | 19 | 15 | 84 | 36 | 007 | 1.7 | 0015 | 0017 | 002 | 011 | 22 | 23 | 10
(scaleup) || 2.0) | (12 | @5) | 23) || 04 | ©4 |04 | @) | an | @ |an | a2 | a2 | 063
MySQL | small @ 169 | G3) [ @ [ (15 [(105) [ 106y | &7 | (G6) | 60) | 60) | @7 | @6) | @0)
/SGiDB) | normal || (12) | (105) | (6) | (13) || (15) | (630) | (95) | (3330) | (1880) | (2550) | 470) | (180) | (170) | (120)
TABLE 1
BENCHMARK RESULTS. (num) IS A RATIO OF RUNTIMES, EITHER normal VS. small (SCALEUP) OR MYSQL vS. SCcIDB.

Queries on Groups (Q7-Q9): Similarly, SciDB performs
significantly faster in these queries because SciDB distributes
all imagery and observation data at the chunk granularity over
the 10 nodes and scales up nearly perfectly (only 20% slower
in the larger dataset) while MySQL does not.

As described earlier, Q8 and Q9 retrieve raw pixel data for
each observation that satisfies the query. MySQL parallelizes
this retrieval, which results in smaller performance differences.
Still, receiving the pixel data from each node and processing
it on the master node introduces a CPU and I/O bottleneck in
MySQL, resulting in a performance difference of about two
orders of magnitude.

E. Other Performance Factors

So far, we have discussed the ability of SciDB and MySQL
to parallelize queries over several nodes, but, as noted above,
the performance difference does not come from parallelization
only. SciDB performs orders of magnitude better than MySQL
even on a single node for most SS-DB operations. We explain
the reasons behind SciDB’s superior performance below.

Columnar storage, dense-packing, and sequential 1/O:
SciDB adopts a very compact, array-oriented, and vertical
storage model that is inherently more efficient than the N-
ary storage model used by MySQL on the present benchmark.
For instance, MySQL systematically reads 52 bytes worth of
data for each array cell processed (2x4 bytes for the cell
position plus 11x4 bytes for the 11 values contained in the
cell), independently of the number of values that are really
accessed in the cell. A column-oriented system reads only 12
bytes per cell and per value (2x4 bytes for the position of the
cell plus 4 bytes for the value itself), while SciDB’s dense
array storage only reads the 4 bytes of the value itself. The
situation is analogous for sparse observation arrays, except
that SciDB has to store 9 bytes in addition to every cell
value in that case (2x4 bytes for the cell position, and 1 byte
representing the timestamp).

SciDB also limits the number of seeks required to read
contiguous cell values. It seeks once per array chunk only
— both when reading and writing values — and reads/writes all
values in a chunk using one buffered I/O operation. In addition,
the SciDB engine reads and writes chunks in the same order
as they are laid down on disk whenever possible to further
reduce seek times.

Array Compression: To further minimize disk transfers,
SciDB stores all chunks in a compressed form on disk and
decompresses them on-the-fly at access time. In the context
of SS-DB, we decided to use Lempel-Ziv as the main com-
pression algorithm, since it offers a good trade-off between
compression ratios and computational complexity on SS-DB
data. Lempel-Ziv typically yields a 1.9:1 compression ratio on
dense SS-DB chunks. Sparse chunks get compressed with a
compression ratio of 1.33:1 on average, except polygon arrays,
which can be compressed with a higher compression ratio of
2:1 on average.

MySQL InnoDB also provides a data compression feature,
but we found that the feature substantially slows down not only
INSERT queries but SELECT queries due to its high CPU cost
to decompress data. Therefore, we did not use compresion in
the MySQL implementation.

Local Parallelism: As noted above in Section III-B,
SciDB’s UDFs take advantage of multi-core architectures: in
order to speed up query execution, UDFs can create several
worker threads locally and process chunks in parallel. The
machines used to run the benchmark each contain a 2-core
Xeon processor, registering a total of 4 cores at the OS level
(2 cores plus 2 virtual cores through Intel’s hyperthreading
technology). The speedup gained through local parallelism is
variable and depends on the computational complexity of the
queries (see Performance Drill-Down below).

Partitioning with overlap: The performance benefits of
partitioning with overlap are more difficult to assess. On
one hand, overlap imposes some computational overhead to
replicate some of the cells and process them in addition to the
non-overlapping cells. It also imposes some storage overhead.
On the other hand, overlap makes it possible to parallelize
some operations that would be impossible to parallelize in
distributed settings otherwise. The benefits of overlap are thus
highly query-dependent and cannot be generalized. In the
context of SS-DB, overlap was used to parallelize cooking
and image data processing in distributed settings. Overlap
incurs as much as 20% computational and storage overhead
on the dense SS-DB chunks storing image data, but it allows
us to parallelize cooking (e.g. for Q2) and the retrieval of
neighboring raw pixels for Q8 and Q9 on a chunk basis.

Poor MySQL Index and Loading Performance: MySQL
continued to exhibit poor performance at loading image data



despite our efforts to speed it up. Throughput was only
3 MB/sec in reading a CSV file and writing it out to
MySQL InnoDB files, far slower than the raw drive bandwidth
(35 MB/sec for read+write). One reason is that MySQL Inn-
oDB does not allow pre-allocating a large database file when
each InnoDB table is created (innodb_file_per_table).
Further, it does not allow setting the size of increase when the
file needs to expand (innodb_autoextend-increment
fixing it instead at just 4 MB for innodb_file_per-
_table), leading to slow loading for large files (> 3 GB).

Also, we observe that the build and query performance of
MySQL’s spatial index quickly deteriorates when the size of
the spatial index file becomes much larger than RAM even
though we execute CREATE SPATIAL INDEX after we load
all tuples. We surmise that MySQL is reading and writing R-
tree nodes for each tuple to build its spatial index, causing
an enormous number of disk seeks, node splits, index file
expansions, and substantial fragmentation unless the entire
spatial index fits in main memory.

Although performance gaps caused by architectural differ-
ences will remain as described in previous sections, this poor
performance of MySQL may be lessened to some degree in
other RDBMSs.

Performance Drill-Down: To summarize the architecture
differences, we analyzed the performance of SciDB on a subset
of the queries by turning off some of its core features. Table II
gives the execution times of three queries on the small dataset
when columnar storage, compression, and local parallelism are
all turned off (Baseline). The table then reports execution times
when each of those features is turned on one after the other
(Vertical Stor., Compression, and finally Parallelism, the last
of which corresponds to the usual SciDB with all features on).
The table also gives the speedup with respect to the baseline
for each configuration.

The first query we picked, Ql, is a highly I/O-bound,
aggregate query on raw images. The baseline is here com-
parable to the performance of MySQL. Columnar storage
and compression greatly improves the performance of this
query (speedup of 13 altogether). Local parallelism only helps
marginally since most of the time is spent in I/O transfers.

The second query we picked, Q2, is a cooking query that
reads raw imagery and produces sparse observations. The
baseline for this query is three times faster than its MySQL
counterpart — thanks mainly to the bulk sparse array inserts in
SciDB (only one seek to append a whole array, no spatial index
construction). As cooking involves a series of CPU-intensive
operations (object and polygon detections), local parallelism
speeds up this query.

The third query we analyzed, QS5, is a spatial query on
sparse observations. The baseline for this query is considerably
faster than MySQL; here, the chunking mechanism of SciDB
and the co-location of the sparse, nested arrays containing the
polygons greatly minimizes the number of seeks required —
which end up being the dominant factor for this query. The
speedup gained from the other features is limited — though
compression speeds up the query to a certain extent as polygon

Ql Q2 Q5
time | speedup | time | speedup | time | speedup
[ Baseline 120 - 6 - 0.02 -
Vertical Stor. | 14 8.6 0.7 8.6 0.017 | 1.18
Compression | 9 13.3 0.4 15 0.012 1.7
Parallelism 8.2 14.6 0.2 30 0.01 2

TABLE II
PERFORMANCE RESULTS (IN MINUTES) FOR 3 QUERIES WITH SOME OF
SCIDB’S FEATURES TURNED OFF.

arrays tend to compress very well.

VI. RELATED WORK

There have been several other efforts to build scientific
database benchmarks. Sequoia 2000 [17] is a benchmark
designed for GIS-style applications with some imagery but
on a much smaller scale than SS-DB. The Sloan Digital Sky
Survey (SDSS) [7] includes a number of benchmark queries
and is based on an astronomy application related to one of
the driving applications for our benchmark. These queries,
however, focus only on operations that relational databases
can effectively compute and as such do not include any
cooking or operations on raw data. Our work on SS-DB was
partly inspired by observations from scientists in projects like
PanSTARRS [18], a follow-on to SDSS, who had significant
additional requirements that SQLServer/SDSS does not model.

There have been several other efforts to support arrays in
database systems, all of which would eventually be interesting
to run on our benchmark. Greenplum [19], MonetDB [4], [20],
and other relational vendors have advocated storing arrays
inside of the database system as tables, e.g., storing an array
AllL J] as the table T (I, J, A[L, J]). In this way, there is a row
for each cell of the array. Another approach is to use BLOBs
as a storage layer for array data, as was done in RasdaMan [5].
The same tactic is also used by SAP for storing financial data.
In our MySQL implementation, we used a hybrid of these
approaches, using small cells stored as BLOBs to reduce table
cardinality but still relying on the database system to index
and retrieve those cells from disk. The third approach, taken
by SciDB, and several other systems [21] is to build a native
array store from the ground up. As we show in this paper,
this approach seems to offer substantial performance gains, at
least on SS-DB, relative to the emulation-based approach.

VII. CONCLUSIONS

This paper proposes SS-DB, a scientific benchmark in the
form of nine queries designed to capture common computa-
tional needs from several scientific disciplines. This bench-
mark has been vetted by domain experts, and, as such, it is
a useful tool for comparing architectural choices among data
management systems.

We have begun this process by using it to compare the
performance of MySQL (as a surrogate for relational systems)
and SciDB (as a surrogate for purpose-built, from-the-ground-
up scientific data management systems). We discovered that



there are several important architectural features that any data
manager for science should include. These include columnar
storage, aggressive compression (e.g., eliminating the need to
store array indices), a storage manager that supports tiled-
chunks that can be stored contiguously and read sequentially,
and the ability to support overlap across chunk borders. UDFs
should also be easy to parallelize, and load time should be
taken seriously by supporting things like pre-allocation of
files. At present, SciDB encapsulates all of these architectural
features which accounts for its impressive performance.

It is important to note that most of these features are not
especially new. It is the entire package of features that is de-
manded by scientific applications that is important here. If one
wants to seriously support these data-intensive applications,
it is crucial to be able to do all of these things seamlessly.
There may also be other features that could improve perfor-
mance more, and we invite others to use this benchmark to
demonstrate these improvements.
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APPENDIX
A-1. COOKING FuNcTION (F1)
Input: An image I'm(w, h)
Input: Threshold th = 1000 for F1, th = 900 for F1’
Output: A list of observations with attributes obs

for j <~ 0Otoh—1do
for i < 0 tow—1do

if Imli, j| > th then

Check Im[i —1,j], Im[i — 1,7 — 1],
Imli,j—1], Im[i + 1,5 — 1];

if any neighbors were above threshold then
Merge previous observations (keeping
lowest-numbered) if required;

Merge this pixel into previous
observation;

else
Create a new observation and merge pixel
into it;

end

end

end

foreach observation that did not have pixels added do
Compute attributes (centroid, polygon boundary,
pixel sum, average distance);

Move observation to obs;

end

end
return obs

Algorithm 1: Detect observations above threshold in image

A-2. GROUPING FUNCTION (F2)

Input: Two observations obsl, obs2

Output: True if both observations belong to the same
observation group

distanceX < obs2.x — obsl.x;

distanceY < obs2.y — obsl.y;

distancel < obs2.time — obsl.time;

return distanceX? + distanceY? < D3 « distanceT

Algorithm 2: Group observations



